1
|
Borra E, Rizzo M, Luppino G. Gradients of thalamic connectivity in the macaque lateral prefrontal cortex. Front Integr Neurosci 2023; 17:1239426. [PMID: 37908780 PMCID: PMC10613699 DOI: 10.3389/fnint.2023.1239426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
In the primate brain, the lateral prefrontal cortex (LPF) is a large, heterogeneous region critically involved in the cognitive control of behavior, consisting of several connectionally and functionally distinct areas. Studies in macaques provided evidence for distinctive patterns of cortical connectivity between architectonic areas located at different dorsoventral levels and for rostrocaudal gradients of parietal and frontal connections in the three main architectonic LPF areas: 46d, 46v, and 12r. In the present study, based on tracer injections placed at different dorsoventral and rostrocaudal cortical levels, we have examined the thalamic projections to the LPF to examine to what extent fine-grained connectional gradients of cortical connectivity are reflected in the topography of thalamo-LPF projections. The results showed mapping onto the nucleus medialis dorsalis (MD), by far the major source of thalamic input to the LPF, of rostral-to-caudal LPF zones, in which MD zones projecting to more caudal LPF sectors are located more rostral than those projecting to intermediate LPF sectors. Furthermore, the MD zones projecting to the rostral LPF sectors tended to be much more extensive in the rostrocaudal direction. One rostrolateral MD sector appeared to be a common source of projections to caudal prefrontal areas involved in the oculomotor frontal domain, a more caudal and ventral MD sector to a large extent of the ventral LPF, and middle and dorsal MD sectors to most of the dorsal LPF. Additional topographically organized projections to LPF areas originated from the nucleus pulvinaris medialis and projections from the nucleus anterior medialis selectively targeted more rostral sectors of LPF. Thus, the present data suggest that the topography of the MD-LPF projections does not adhere to simple topological rules, but is mainly organized according to functional criteria.
Collapse
Affiliation(s)
| | | | - Giuseppe Luppino
- Neuroscience Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
3
|
Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network. Brain Struct Funct 2017; 223:1713-1729. [PMID: 29196811 DOI: 10.1007/s00429-017-1582-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
Abstract
Mirror neurons (MNs) are a class of cells originally discovered in the monkey ventral premotor cortex (PMv) and inferior parietal lobule (IPL). They discharge during both action execution and action observation and appear to play a crucial role in understanding others' actions. It has been proposed that the mirror mechanism is based on a match between the visual description of actions, encoded in temporal cortical regions, and their motor representation, provided by PMv and IPL. However, neurons responding to action observation have been recently found in other cortical regions, suggesting that the mirror mechanism relies on a wider network. Here we provide the first description of this network by injecting neural tracers into physiologically identified IPL and PMv sectors containing hand MNs. Our results show that these sectors are reciprocally connected, in line with the current view, but IPL MN sectors showed virtually no direct connection with temporal visual areas. In addition, we found that PMv and IPL MN sectors share connections with several cortical regions, including the dorsal and mesial premotor cortex, the primary motor cortex, the secondary somatosensory cortex, the mid-dorsal insula and the ventrolateral prefrontal cortex, as well as subcortical structures, such as motor and polysensory thalamic nuclei and the mid-dorsal claustrum. We propose that each of these regions constitutes a node of an "extended network", through which information relative to ongoing movements, social context, environmental contingencies, abstract rules, and internal states can influence MN activity and contribute to several socio-cognitive functions.
