1
|
Greilich J, Baumann MP, Hafed ZM. Microsaccadic suppression of peripheral perceptual detection performance as a function of foveated visual image appearance. J Vis 2024; 24:3. [PMID: 39365250 PMCID: PMC11457924 DOI: 10.1167/jov.24.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.
Collapse
Affiliation(s)
- Julia Greilich
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Fan Y, Zuo H, Chu P, Wu Q, Li L, Wang Y, Cao W, Zhou Y, Huang L, Li N. Analyses of eye movement parameters in children with anisometropic amblyopia. BMC Ophthalmol 2024; 24:278. [PMID: 38982388 PMCID: PMC11232305 DOI: 10.1186/s12886-024-03539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE To investigate the characteristics of eye movement in children with anisometropic amblyopia, and to compare those characteristics with eye movement in a control group. METHODS 31 children in the anisometropic amblyopia group (31 amblyopic eyes in group A, 31 contralateral eyes in group B) and 24 children in the control group (48 eyes in group C). Group A was subdivided into groups Aa (severe amblyopia) and Ab (mild-moderate amblyopia). The overall age range was 6-12 years (mean, 7.83 ± 1.79 years). All children underwent ophthalmic examinations; eye movement parameters including saccade latency and amplitude were evaluated using an Eyelink1000 eye tracker. Data Viewer and MATLAB software were used for data analysis. RESULTS Mean and maximum saccade latencies, as well as mean and maximum saccade amplitudes, were significantly greater in group A than in groups B and C before and after treatment (P < 0.05). Mean and maximum saccade latencies were significantly different among groups Aa, Ab, and C (P < 0.05). Pupil trajectories in two detection modes suggested that binocular fixation was better than monocular fixation. CONCLUSIONS Eye movement parameters significantly differed between contralateral normal eyes and control eyes. Clinical evaluation of children with anisometropic amblyopia should not focus only on static visual acuity, but also on the assessment of eye movement.
Collapse
Affiliation(s)
- Yunwei Fan
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Huaxin Zuo
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qian Wu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yuan Wang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenhong Cao
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lijuan Huang
- The second affiliated hospital of Fujian medical university, Fujian, 362000, Zhejiang, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
3
|
Zhang Y, Valsecchi M, Gegenfurtner KR, Chen J. The execution of saccadic eye movements suppresses visual processing of both color and luminance in the early visual cortex of humans. J Neurophysiol 2024; 131:1156-1167. [PMID: 38690998 DOI: 10.1152/jn.00419.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024] Open
Abstract
Our eyes execute rapid, directional movements known as saccades, occurring several times per second, to focus on objects of interest in our environment. During these movements, visual sensitivity is temporarily reduced. Despite numerous studies on this topic, the underlying mechanism remains elusive, including a lingering debate on whether saccadic suppression affects the parvocellular visual pathway. To address this issue, we conducted a study employing steady-state visual evoked potentials (SSVEPs) elicited by chromatic and luminance stimuli while observers performed saccadic eye movements. We also employed an innovative analysis pipeline to enhance the signal-to-noise ratio, yielding superior results compared to the previous method. Our findings revealed a clear suppression effect on SSVEP signals during saccades compared to fixation periods. Notably, this suppression effect was comparable for both chromatic and luminance stimuli. We went further to measure the suppression effect across various contrast levels, which enabled us to model SSVEP responses with contrast response functions. The results suggest that saccades primarily reduce response gain without significantly affecting contrast gain and that this reduction applies uniformly to both chromatic and luminance pathways. In summary, our study provides robust evidence that saccades similarly suppress visual processing in both the parvocellular and magnocellular pathways within the human early visual cortex, as indicated by SSVEP responses. The observation that saccadic eye movements impact response gain rather than contrast gain implies that they influence visual processing through a multiplicative mechanism.NEW & NOTEWORTHY The present study demonstrates that saccadic eye movements reduce the processing of both luminance and chromatic stimuli in the early visual cortex of humans. By modeling the contrast response function, the study further shows that saccades affect visual processing by reducing the response gain rather than altering the contrast gain, suggesting that a multiplicative mechanism of visual attenuation affects both parvocellular and magnocellular pathways.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Matteo Valsecchi
- Dipartimento di Psicologia, Universitá di Bologna, Bologna, Italy
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie, Center for Mind, Brain & Behavior, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jing Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
de Vries E, van Ede F. Microsaccades Track Location-Based Object Rehearsal in Visual Working Memory. eNeuro 2024; 11:ENEURO.0276-23.2023. [PMID: 38176905 PMCID: PMC10849020 DOI: 10.1523/eneuro.0276-23.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
Besides controlling eye movements, the brain's oculomotor system has been implicated in the control of covert spatial attention and the rehearsal of spatial information in working memory. We investigated whether the oculomotor system also contributes to rehearsing visual objects in working memory when object location is never asked about. To address this, we tracked the incidental use of locations for mnemonic rehearsal via directional biases in microsaccades while participants maintained two visual objects (colored oriented gratings) in working memory. By varying the stimulus configuration (horizontal, diagonal, and vertical) at encoding, we could quantify whether microsaccades were more aligned with the configurational axis of the memory contents, as opposed to the orthogonal axis. Experiment 1 revealed that microsaccades continued to be biased along the axis of the memory content several seconds into the working memory delay. In Experiment 2, we confirmed that this directional microsaccade bias was specific to memory demands, ruling out lingering effects from passive and attentive encoding of the same visual objects in the same configurations. Thus, by studying microsaccade directions, we uncover oculomotor-driven rehearsal of visual objects in working memory through their associated locations.
