1
|
Osorio-Londoño D, Morales-Guadarrama A, Olayo-González R, Roldan-Valadez E. Quantitative Magnetic Resonance Identifies Recovery from Spinal Cord Injury after Bioactive Implants. Arch Med Res 2024; 55:103012. [PMID: 38851049 DOI: 10.1016/j.arcmed.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Affiliation(s)
| | - Axayácatl Morales-Guadarrama
- Medical Imaging and Instrumentation Research National Center, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | - Ernesto Roldan-Valadez
- Division of Research, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City, Mexico; I.M. Sechenov First Moscow State Medical University, Sechenov University, Department of Radiology, Moscow, Russia.
| |
Collapse
|
2
|
Osorio-Londoño D, Heras-Romero Y, Tovar-y-Romo LB, Olayo-González R, Morales-Guadarrama A. Improved Recovery of Complete Spinal Cord Transection by a Plasma-Modified Fibrillar Scaffold. Polymers (Basel) 2024; 16:1133. [PMID: 38675052 PMCID: PMC11054293 DOI: 10.3390/polym16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.
Collapse
Affiliation(s)
- Diana Osorio-Londoño
- Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Yessica Heras-Romero
- Experimental Analysis of Behavior Department, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | | - Axayácatl Morales-Guadarrama
- Medical Imaging and Instrumentation Research National Center, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| |
Collapse
|
3
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Asthana P, Kumar G, Milanowski LM, Au NPB, Chan SC, Huang J, Feng H, Kwan KM, He J, Chan KWY, Wszolek ZK, Ma CHE. Cerebellar glutamatergic system impacts spontaneous motor recovery by regulating Gria1 expression. NPJ Regen Med 2022; 7:45. [PMID: 36064798 PMCID: PMC9445039 DOI: 10.1038/s41536-022-00243-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury (PNI) often results in spontaneous motor recovery; however, how disrupted cerebellar circuitry affects PNI-associated motor recovery is unknown. Here, we demonstrated disrupted cerebellar circuitry and poor motor recovery in ataxia mice after PNI. This effect was mimicked by deep cerebellar nuclei (DCN) lesion, but not by damaging non-motor area hippocampus. By restoring cerebellar circuitry through DCN stimulation, and reversal of neurotransmitter imbalance using baclofen, ataxia mice achieve full motor recovery after PNI. Mechanistically, elevated glutamate-glutamine level was detected in DCN of ataxia mice by magnetic resonance spectroscopy. Transcriptomic study revealed that Gria1, an ionotropic glutamate receptor, was upregulated in DCN of control mice but failed to be upregulated in ataxia mice after sciatic nerve crush. AAV-mediated overexpression of Gria1 in DCN rescued motor deficits of ataxia mice after PNI. Finally, we found a correlative decrease in human GRIA1 mRNA expression in the cerebellum of patients with ataxia-telangiectasia and spinocerebellar ataxia type 6 patient iPSC-derived Purkinje cells, pointing to the clinical relevance of glutamatergic system. By conducting a large-scale analysis of 9,655,320 patients with ataxia, they failed to recover from carpal tunnel decompression surgery and tibial neuropathy, while aged-match non-ataxia patients fully recovered. Our results provide insight into cerebellar disorders and motor deficits after PNI.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Lukasz M Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, USA.,Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Siu Chung Chan
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Hemin Feng
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR.