Collapse
|
4
|
Stepniewska I, Pouget P, Kaas JH. Frontal eye field in prosimian galagos: Intracortical microstimulation and tracing studies. J Comp Neurol 2017; 526:626-652. [PMID: 29127718 DOI: 10.1002/cne.24355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
The frontal eye field (FEF) in prosimian primates was identified as a small cortical region, above and anterior to the anterior frontal sulcus, from which saccadic eye movements were evoked with electrical stimulation. Tracer injections revealed FEF connections with cortical and subcortical structures participating in higher order visual processing. Ipsilateral cortical connections were the densest with adjoining parts of the dorsal premotor and prefrontal cortex (PFC). Label in a region corresponding to supplementary eye field (SEF) of other primates, suggests the existence of SEF in galagos. Other connections were with ventral premotor cortex (PMV), the caudal half of posterior parietal cortex, cingulate cortex, visual areas within the superior temporal sulcus, and inferotemporal cortex. Callosal connections were mostly with the region of the FEF of another hemisphere, SEF, PFC, and PMV. Most subcortical connections were ipsilateral, but some were bilateral. Dense bilateral connections were to caudate nuclei. Densest reciprocal ipsilateral connections were with the paralamellar portion of mediodorsal nucleus, intralaminar nuclei and magnocellular portion of ventral anterior nucleus. Other FEF connections were with the claustrum, reticular nucleus, zona incerta, lateral posterior and medial pulvinar nuclei, nucleus limitans, pretectal area, nucleus of Darkschewitsch, mesencephalic and pontine reticular formation and pontine nuclei. Surprisingly, the superior colliculus (SC) contained only sparse anterograde label. Although most FEF connections in galagos are similar to those in monkeys, the FEF-SC connections appear to be much less. This suggests that a major contribution of the FEF to visuomotor functions of SC emerged with the evolution of anthropoid primates.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Pierre Pouget
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Ferrari PF, Gerbella M, Coudé G, Rozzi S. Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience 2017; 358:300-315. [PMID: 28687313 DOI: 10.1016/j.neuroscience.2017.06.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
Abstract
The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing.
Collapse
Affiliation(s)
- P F Ferrari
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS/Université Claude Bernard Lyon, 67 Pinel, 69675 Bron Cedex, France; Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, 39 Volturno, 43125 Parma, Italy.
| | - M Gerbella
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, 39 Volturno, 43125 Parma, Italy; Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, Lecce, Italy
| | - G Coudé
- Institut des Sciences Cognitives - Marc Jeannerod, CNRS/Université Claude Bernard Lyon, 67 Pinel, 69675 Bron Cedex, France
| | - S Rozzi
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, 39 Volturno, 43125 Parma, Italy
| |
Collapse
|
6
|
Recollection and familiarity in the human thalamus. Neurosci Biobehav Rev 2015; 54:18-28. [DOI: 10.1016/j.neubiorev.2014.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 11/24/2022]
|
7
|
Jang SH, Yeo SS. Thalamocortical connections between the mediodorsal nucleus of the thalamus and prefrontal cortex in the human brain: a diffusion tensor tractographic study. Yonsei Med J 2014; 55:709-14. [PMID: 24719138 PMCID: PMC3990063 DOI: 10.3349/ymj.2014.55.3.709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/11/2013] [Accepted: 08/19/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The elucidation of thalamocortical connections between the mediodorsal nucleus (MD) of thalamus and the prefrontal cortex (PFC) is important in the clinical fields of neurorehabilitation and psychiatry. However, little is known about these connections in human brain. We attempted to identify and investigate the anatomical characteristics of the thalamocortical connection between MD and PFC in human brain using diffusion tensor tractography (DTT). MATERIALS AND METHODS Thirty-two healthy volunteers were recruited for this study. Diffusion tensor images were scanned using a 1.5-T. A seed region of interest was placed at the MD of the thalamus on coronal images, and target regions of interest were placed on the dorsolateral prefrontal cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC), and the orbitofrontal cortex (OFC), respectively. The three thalamocortical connections found were reconstructed using Functional Magnetic Resonance Imaging of the Brain (FMRIB) software. RESULTS The three thalamocortical connections were arranged in subcortical white matter in the following order from upper to lower levels: the DLPFC, the VLPFC, and the OFC. In terms of fractional anisotropy and mean diffusivity values, no significant differences were observed between the DLPFC, VLPFC and OFC (p>0.05). In contrast, the OFC tract volume was higher than those of the DLPFC and the VLPFC (p<0.05). CONCLUSION Three thalamocortical connections were reconstructed between MD and PFCs in human brain using DTT. We believe that the results of this study would be helpful to clinicians in treating frontal network syndrome and psychiatric diseases.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Korea
| | - Sang Seok Yeo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
8
|
Panagiotaropoulos TI, Kapoor V, Logothetis NK. Subjective visual perception: from local processing to emergent phenomena of brain activity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130534. [PMID: 24639588 DOI: 10.1098/rstb.2013.0534] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.