Collapse
Affiliation(s)
- Eelke de Vries
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Freek van Ede
- Department of Experimental and Applied Psychology, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
5
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
6
|
Fracasso A, Buonocore A, Hafed ZM. Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field. J Neurosci 2023; 43:6884-6897. [PMID: 37640553 PMCID: PMC10573757 DOI: 10.1523/jneurosci.1740-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.
Collapse
Affiliation(s)
- Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QE, Scotland, United Kingdom
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples 80135, Italy
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen 72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen 72076, Germany
| |
Collapse
|
7
|
Barquero C, Chen JT, Munoz DP, Wang CA. Human microsaccade cueing modulation in visual- and memory-delay saccade tasks after theta burst transcranial magnetic stimulation over the frontal eye field. Neuropsychologia 2023; 187:108626. [PMID: 37336260 DOI: 10.1016/j.neuropsychologia.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Microsaccades that occur during periods of fixation are modulated by various cognitive processes and have an impact on visual processing. A network of brain areas is involved in microsaccade generation, including the superior colliculus and frontal eye field (FEF) which are involved in modulating microsaccade rate and direction after the appearance of a visual cue (referred to as microsaccade cueing modulation). Although the neural mechanisms underlying microsaccade cueing modulations have been demonstrated in monkeys, limited research has investigated a causal role of these areas in humans. By applying continuous theta-burst transcranial magnetic stimulation (cTBS) over the right FEF and vertex, we investigated the role of human FEF in modulating microsaccade responses after the appearance of a visual target in a visual- and memory-delay saccade task. After target appearance, microsaccade rate was initially suppressed but then increased in both cTBS conditions. More importantly, in the visual-delay task, microsaccades after target appearance were directed to the ipsilateral side more often with FEF, compared to vertex stimulation. Moreover, microsaccades were directed towards the target location, then to the opposite location of the target in both tasks, with larger effects in the visual-, compared to, memory-delay task. This microsaccade direction modulation was delayed after FEF stimulation in the memory-delay task. Overall, some microsaccade cueing modulations were moderately disrupted after FEF cTBS, suggesting a causal role for involvement of the human FEF in microsaccade generation after presentation of salient stimuli.
Collapse
Affiliation(s)
- Cesar Barquero
- Eye-Tracking Laboratory, Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Department of Physical Activity and Sport Science, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Chin-An Wang
- Eye-Tracking Laboratory, Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan; Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
8
|
Becker W, Behler A, Vintonyak O, Kassubek J. Patterns of small involuntary fixation saccades (SIFSs) in different neurodegenerative diseases: the role of noise. Exp Brain Res 2023:10.1007/s00221-023-06633-6. [PMID: 37247026 DOI: 10.1007/s00221-023-06633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
During the attempt to steadily fixate at a single spot, sequences of small involuntary fixation saccades (SIFSs, known also as microsaccades οr intrusions) occur which form spatio-temporal patterns such as square wave jerks (SWJs), a pattern characterised by alternating centrifugal and centripetal movements of similar magnitude. In many neurodegenerative disorders, SIFSs exhibit elevated amplitudes and frequencies. Elevated SIFS amplitudes have been shown to favour the occurrence of SWJs ("SWJ coupling"). We analysed SIFSs in different subject groups comprising both healthy controls (CTR) and patients with amyotrophic lateral sclerosis (ALS) and progressive supranuclear palsy (PSP), i.e. two neurodegenerative diseases with completely different neuropathological basis and different clinical phenotypes. We show that, across these groups, the relations between SIFS amplitude and the relative frequency of SWJ-like patterns and other SIFS characteristics follow a common law. As an explanation, we propose that physiological and technical noise comprises a small, amplitude-independent component that has little effect on large SIFSs, but causes considerable deviations from the intended amplitude and direction of small ones. Therefore, in contrast to large SIFSs, successive small SIFSs have a lower chance to meet the SWJ similarity criteria. In principle, every measurement of SIFSs is affected by an amplitude-independent noise background. Therefore, the dependence of SWJ coupling on SIFS amplitude will probably be encountered in almost any group of subjects. In addition, we find a positive correlation between SIFS amplitude and frequency in ALS, but none in PSP, suggesting that the elevated amplitudes might arise at different sites in the two disorders.
Collapse
Affiliation(s)
- Wolfgang Becker
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany.
| | - Anna Behler
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Olga Vintonyak
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Section of Neurophysiology, Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Alexiev K, Vakarelski T. Can Microsaccades Be Used for Biometrics? SENSORS (BASEL, SWITZERLAND) 2022; 23:89. [PMID: 36616687 PMCID: PMC9824634 DOI: 10.3390/s23010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Human eyes are in constant motion. Even when we fix our gaze on a certain point, our eyes continue to move. When looking at a point, scientists have distinguished three different fixational eye movements (FEM)-microsaccades, drift and tremor. The main goal of this paper is to investigate one of these FEMs-microsaccades-as a source of information for biometric analysis. The paper argues why microsaccades are preferred for biometric analysis over the other two fixational eye movements. The process of microsaccades' extraction is described. Thirteen parameters are defined for microsaccade analysis, and their derivation is given. A gradient algorithm was used to solve the biometric problem. An assessment of the weights of the different pairs of parameters in solving the biometric task was made.