| |
Collapse
|
5
|
Yang HE, Kim WT, Kim DH, Kim SW, Yoo WK. Utility of Diffusion and Magnetization Transfer MRI in Cervical Spondylotic Myelopathy: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12092090. [PMID: 36140491 PMCID: PMC9497906 DOI: 10.3390/diagnostics12092090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Diffusion tensor imaging (DTI) and magnetization transfer (MT) magnetic resonance imaging (MRI) can help detect spinal cord pathology, and tract-specific analysis of their parameters, such as fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), radial diffusivity (RD) and MT ratio (MTR), can give microstructural information. We performed the tract-based acquisition of MR parameters of three major motor tracts: the lateral corticospinal (CS), rubrospinal (RuS) tract, and lateral reticulospinal (RS) tract as well as two major sensory tracts, i.e., the fasciculus cuneatus (FC) and spinal lemniscus, to detect pathologic change and find correlations with clinical items. MR parameters were extracted for each tract at three levels: the most compressed lesion level and above and below the lesion. We compared the MR parameters of eight cervical spondylotic myelopathy patients and 12 normal controls and analyzed the correlation between clinical evaluation items and MR parameters in patients. RuS and lateral RS showed worse DTI parameters at the lesion level in patients compared to the controls. Worse DTI parameters in those tracts were correlated with weaker power grasp at the lesion level. FC and lateral CS showed a correlation between higher RD and lower FA and MTR with a weaker lateral pinch below the lesion level.
Collapse
Affiliation(s)
- Hea-Eun Yang
- Department of Rehabilitation Medicine, VHS Medical Center, Seoul 05368, Korea
| | - Wan-Tae Kim
- Department of Radiology, VHS Medical Center, Seoul 05368, Korea
| | - Dae-Hyun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seok-Woo Kim
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
- Correspondence:
| |
Collapse
|
6
|
Animal Models of Cerebral Changes Secondary to Spinal Cord Injury. World Neurosurg 2020; 145:244-250. [PMID: 32980567 DOI: 10.1016/j.wneu.2020.09.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/20/2022]
Abstract
Spinal cord injuries (SCIs) are difficult to treat. The first animal SCI model (featuring the dropping of a weight) was established by Allen in 1911, and other animal models have been developed since then. Most animal studies have focused only on the molecular features of SCIs, which remain disputed. Recently, it has become clear that SCI may trigger mental and cognitive disorders, however, and brain changes secondary to SCI are under investigation. No consensus on an optimal animal model for cerebral research has emerged. We discuss the appropriate SCI models for studying secondary brain changes.
Collapse
|
7
|
Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. GeroScience 2020; 42:765-784. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.
Collapse
Affiliation(s)
- Katarzyna M Piekarz
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shylesh Bhaskaran
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Kaitlyn Street
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shadi Khademi
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime Laurin
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rick Peelor
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rheal Towner
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA. .,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Lin AP. Overcoming Technical Challenges of MR Spectroscopy in Chronic Spinal Cord Injury. Radiology 2019; 291:139-140. [PMID: 30694155 DOI: 10.1148/radiol.2019190067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander P Lin
- From the Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
9
|
Craciunas SC, Gorgan MR, Ianosi B, Lee P, Burris J, Cirstea CM. Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J Neurosurg Spine 2017; 26:668-678. [PMID: 28304238 DOI: 10.3171/2016.10.spine16479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In patients with cervical spondylotic myelopathy (CSM), the motor system may undergo progressive functional/structural changes rostral to the lesion, and these changes may be associated with clinical disability. The extent to which these changes have a prognostic value in the clinical recovery after surgical treatment is not yet known. In this study, magnetic resonance spectroscopy (MRS) was used to test 2 primary hypotheses. 