Collapse
Affiliation(s)
- Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, , Tübingen 72076, Germany
| | | | | |
Collapse
|
9
|
Revisiting the functional specialization of left inferior frontal gyrus in phonological and semantic fluency: the crucial role of task demands and individual ability. J Neurosci 2013; 33:7837-45. [PMID: 23637175 DOI: 10.1523/jneurosci.3147-12.2013] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite a large body of research, extant findings on the functional role of left inferior frontal gyrus (LIFG) in phonological and semantic fluency are still controversial. Based on cross-study comparisons, a recent meta-analysis of neuroimaging results suggests that posterior-dorsal (Brodmann area, BA, 44) and anterior-ventral parts (BA 45) of LIFG contribute differentially to processes of phonologically and semantically cued word retrieval, respectively. In contrast, a subsequent functional magnetic resonance imaging experiment failed to validate the proposed dissociation using a within-subjects design. In particular, no evidence for a specific role of BA 45 in semantic fluency was found. Here, we resolve this apparent controversy by showing that the conflicting findings can be accounted for when considering the influence of task demands and individual ability on resulting functional magnetic resonance imaging activation patterns. By comparing phonological versus semantic fluency, higher activation was robustly observed in BA 44. For the opposite comparison, higher activation was found in dorsal BA 45; however, this was more pronounced in posterior-dorsal parts of BA 45 for low-performing subjects and was only apparent in anterior-dorsal parts of BA 45 under high demands on controlled semantic retrieval. Our results thus disclose important determinants for detecting a functional segregation of LIFG in verbal fluency that also have implications for the controversial findings in previous lesion studies. Moreover, the present parcellation of dorsal BA 45 corresponds well with anatomical evidence suggesting a subdivision into an anterior (45A) and posterior part (45B) and may therefore represent evidence for its functional significance in humans.
Collapse
|
10
|
Gerbella M, Baccarini M, Borra E, Rozzi S, Luppino G. Amygdalar connections of the macaque areas 45A and 45B. Brain Struct Funct 2013; 219:831-42. [DOI: 10.1007/s00429-013-0538-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
|
11
|
Hazlett EA, Collazo T, Zelmanova Y, Entis JJ, Chu KW, Goldstein KE, Roussos P, Haznedar MM, Koenigsberg HW, New AS, Buchsbaum MS, Hershowitz JP, Siever LJ, Byne W. Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and anisotropy. Schizophr Res 2012; 141:119-27. [PMID: 22995934 PMCID: PMC3742803 DOI: 10.1016/j.schres.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 01/16/2023]
Abstract
Mounting evidence suggests that white matter abnormalities and altered subcortical-cortical connectivity may be central to the pathology of schizophrenia (SZ). The anterior limb of the internal capsule (ALIC) is an important thalamo-frontal white-matter tract shown to have volume reductions in SZ and to a lesser degree in schizotypal personality disorder (SPD). While fractional anisotropy (FA) and connectivity abnormalities in the ALIC have been reported in SZ, they have not been examined in SPD. In the current study, magnetic resonance (MRI) and diffusion tensor imaging (DTI) were obtained in age- and sex-matched individuals with SPD (n=33) and healthy controls (HCs; n=38). The ALIC was traced bilaterally on five equally spaced dorsal-to-ventral axial slices from each participant's MRI scan and co-registered to DTI for the calculation of FA. Tractography was used to examine tracts between the ALIC and two key Brodmann areas (BAs; BA10, BA45) within the dorsolateral prefrontal cortex (DLPFC). Compared with HCs, the SPD participants exhibited (a) smaller relative volume at the mid-ventral ALIC slice level but not the other levels; (b) normal FA within the ALIC; (c) fewer relative number of tracts between the most-dorsal ALIC levels and BA10 but not BA45 and (d) fewer dorsal ALIC-DLPFC tracts were associated with greater symptom severity in SPD. In contrast to prior SZ studies that report lower FA, individuals with SPD show sparing. Our findings are consistent with a pattern of milder thalamo-frontal dysconnectivity in SPD than schizophrenia.