Collapse
|
10
|
Prahalad KS, Coates DR. Microsaccadic correlates of covert attention and crowding. J Vis 2022; 22:15. [PMID: 36121661 PMCID: PMC9503213 DOI: 10.1167/jov.22.10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spatial crowding occurs when an object is cluttered among other objects in space and is a ubiquitous factor affecting object recognition in the peripheral visual field. Crowding is typically tested by presenting crowded stimuli at an eccentric location while having observers fixate at a point in space. However, even during fixation, our eyes are not perfectly steady but instead make small-scale eye movements (microsaccades) that have recently been suggested to be affected by shifts in attentional allocation. In the current study, we monitored microsaccadic behavior (a possible attentional correlate) to understand naturally occurring shifts in attention that occur following the presentation of a crowded stimulus. A tracking scanning laser ophthalmoscope (TSLO) was used to image the right eye of each observer during a psychophysical task. The stimuli consisted of Sloan numbers (0-9) presented briefly, either unflanked or surrounded by Sloan numbers at one of four nominal spacings. The extent of crowding was found to decrease by 26% on trials with the presence of incongruent microsaccades (proposed to suggest attentional capture). These findings complement the existing body of literature on the beneficial impact of explicit shifts of spatial attention to the location of a crowded stimulus.
Collapse
Affiliation(s)
| | - Daniel R Coates
- College of Optometry, University of Houston, Houston, TX, USA.,
| |
Collapse
|
11
|
Ozawa M, Suzuki Y, Nomura T. Stochastic Physiological Gaze-Evoked Nystagmus With Slow Centripetal Drift During Fixational Eye Movements at Small Gaze Eccentricities. Front Hum Neurosci 2022; 16:842883. [PMID: 35634205 PMCID: PMC9133340 DOI: 10.3389/fnhum.2022.842883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Involuntary eye movement during gaze (GZ) fixation, referred to as fixational eye movement (FEM), consists of two types of components: a Brownian motion like component called drifts-tremor (DRT) and a ballistic component called microsaccade (MS) with a mean saccadic amplitude of about 0.3° and a mean inter-MS interval of about 0.5 s. During GZ fixation in healthy people in an eccentric position, typically with an eccentricity more than 30°, eyes exhibit oscillatory movements alternating between centripetal drift and centrifugal saccade with a mean saccadic amplitude of about 1° and a period in the range of 0.5–1.0 s, which has been known as the physiological gaze-evoked nystagmus (GEN). Here, we designed a simple experimental paradigm of GZ fixation on a target shifted horizontally from the front-facing position with fewer eccentricities. We found a clear tendency of centripetal DRT and centrifugal MS as in GEN, but with more stochasticity and with slower drift velocity compared to GEN, even during FEM at GZ positions with small eccentricities. Our results showed that the target shift-dependent balance between DRT and MS achieves the GZ bounded around each of the given targets. In other words, GZ relaxes slowly with the centripetal DRT toward the front-facing position during inter-MS intervals, as if there always exists a quasi-stable equilibrium posture in the front-facing position, and MS actions pull GZ intermittently back to the target position in the opposite direction to DRT.
Collapse
|
12
|
Yu G, Herman JP, Katz LN, Krauzlis RJ. Microsaccades as a marker not a cause for attention-related modulation. eLife 2022; 11:e74168. [PMID: 35289268 PMCID: PMC8923660 DOI: 10.7554/elife.74168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that microsaccades are causally linked to the attention-related modulation of neurons-specifically, that microsaccades toward the attended location are required for the subsequent changes in firing rate. These findings have raised questions about whether attention-related modulation is due to different states of attention as traditionally assumed or might instead be a secondary effect of microsaccades. Here, in two rhesus macaques, we tested the relationship between microsaccades and attention-related modulation in the superior colliculus (SC), a brain structure crucial for allocating attention. We found that attention-related modulation emerged even in the absence of microsaccades, was already present prior to microsaccades toward the cued stimulus, and persisted through the suppression of activity that accompanied all microsaccades. Nonetheless, consistent with previous findings, we also found significant attention-related modulation when microsaccades were directed toward, rather than away from, the cued location. Thus, despite the clear links between microsaccades and attention, microsaccades are not necessary for attention-related modulation, at least not in the SC. They do, however, provide an additional marker for the state of attention, especially at times when attention is shifting from one location to another.