1) Based on evidence of corticospinal and spinocerebellar, rubro-, or reticulospinal tract degeneration/dysfunction during chronic spinal cord compression, the authors hypothesized that the metabolic profile of the primary motor cortices (M1s) and cerebellum, respectively, would be altered in patients with CSM, and these alterations would be associated with the extent of the neurological disabilities. 2) Considering that damage and/or plasticity in the remote motor system may contribute to clinical recovery, they hypothesized that M1 and cerebellar metabolic profiles would predict, at least in part, surgical outcome. METHODS The metabolic profile, consisting of N-acetylaspartate (NAA; marker of neuronal integrity), myoinositol (glial marker), choline (cell membrane synthesis and turnover), and glutamate-glutamine (glutamatergic system), of the M1 hand/arm territory in each hemisphere and the cerebellum vermis was investigated prior to surgery in 21 patients exhibiting weakness of the upper extremities and/or gait abnormalities. Age- and sex-matched controls (n = 16) were also evaluated to estimate the pre-CSM metabolic profile of these areas. Correlation and regression analyses were performed between preoperative metabolite levels and clinical status 6 months after surgery. RESULTS Relative to controls, patients exhibited significantly higher levels of choline but no difference in the levels of other metabolites across M1s. Cerebellar metabolite levels were indistinguishable from control levels. Certain metabolites-myo-inositol and choline across M1s, NAA and glutamate-glutamine in the left M1, and myo-inositol and glutamate-glutamine in the cerebellum-were significantly associated with postoperative clinical status. These associations were greatly improved by including preoperative clinical metrics into the models. Likewise, these models improved the predictive value of preoperative clinical metrics alone. CONCLUSIONS These preliminary findings demonstrate relationships between the preoperative metabolic profiles of two remote motor areas and surgical outcome in CSM patients. Including preoperative clinical metrics in the models significantly strengthened the predictive value. Although further studies are needed, this investigation provides an important starting point to understand how the changes upstream from the injury may influence the effect of spinal cord decompression.
Collapse
Affiliation(s)
- Sorin C Craciunas
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Mircea R Gorgan
- Department of Neurosurgery, Bagdasar-Arseni Hospital, Bucharest, Romania
| | - Bogdan Ianosi
- Department of Neurology, Elbe Kliniken Hospital, University Medical Center Hamburg-Eppendorf, Germany.,Romanian National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Phil Lee
- Departments of 4 Molecular and Integrative Physiology and
| | - Joseph Burris
- Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| | - Carmen M Cirstea
- Neurology, Kansas University Medical Center, Kansas City, Kansas; and.,Department of Physical Medicine & Rehabilitation, University of Missouri, Columbia, Missouri
| |
Collapse
|
10
|
|
11
|
Amirmohseni S, Wachsmuth L, Just N, Faber C. Performance of MRS in metabolic profiling of the lumbar spinal cord in rat and mice. Magn Reson Imaging 2016; 34:1155-60. [DOI: 10.1016/j.mri.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/03/2016] [Indexed: 01/24/2023]
|
12
|
Ellingson BM, Salamon N, Hardy AJ, Holly LT. Prediction of Neurological Impairment in Cervical Spondylotic Myelopathy using a Combination of Diffusion MRI and Proton MR Spectroscopy. PLoS One 2015; 10:e0139451. [PMID: 26431174 PMCID: PMC4592013 DOI: 10.1371/journal.pone.0139451] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE In the present study we investigated a combination of diffusion tensor imaging (DTI) and magnetic resonance spectroscopic (MRS) biomarkers in order to predict neurological impairment in patients with cervical spondylosis. METHODS Twenty-seven patients with cervical spondylosis were evaluated. DTI and single voxel MRS were performed in the cervical cord. N-acetylaspartate (NAA) and choline (Cho) metabolite concentration ratios with respect to creatine were quantified, as well as the ratio of choline to NAA. The modified mJOA scale was used as a measure of neurologic deficit. Linear regression was performed between DTI and MRS parameters and mJOA scores. Significant predictors from linear regression were used in a multiple linear regression model in order to improve prediction of mJOA. Parameters