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takahara D, Inoue KI, Hirata Y, Miyachi S, Nambu A, Takada M, Hoshi E. Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques - anatomical substrate for conditional visuomotor behavior. Eur J Neurosci 2012; 36:3365-75. [PMID: 22882424 DOI: 10.1111/j.1460-9568.2012.08251.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lines of evidence indicate that both the ventrolateral prefrontal cortex (vlPFC) (areas 45/12) and dorsal premotor cortex (PMd) (rostral F2 in area 6) are crucially involved in conditional visuomotor behavior, in which it is required to determine an action based on an associated visual object. However, virtually no direct projections appear to exist between the vlPFC and PMd. In the present study, to elucidate possible multisynaptic networks linking the vlPFC to the PMd, we performed a series of neuroanatomical tract-tracing experiments in macaque monkeys. First, we identified cortical areas that send projection fibers directly to the PMd by injecting Fast Blue into the PMd. Considerable retrograde labeling occurred in the dorsal prefrontal cortex (dPFC) (areas 46d/9/8B/8Ad), dorsomedial motor cortex (dmMC) (F7 and presupplementary motor area), rostral cingulate motor area, and ventral premotor cortex (F5 and area 44), whereas the vlPFC was virtually devoid of neuronal labeling. Second, we injected the rabies virus, a retrograde transneuronal tracer, into the PMd. At 3 days after the rabies injections, second-order neurons were labeled in the vlPFC (mainly area 45), indicating that the vlPFC disynaptically projects to the PMd. Finally, to determine areas that connect the vlPFC to the PMd indirectly, we carried out an anterograde/retrograde dual-labeling experiment in single monkeys. By examining the distribution of axon terminals labeled from the vlPFC and cell bodies labeled from the PMd, we found overlapping labels in the dPFC and dmMC. These results indicate that the vlPFC outflow is directed toward the PMd in a multisynaptic fashion through the dPFC and/or dmMC.
Collapse
Affiliation(s)
- Daisuke Takahara
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Pergola G, Güntürkün O, Koch B, Schwarz M, Daum I, Suchan B. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus. Neuropsychologia 2012; 50:2477-91. [DOI: 10.1016/j.neuropsychologia.2012.06.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 11/26/2022]
|
14
|
Stuphorn V, Emeric EE. Proactive and reactive control by the medial frontal cortex. FRONTIERS IN NEUROENGINEERING 2012; 5:9. [PMID: 22723779 PMCID: PMC3378012 DOI: 10.3389/fneng.2012.00009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/29/2012] [Indexed: 11/13/2022]
Abstract
Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Recent work in humans has identified a network of cortical and subcortical brain region that might have an important role in proactive and reactive control. However, due to technical limitations, such as the spatial and temporal resolution of the BOLD signal, human imaging experiments are not able to disambiguate the specific function(s) of these brain regions. These limitations can be overcome through single-unit recordings in non-human primates. In this article, we describe the behavioral and physiological evidence for dual mechanisms of control in response inhibition in the medial frontal cortex of monkeys performing the stop signal or countermanding task.
Collapse
Affiliation(s)
- Veit Stuphorn
- Psychological and Brain Sciences, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore MD, USA
| | | |
Collapse
|
15
|
Panagiotaropoulos T, Deco G, Kapoor V, Logothetis N. Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron 2012; 74:924-35. [DOI: 10.1016/j.neuron.2012.04.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 11/25/2022]
|