Collapse
Affiliation(s)
- Gongchen Yu
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Leor N Katz
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| |
Collapse
|
13
|
White AL, Moreland JC, Rolfs M. Oculomotor freezing indicates conscious detection free of decision bias. J Neurophysiol 2022; 127:571-585. [PMID: 35080462 PMCID: PMC8873031 DOI: 10.1152/jn.00465.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The appearance of a salient stimulus rapidly and automatically inhibits saccadic eye movements. Curiously, this "oculomotor freezing" response is triggered only by stimuli that the observer reports seeing. It remains unknown, however, whether oculomotor freezing is linked to the observer's sensory experience or their decision that a stimulus was present. To dissociate between these possibilities, we manipulated decision criterion via monetary payoffs and stimulus probability in a detection task. These manipulations greatly shifted observers' decision criteria but did not affect the degree to which microsaccades were inhibited by stimulus presence. Moreover, the link between oculomotor freezing and explicit reports of stimulus presence was stronger when the criterion was conservative rather than liberal. We conclude that the sensory threshold for oculomotor freezing is independent of decision bias. Provided that conscious experience is also unaffected by such bias, oculomotor freezing is an implicit indicator of sensory awareness.NEW & NOTEWORTHY Sometimes a visual stimulus reaches awareness, and sometimes it does not. To understand why, we need objective, bias-free measures of awareness. We discovered that a reflexive freezing of small eye movements indicates when an observer detects a stimulus. Furthermore, when we biased observers' decisions to report seeing the stimulus, the oculomotor response was unaltered. This suggests that the threshold for conscious perception is independent of the decision criterion and is revealed by oculomotor freezing.
Collapse
Affiliation(s)
- Alex L. White
- 1Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York
| | - James C. Moreland
- 2Department of Psychology, University of Washington, Seattle, Washington
| | - Martin Rolfs
- 3Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Tyson TL, Flynn-Evans EE, Stone LS. Differential saccade-pursuit coordination under sleep loss and low-dose alcohol. Front Neurosci 2022; 16:1067722. [PMID: 36874639 PMCID: PMC9978352 DOI: 10.3389/fnins.2022.1067722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 02/18/2023] Open
Abstract
Introduction Ocular tracking of a moving object requires tight coordination between smooth pursuit and saccadic eye movements. Normally, pursuit drives gaze velocity to closely match target velocity, with residual position offsets corrected by catch-up saccades. However, how/if common stressors affect this coordination is largely unknown. This study seeks to elucidate the effects of acute and chronic sleep loss, and low-dose alcohol, on saccade-pursuit coordination, as well as that of caffeine. Methods We used an ocular tracking paradigm to assess three metrics of tracking (pursuit gain, saccade rate, saccade amplitude) and to compute "ground lost" (from reductions in steady-state pursuit gain) and "ground recouped" (from increases in steady-state saccade rate and/or amplitude). We emphasize that these are measures of relative changes in positional offsets, and not absolute offset from the fovea. Results Under low-dose alcohol and acute sleep loss, ground lost was similarly large. However, under the former, it was nearly completely recouped by saccades, whereas under the latter, compensation was at best partial. Under chronic sleep restriction and acute sleep loss with a caffeine countermeasure, the pursuit deficit was dramatically smaller, yet saccadic behavior remained altered from baseline. In particular, saccadic rate remained significantly elevated, despite the fact that ground lost was minimal. Discussion This constellation of findings demonstrates differential impacts on saccade-pursuit coordination with low-dose alcohol impacting only pursuit, likely through extrastriate cortical pathways, while acute sleep loss not only disrupts pursuit but also undermines saccadic compensation, likely through midbrain/brainstem pathways. Furthermore, while chronic sleep loss and caffeine-mitigated acute sleep loss show little residual pursuit deficit, consistent with uncompromised cortical visual processing, they nonetheless show an elevated saccade rate, suggesting residual midbrain and/or brainstem impacts.
Collapse
Affiliation(s)
- Terence L Tyson
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Leland S Stone
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
15
|
Wang CA, Munoz DP. Differentiating global luminance, arousal and cognitive signals on pupil size and microsaccades. Eur J Neurosci 2021; 54:7560-7574. [PMID: 34716728 DOI: 10.1111/ejn.15508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
Pupil size reflects a proxy for neural activity associated with global luminance, arousal and cognitive processing. Microsaccades are also modulated by arousal and cognitive processing. Are these effects of arousal and cognitive signals on pupil size and microsaccades coordinated? If so, via what neural mechanisms? We hypothesized that if pupil size and microsaccades are coordinately modulated by these processes, pupil size immediately before microsaccade onset, as an index for ongoing cognitive and arousal processing, should correlate with microsaccade responses during tasks alternating these signals. Here, we examined the relationship between pupil size and microsaccade responses in tasks that included variations in global luminance, arousal and inhibitory control. Higher microsaccade peak velocities correlated with larger pre-microsaccade pupil response related to arousal and inhibitory control signals. In contrast, pupil responses evoked by global luminance signals did not correlate with microsaccade responses. Given the central role of the superior colliculus in microsaccade generation, these results suggest the critical involvement of the superior colliculus to coordinate pupil and microsaccade responses for arousal and inhibitory control modulations, but not for the pupil luminance modulation.