that did not add value to model performance were removed, then an optimized multiparametric model was established to predict mJOA. RESULTS Significant correlations were observed between the Torg-Pavlov ratio and FA (R2 = 0.2021, P = 0.019); DTI fiber tract density and FA, MD, Cho/NAA (R2 = 0.3412, P = 0.0014; R2 = 0.2112, P = 0.016; and R2 = 0.2352, P = 0.010 respectively); along with FA and Cho/NAA (R2 = 0.1695, P = 0.033). DTI fiber tract density, MD and FA at the site of compression, along with Cho/NAA at C2, were significantly correlated with mJOA score (R2 = 0.05939, P < 0.0001; R2 = 0.4739, P < 0.0001; R2 = 0.7034, P < 0.0001; R2 = 0.4649, P < 0.0001). A combination biomarker consisting of DTI fiber tract density, MD, and Cho/NAA showed the best prediction of mJOA (R2 = 0.8274, P<0.0001), with post-hoc tests suggesting fiber tract density, MD, and Cho/NAA were all significant contributors to predicting mJOA (P = 0.00053, P = 0.00085, and P = 0.0019, respectively). CONCLUSION A linear combination of DTI and MRS measurements within the cervical spinal cord may be useful for accurately predicting neurological deficits in patients with cervical spondylosis. Additional studies may be necessary to validate these observations.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, United States of America; Department of Biomedical Physics, David Geffen School of Medicine, University of California-Los Angeles, United States of America; Department of Bioengineering, Henri Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, United States of America; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, United States of America
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, United States of America
| | - Anthony J Hardy
- Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, United States of America; Department of Biomedical Physics, David Geffen School of Medicine, University of California-Los Angeles, United States of America
| | - Langston T Holly
- Department of Neurosurgery and Orthopaedics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Figueroa JD, De Leon M. Neurorestorative targets of dietary long-chain omega-3 fatty acids in neurological injury. Mol Neurobiol 2014; 50:197-213. [PMID: 24740740 DOI: 10.1007/s12035-014-8701-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/26/2014] [Indexed: 01/11/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids (LC-O3PUFAs) exhibit therapeutic potential for the treatment and prevention of the neurological deficits associated with spinal cord injury (SCI). However, the mechanisms implicated in these protective responses remain unclear. The objective of the present functional metabolomics study was to identify and define the dominant metabolic pathways targeted by dietary LC-O3PUFAs. Sprague-Dawley rats were fed rodent purified chows containing menhaden fish oil-derived LC-O3PUFAs for 8 weeks before being subjected to sham or spinal cord contusion surgeries. We show, through untargeted metabolomics, that dietary LC-O3PUFAs regulate important biochemical signatures associated with amino acid metabolism and free radical scavenging in both the injured and sham-operated spinal cord. Of particular significance, the spinal cord metabolome of animals fed with LC-O3PUFAs exhibited reduced glucose levels (-48 %) and polar uncharged/hydrophobic amino acids (less than -20 %) while showing significant increases in the levels of antioxidant/anti-inflammatory amino acids and peptides metabolites, including β-alanine (+24 %), carnosine (+33 %), homocarnosine (+27 %), kynurenine (+88 %), when compared to animals receiving control diets (p < 0.05). Further, we found that dietary LC-O3PUFAs impacted the levels of neurotransmitters and the mitochondrial metabolism, as evidenced by significant increases in the levels of N-acetylglutamate (+43 %) and acetyl CoA levels (+27 %), respectively. Interestingly, this dietary intervention resulted in a global correction of the pro-oxidant metabolic profile that characterized the SCI-mediated sensorimotor dysfunction. In summary, the significant benefits of metabolic homeostasis and increased antioxidant defenses unlock important neurorestorative pathways of dietary LC-O3PUFAs against SCI.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | |
Collapse
|
14
|
Figueroa JD, Cordero K, Serrano-Illan M, Almeyda A, Baldeosingh K, Almaguel FG, De Leon M. Metabolomics uncovers dietary omega-3 fatty acid-derived metabolites implicated in anti-nociceptive responses after experimental spinal cord injury. Neuroscience 2013; 255:1-18. [PMID: 24042033 DOI: 10.1016/j.neuroscience.2013.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/23/2023]