Collapse
Affiliation(s)
- Chin-An Wang
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan.,Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City, Taiwan
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Hsu TY, Chen JT, Tseng P, Wang CA. Role of the frontal eye field in human microsaccade responses: A TMS study. Biol Psychol 2021; 165:108202. [PMID: 34634433 DOI: 10.1016/j.biopsycho.2021.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Microsaccade is a type of fixational eye movements that is modulated by various sensory and cognitive processes, and impact our visual perception. Although studies in monkeys have demonstrated a functional role for the superior colliculus and frontal eye field (FEF) in controlling microsaccades, our understanding of the neural mechanisms underlying the generation of microsaccades is still limited. By applying continuous theta-burst stimulation (cTBS) over the right FEF and the vertex, we investigated the role of the FEF in generating human microsaccade responses evoked by salient stimuli or by changes in background luminance. We observed higher microsaccade rates prior to target appearance, and larger rebound in microsaccade occurrence following salient stimuli, when disruptive cTBS was applied over FEF compared to vertex stimulation. Moreover, the microsaccade direction modulation after changes in background luminance was disrupted with FEF stimulation. Together, our results constitute the first evidence of FEF modulation in human microsaccade responses.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Philip Tseng
- Graduate Institute of Mind, Brain, and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chin-An Wang
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan; Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City, Taiwan.
| |
Collapse
|
17
|
Buonocore A, Tian X, Khademi F, Hafed ZM. Instantaneous movement-unrelated midbrain activity modifies ongoing eye movements. eLife 2021; 10:e64150. [PMID: 33955354 PMCID: PMC8143798 DOI: 10.7554/elife.64150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
At any moment in time, new information is sampled from the environment and interacts with ongoing brain state. Often, such interaction takes place within individual circuits that are capable of both mediating the internally ongoing plan as well as representing exogenous sensory events. Here, we investigated how sensory-driven neural activity can be integrated, very often in the same neuron types, into ongoing saccade motor commands. Despite the ballistic nature of saccades, visually induced action potentials in the rhesus macaque superior colliculus (SC), a structure known to drive eye movements, not only occurred intra-saccadically, but they were also associated with highly predictable modifications of ongoing eye movements. Such predictable modifications reflected a simultaneity of movement-related discharge at one SC site and visually induced activity at another. Our results suggest instantaneous readout of the SC during movement generation, irrespective of activity source, and they explain a significant component of kinematic variability of motor outputs.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen UniversityTübingenGermany
- Hertie Institute for Clinical Brain Research, Tübingen UniversityTübingenGermany
| | - Xiaoguang Tian
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen UniversityTübingenGermany
- Hertie Institute for Clinical Brain Research, Tübingen UniversityTübingenGermany
| | - Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen UniversityTübingenGermany
- Hertie Institute for Clinical Brain Research, Tübingen UniversityTübingenGermany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen UniversityTübingenGermany
- Hertie Institute for Clinical Brain Research, Tübingen UniversityTübingenGermany
| |
Collapse
|
18
|
Hafed ZM, Yoshida M, Tian X, Buonocore A, Malevich T. Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements. Front Neural Circuits 2021; 15:638429. [PMID: 33776656 PMCID: PMC7991613 DOI: 10.3389/fncir.2021.638429] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Visual selection in primates is intricately linked to eye movements, which are generated by a network of cortical and subcortical neural circuits. When visual selection is performed covertly, without foveating eye movements toward the selected targets, a class of fixational eye movements, called microsaccades, is still involved. Microsaccades are small saccades that occur when maintaining precise gaze fixation on a stationary point, and they exhibit robust modulations in peripheral cueing paradigms used to investigate covert visual selection mechanisms. These modulations consist of changes in both microsaccade directions and frequencies after cue onsets. Over the past two decades, the properties and functional implications of these modulations have been heavily studied, revealing a potentially important role for microsaccades in mediating covert visual selection effects. However, the neural mechanisms underlying cueing effects on microsaccades are only beginning to be investigated. Here we review the available causal manipulation evidence for these effects' cortical and subcortical substrates. In the superior colliculus (SC), activity representing peripheral visual cues strongly influences microsaccade direction, but not frequency, modulations. In the cortical frontal eye fields (FEF), activity only compensates for early reflexive effects of cues on microsaccades. Using evidence from behavior, theoretical modeling, and preliminary lesion data from the primary visual cortex and microstimulation data from the lower brainstem, we argue that the early reflexive microsaccade effects arise subcortically, downstream of the SC. Overall, studying cueing effects on microsaccades in primates represents an important opportunity to link perception, cognition, and action through unaddressed cortical-subcortical neural interactions. These interactions are also likely relevant in other sensory and motor modalities during other active behaviors.
Collapse
Affiliation(s)
- Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antimo Buonocore
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tatiana Malevich
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tübingen University, Tübingen, Germany
| |
Collapse
|
19
|
Chen JT, Yep R, Hsu YF, Cherng YG, Wang CA. Investigating Arousal, Saccade Preparation, and Global Luminance Effects on Microsaccade Behavior. Front Hum Neurosci 2021; 15:602835. [PMID: 33746722 PMCID: PMC7973374 DOI: 10.3389/fnhum.2021.602835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
Microsaccades, small saccadic eye movements occurring during fixation, have been suggested to be modulated by various sensory, cognitive, and affective processes relating to arousal. Although the modulation of fatigue-related arousal on microsaccade behavior has previously been characterized, the influence of other aspects of arousal, such as emotional arousal, is less understood. Moreover, microsaccades are modulated by cognitive processes (e.g., voluntary saccade preparation) that could also be linked to arousal. To investigate the influence of emotional arousal, saccade preparation, and global luminance levels on microsaccade behavior, emotional auditory stimuli were presented prior to the onset of a fixation cue whose color indicated to look either at the peripheral stimulus (pro-saccade) or in the opposite direction of the stimulus (anti-saccade). Microsaccade behavior was found to be significantly modulated by saccade preparation and global luminance level, but not emotional arousal. In the pro- and anti-saccade task, microsaccade rate was lower during anti-saccade preparation as compared to pro-saccade preparation, though microsaccade dynamics were comparable during both trial types. Our results reveal a differential role of arousal linked to emotion, fatigue, saccade preparation, and global luminance level on microsaccade behavior.
Collapse
Affiliation(s)
- Jui-Tai Chen
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Rachel Yep
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Yu-Fan Hsu
- Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chin-An Wang
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Research Center of Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei City, Taiwan
- Institute of Cognitive Neuroscience, College of Health Science and Technology, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
20
|
McSorley E, Cruickshank AG, McCloy R. Inhibition of saccade initiation improves saccade accuracy: The role of local and remote visual distractors in the control of saccadic eye movements. J Vis 2021; 21:17. [PMID: 33729451 PMCID: PMC7980046 DOI: 10.1167/jov.21.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
When a distractor appears close to the target location, saccades are less accurate. However, the presence of a further distractor, remote from those stimuli, increases the saccade response latency and improves accuracy. Explanations for this are either that the second, remote distractor impacts directly on target selection processes or that the remote distractor merely impairs the ability to initiate a saccade and changes the time at which unaffected target selection processes are accessed. In order to tease these two explanations apart, here we examine the relationship between latency and accuracy of saccades to a target and close distractor pair while a remote distractor appears at variable distance. Accuracy improvements are found to follow a similar pattern, regardless of the presence of the remote distractor, which suggests that the effect of the remote distractor is not the result of a direct impact on the target selection process. Our findings support the proposal that a remote distractor impairs the ability to initiate a saccade, meaning the competition between target and close distractor is accessed at a later time, thus resulting in more accurate saccades.
Collapse
Affiliation(s)
- Eugene McSorley
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Alice G Cruickshank
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Rachel McCloy
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| |
Collapse
|
21
|
Hafed ZM, Chen CY, Tian X, Baumann MP, Zhang T. Active vision at the foveal scale in the primate superior colliculus. J Neurophysiol 2021; 125:1121-1138. [PMID: 33534661 DOI: 10.1152/jn.00724.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The primate superior colliculus (SC) has recently been shown to possess both a large foveal representation as well as a varied visual processing repertoire. This structure is also known to contribute to eye movement generation. Here, we describe our current understanding of how SC visual and movement-related signals interact within the realm of small eye movements associated with the foveal scale of visuomotor behavior. Within the SC's foveal representation, there is a full spectrum of visual, visual-motor, and motor-related discharge for fixational eye movements. Moreover, a substantial number of neurons only emit movement-related discharge when microsaccades are visually guided, but not when similar movements are generated toward a blank. This represents a particularly striking example of integrating vision and action at the foveal scale. Beyond that, SC visual responses themselves are strongly modulated, and in multiple ways, by the occurrence of small eye movements. Intriguingly, this impact can extend to eccentricities well beyond the fovea, causing both sensitivity enhancement and suppression in the periphery. Because of large foveal magnification of neural tissue, such long-range eccentricity effects are neurally warped into smaller differences in anatomical space, providing a structural means for linking peripheral and foveal visual modulations around fixational eye movements. Finally, even the retinal-image visual flows associated with tiny fixational eye movements are signaled fairly faithfully by peripheral SC neurons with relatively large receptive fields. These results demonstrate how studying active vision at the foveal scale represents an opportunity for understanding primate vision during natural behaviors involving ever-present foveating eye movements.NEW & NOTEWORTHY The primate superior colliculus (SC) is ideally suited for active vision at the foveal scale: it enables detailed foveal visual analysis by accurately driving small eye movements, and it also possesses a visual processing machinery that is sensitive to active eye movement behavior. Studying active vision at the foveal scale in the primate SC is informative for broader aspects of active perception, including the overt and covert processing of peripheral extra-foveal visual scene locations.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Chih-Yang Chen
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
22
|
Xue C, Calapai A, Krumbiegel J, Treue S. Sustained spatial attention accounts for the direction bias of human microsaccades. Sci Rep 2020; 10:20604. [PMID: 33244086 PMCID: PMC7692503 DOI: 10.1038/s41598-020-77455-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Small ballistic eye movements, so called microsaccades, occur even while foveating an object. Previous studies using covert attention tasks have shown that shortly after a symbolic spatial cue, specifying a behaviorally relevant location, microsaccades tend to be directed toward the cued location. This suggests that microsaccades can serve as an index for the covert orientation of spatial attention. However, this hypothesis faces two major challenges: First, effects associated with visual spatial attention are hard to distinguish from those that associated with the contemplation of foveating a peripheral stimulus. Second, it is less clear whether endogenously sustained attention alone can bias microsaccade directions without a spatial cue on each trial. To address the first issue, we investigated the direction of microsaccades in human subjects while they attended to a behaviorally relevant location and prepared a response eye movement either toward or away from this location. We find that directions of microsaccades are biased toward the attended location rather than towards the saccade target. To tackle the second issue, we verbally indicated the location to attend before the start of each block of trials, to exclude potential visual cue-specific effects on microsaccades. Our results indicate that sustained spatial attention alone reliably produces the microsaccade direction effect. Overall, our findings demonstrate that sustained spatial attention alone, even in the absence of saccade planning or a spatial cue, is sufficient to explain the direction bias observed in microsaccades.