Abstract
Chronic neuropathic pain is a frequent comorbidity following spinal cord injury (SCI) and often fails to respond to conventional pain management strategies. Preventive administration of docosahexaenoic acid (DHA) or the consumption of a diet rich in omega-3 polyunsaturated fatty acids (O3PUFAs) confers potent prophylaxis against SCI and improves functional recovery. The present study examines whether this novel dietary strategy provides significant antinociceptive benefits in rats experiencing SCI-induced pain. Rats were fed control chow or chow enriched with O3PUFAs for 8weeks before being subjected to sham or cord contusion surgeries, continuing the same diets after surgery for another 8 more weeks. The paw sensitivity to noxious heat was quantified for at least 8weeks post-SCI using the Hargreaves test. We found that SCI rats consuming the preventive O3PUFA-enriched diet exhibited a significant reduction in thermal hyperalgesia compared to those consuming the normal diet. Functional neurometabolomic profiling revealed a distinctive deregulation in the metabolism of endocannabinoids (eCB) and related N-acyl ethanolamines (NAEs) at 8weeks post-SCI. We found that O3PUFAs consumption led to a robust accumulation of novel NAE precursors, including the glycerophospho-containing docosahexaenoyl ethanolamine (DHEA), docosapentaenoyl ethanolamine (DPEA), and eicosapentaenoyl ethanolamine (EPEA). The tissue levels of these metabolites were significantly correlated with the antihyperalgesic phenotype. In addition, rats consuming the O3PUFA-rich diet showed reduced sprouting of nociceptive fibers containing CGRP and dorsal horn neuron p38 mitogen-activated protein kinase (MAPK) expression, well-established biomarkers of pain. The spinal cord levels of inositols were positively correlated with thermal hyperalgesia, supporting their role as biomarkers of chronic neuropathic pain. Notably, the O3PUFA-rich dietary intervention reduced the levels of these metabolites. Collectively, these results demonstrate the prophylactic value of dietary O3PUFA against SCI-mediated chronic pain.
Collapse
Affiliation(s)
- J D Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States; Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Salamon N, Ellingson BM, Nagarajan R, Gebara N, Thomas A, Holly LT. Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 2013; 51:558-63. [PMID: 23588574 PMCID: PMC3703492 DOI: 10.1038/sc.2013.31] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/18/2013] [Indexed: 12/28/2022]
Abstract
Study Design A single center magnetic resonance imaging and spectroscopic study involving twenty-one patients with advanced cervical spondylosis and eleven healthy controls. Objective We assessed the utility of MR spectroscopy to quantify biochemical changes within the spinal cord and serve as a potential biomarker in patients with cervical spondylosis with or without T2 hyperintensity within the cord. Setting Los Angeles, California, USA Methods Twenty-one patients with cervical spondylosis and eleven healthy controls were evaluated. Single voxel MR spectroscopy was performed in the cervical cord. Morphometry of the spinal canal space was measured. NAA, choline, myo-inositol, glutamine-glutamate complex and lactate metabolite concentration ratios with respect to total creatine were quantified using an LC model algorithm and compared between healthy controls and spondylosis patients. Correlation of MRS metabolites with mJOA score was also performed. Results The spinal canal space was significantly different between patients and controls (ANOVA, P<0.0001). Total choline-to creatine-ratio was significantly elevated in patients with spondylosis and T2-hyperintensity compared with healthy controls (ANOVA, P<0.01). A significantly higher choline-to-NAA ratio was observed in spondylosis patients compared with healthy controls (ANOVA, P<0.01). Slightly elevated glutamine-glutamate complex and myo-inositol was encountered in patients with stenosis without T2 hyperintensity. A linear correlation between Cho-NAA ratio and mJOA was also observed (P<0.01). Conclusion MRS appears sensitive to biochemical changes occurring in advanced cervical spondylosis patients. The choline/NAA ratio was significantly correlated with the mJOA score, providing a potentially clinical useful radiographical biomarker for the management of advanced cervical spondylosis patients.
Collapse
Affiliation(s)
- N Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kachramanoglou C, De Vita E, Thomas DL, Wheeler-Kingshott CAM, Balteau E, Carlstedt T, Choi D, Thompson AJ, Ciccarelli O. Metabolic changes in the spinal cord after brachial plexus root re-implantation. Neurorehabil Neural Repair 2012; 27:118-24. [PMID: 22961264 PMCID: PMC4107801 DOI: 10.1177/1545968312457825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective. To investigate metabolic changes within the spinal cord using
proton magnetic resonance spectroscopy (1H-MRS) and determine their
relationship with clinical function in patients with complete brachial plexus avulsion who
underwent reimplantation of the ventral roots. Methods. Single-voxel
1H-MRS of the cord between C1 and C3 was performed in 10 patients with normal
spinal cord on MRI, who underwent reimplantation of C5 to T1 ventral roots on average 5.5
years earlier, and 19 healthy controls. The ratios of the concentrations of the following
main metabolites, with respect to total creatine levels, were obtained: total
N-acetyl-aspartate, choline-containing compounds, creatine and phosphocreatine (Cr), and
myo-inositol (m-Ins). Patient disability was assessed using upper limb scales. Differences
in metabolite concentration ratios and their correlations with disability were
investigated. Results. Patients showed increased m-Ins/Cr ratio compared
with controls, which was associated with the level of function of the affected arm and
time from injury. Conclusions. The finding of increased m-Ins/Cr in
patients suggests that reactive gliosis, perhaps in response to the degeneration of
avulsed fibers, may occur in the spinal cord above the site of injury and be relevant to
motor dysfunction. However, this pathological process appears to diminish with time. These
insights underline the need to integrate metabolic imaging with structural and functional
magnetic resonance imaging to obtain a complete view of spinal cord plasticity. Last, this
study provides the first steps toward identifying markers to serve as outcome measures for
trials comparing strategies of plexus repair following avulsion injury.
Collapse
|
17
|
Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats. PLoS One 2012; 7:e43152. [PMID: 22912814 PMCID: PMC3418274 DOI: 10.1371/journal.pone.0043152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/16/2012] [Indexed: 12/05/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score). Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery.
Collapse
|
18
|
Tachrount M, Duhamel G, Laurin J, Marqueste T, de Paula AM, Decherchi P, Cozzone PJ, Callot V. In vivo short TE localized1H MR spectroscopy of mouse cervical spinal cord at very high magnetic field (11.75 T). Magn Reson Med 2012; 69:1226-32. [DOI: 10.1002/mrm.24360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/30/2012] [Accepted: 05/13/2012] [Indexed: 12/14/2022]
|
19
|
Abstract
STUDY DESIGN Literature review. OBJECTIVE To review the evidence related to the morphological changes (atrophy and fatty degeneration) of neck muscles in whiplash-associated disorders (WAD) and to highlight emerging evidence for the pathophysiological mechanisms behind muscle degeneration and their potential role in the transition from acute to chronic pain after whiplash injury from a motor vehicle crash (MVC). SUMMARY OF BACKGROUND DATA Magnetic resonance imaging (MRI) can be regarded as the gold standard for muscle imaging. There is emerging evidence to highlight in vivo features of neck muscle degeneration in patients with chronic WAD and the temporal development of such acute changes after MVC. However, the precise underlying mechanisms for such changes and their influence on functional recovery after whiplash remain largely unknown. METHODS Literature review of available evidence from both the authors' previous studies and other similar bodies of work. RESULTS Studies have quantified degenerative changes in the neck muscles of patients with acute and chronic whiplash with structural MRI applications. CONCLUSION Current evidence from structural MRI based studies demonstrates the widespread presence of fatty infiltrates in neck muscles of patients with chronic whiplash. Such findings have not shown to feature in patients with chronic insidious onset neck pain, suggesting traumatic factors play a role in their development. Recent studies have revealed that muscle fatty infiltrates manifest soon after whiplash but only in those with higher pain and disability and symptoms of post-traumatic stress disorder. The possibility that such muscle changes are associated with a more severe injury including poor functional recovery remains the focus of current research efforts.
Collapse
|