Collapse
Affiliation(s)
- Cheng Xue
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany.
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Antonino Calapai
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - Julius Krumbiegel
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
| |
Collapse
|
23
|
Malevich T, Buonocore A, Hafed ZM. Rapid stimulus-driven modulation of slow ocular position drifts. eLife 2020; 9:e57595. [PMID: 32758358 PMCID: PMC7442486 DOI: 10.7554/elife.57595] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The eyes are never still during maintained gaze fixation. When microsaccades are not occurring, ocular position exhibits continuous slow changes, often referred to as drifts. Unlike microsaccades, drifts remain to be viewed as largely random eye movements. Here we found that ocular position drifts can, instead, be very systematically stimulus-driven, and with very short latencies. We used highly precise eye tracking in three well trained macaque monkeys and found that even fleeting (~8 ms duration) stimulus presentations can robustly trigger transient and stimulus-specific modulations of ocular position drifts, and with only approximately 60 ms latency. Such drift responses are binocular, and they are most effectively elicited with large stimuli of low spatial frequency. Intriguingly, the drift responses exhibit some image pattern selectivity, and they are not explained by convergence responses, pupil constrictions, head movements, or starting eye positions. Ocular position drifts have very rapid access to exogenous visual information.
Collapse
Affiliation(s)
- Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen UniversityTuebingenGermany
- Hertie Institute for Clinical Brain Research, Tuebingen UniversityTuebingenGermany
- Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tuebingen UniversityTuebingenGermany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen UniversityTuebingenGermany
- Hertie Institute for Clinical Brain Research, Tuebingen UniversityTuebingenGermany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen UniversityTuebingenGermany
- Hertie Institute for Clinical Brain Research, Tuebingen UniversityTuebingenGermany
| |
Collapse
|
24
|
Wang CA, Huang J, Brien DC, Munoz DP. Saliency and priority modulation in a pop-out paradigm: Pupil size and microsaccades. Biol Psychol 2020; 153:107901. [PMID: 32389837 DOI: 10.1016/j.biopsycho.2020.107901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
A salient stimulus can trigger a coordinated orienting response consisting of a saccade, pupil, and microsaccadic responses. Saliency models predict that the degree of visual conspicuity of all visual stimuli guides visual orienting. By presenting a multiple-item array that included an oddball colored item (pop-out), randomly mixed colored items (mixed-color), or single-color items (single-color), we examined the effects of saliency and priority (saliency + relevancy) on pupil size and microsaccade responses. Larger pupil responses were produced in the pop-out compared to the mixed-color or single-color conditions after stimulus presentation. However, the saliency modulation on microsaccades was not significant. Furthermore, although goal-relevancy information did not modulate pupil responses and microsaccade rate, microsaccade direction was biased toward the pop-out item when it was the subsequent saccadic target. Together, our results demonstrate saliency modulation on pupil size and priority effects on microsaccade direction during visual pop-out.
Collapse
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Research Center of Brain and Consciousness, Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
25
|
Khademi F, Chen CY, Hafed ZM. Visual feature tuning of superior colliculus neural reafferent responses after fixational microsaccades. J Neurophysiol 2020; 123:2136-2153. [PMID: 32347160 DOI: 10.1152/jn.00077.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primate superior colliculus (SC) is causally involved in microsaccade generation. Moreover, visually responsive SC neurons across this structure's topographic map, even at peripheral eccentricities much larger than the tiny microsaccade amplitudes, exhibit significant modulations of evoked response sensitivity when stimuli appear perimicrosaccadically. However, during natural viewing, visual stimuli are normally stably present in the environment and are only shifted on the retina by eye movements. Here we investigated this scenario for the case of microsaccades, asking whether and how SC neurons respond to microsaccade-induced image jitter. We recorded neural activity from two male rhesus macaque monkeys. Within the response field (RF) of a neuron, there was a stable stimulus consisting of a grating of one of three possible spatial frequencies. The grating was stable on the display, but microsaccades periodically jittered the retinotopic RF location over it. We observed clear short-latency visual reafferent responses after microsaccades. These responses were weaker, but earlier (relative to new fixation onset after microsaccade end), than responses to sudden stimulus onsets without microsaccades. The reafferent responses clearly depended on microsaccade amplitude as well as microsaccade direction relative to grating orientation. Our results indicate that one way for microsaccades to influence vision is through modulating how the spatio-temporal landscape of SC visual neural activity represents stable stimuli in the environment. Such representation depends on the specific pattern of temporal luminance modulations expected from the relative relationship between eye movement vector (size and direction) on one hand and spatial visual pattern layout on the other.NEW & NOTEWORTHY Despite being diminutive, microsaccades still jitter retinal images. We investigated how such jitter affects superior colliculus (SC) activity. We found that SC neurons exhibit short-latency visual reafferent bursts after microsaccades. These bursts reflect not only the spatial luminance profiles of visual patterns but also how such profiles are shifted by eye movement size and direction. These results indicate that the SC continuously represents visual patterns, even as they are jittered by the smallest possible saccades.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| |
Collapse
|
26
|
Hauperich AK, Young LK, Smithson HE. What makes a microsaccade? A review of 70 years of research prompts a new detection method. J Eye Mov Res 2020; 12. [PMID: 33828754 PMCID: PMC7962681 DOI: 10.16910/jemr.12.6.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A new method for detecting microsaccades in eye-movement data is presented, following a review of reported microsaccade properties between the 1940s and today. The review focuses on the parameter ranges within which certain physical markers of microsaccades are thought to occur, as well as any features of microsaccades that have been stably reported over time. One feature of microsaccades, their binocularity, drives the new microsaccade detection method. The binocular correlation method for microsaccade detection is validated on two datasets of binocular eye-movements recorded using video-based systems: one collected as part of this study, and one from Nyström et al, 2017. Comparisons between detection methods are made using precision-recall statistics. This confirms that the binocular correlation method performs well when compared to manual coders and performs favourably compared to the commonly used Engbert & Kliegl (2003) method with subsequent modifications (Engbert & Mergenthaler, 2006). The binocular correlation microsaccade detection method is easy to implement and MATLAB code is made available to download.
Collapse
|
27
|
Abstract
Despite strong evidence to the contrary in the literature, microsaccades are overwhelmingly described as involuntary eye movements. Here we show in both human subjects and monkeys that individual microsaccades of any direction can easily be triggered: (1) on demand, based on an arbitrary instruction, (2) without any special training, (3) without visual guidance by a stimulus, and (4) in a spatially and temporally accurate manner. Subjects voluntarily generated instructed "memory-guided" microsaccades readily, and similarly to how they made normal visually-guided ones. In two monkeys, we also observed midbrain superior colliculus neurons that exhibit movement-related activity bursts exclusively for memory-guided microsaccades, but not for similarly-sized visually-guided movements. Our results demonstrate behavioral and neural evidence for voluntary control over individual microsaccades, supporting recently discovered functional contributions of individual microsaccade generation to visual performance alterations and covert visual selection, as well as observations that microsaccades optimize eye position during high acuity visually-guided behavior.
Collapse
|
28
|
Willett SM. Vision: Magnified Foveal Representation in Monkey Midbrain. Curr Biol 2019; 29:R625-R627. [DOI: 10.1016/j.cub.2019.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Ryan AE, Keane B, Wallis G. Microsaccades and covert attention: Evidence from a continuous, divided attention task. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.6. [PMID: 33828755 PMCID: PMC7962682 DOI: 10.16910/jemr.12.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A substantial question in understanding expert behavior is isolating where experts look, and which aspects of their environment they process. While tracking the position of gaze provides some insight into this process, our ability to attend covertly to regions of space other than the current point of fixation, severely limits the diagnostic power of such data. Over the past decade, evidence has emerged suggesting that microscopic eye movements present during periods of fixation may be linked to the spatial distribution of covert attention, potentially offering a powerful tool for studying expert behavior. To date, the majority of studies in this field have tested the link under the constraints of a trial by trial, forced-response task. In the current study we sought to examine the effect when participants performed a continuous, divided-attention task, with the hope of bridging the gap to a range of more ecological, real-world tasks. We report various aspects of the eye movement and response data including (i) the relationship between microsaccades and drift correction, (ii) response behavior in brief time periods immediately following a microsaccade, (iii) response behavior briefly preceding a microsaccade. Analysis failed to reveal a link between task accuracy and the direction of a microsaccade. Most striking however, we found evidence for a timelocked relationship between the side of space responded to and the direction of the most recent microsaccade. The paper hence provides preliminary evidence that microsaccades may indeed be used to track the ongoing allocation of spatial attention.
Collapse
Affiliation(s)
- Aimee E Ryan
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Brendan Keane
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Guy Wallis
- Centre for Sensorimotor Performance, University of Queensland, Australia
| |
Collapse
|
30
|
Chen CY, Hoffmann KP, Distler C, Hafed ZM. The Foveal Visual Representation of the Primate Superior Colliculus. Curr Biol 2019; 29:2109-2119.e7. [PMID: 31257138 DOI: 10.1016/j.cub.2019.05.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022]
Abstract
A defining feature of the primate visual system is its foveated nature. Processing of foveal retinal input is important not only for high-quality visual scene analysis but also for ensuring precise, albeit tiny, gaze shifts during high-acuity visual tasks. The representations of foveal retinal input in the primate lateral geniculate nucleus and early visual cortices have been characterized. However, how such representations translate into precise eye movements remains unclear. Here, we document functional and structural properties of the foveal visual representation of the midbrain superior colliculus. We show that the superior colliculus, classically associated with extra-foveal spatial representations needed for gaze shifts, is highly sensitive to visual input impinging on the fovea. The superior colliculus also represents such input in an orderly and very specific manner, and it magnifies the representation of foveal images in neural tissue as much as the primary visual cortex does. The primate superior colliculus contains a high-fidelity visual representation, with large foveal magnification, perfectly suited for active visuomotor control and perception.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen 72076, Germany; Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen 72076, Germany
| | - Klaus-Peter Hoffmann
- Research Department of Neuroscience, Ruhr University Bochum, Bochum 44801, Germany
| | - Claudia Distler
- Department of General Zoology and Neurobiology, Ruhr University Bochum, Bochum 44801, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen 72076, Germany; Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen 72076, Germany.
| |
Collapse
|
31
|
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation. J Neurosci 2019; 39:2709-2721. [PMID: 30709895 DOI: 10.1523/jneurosci.2178-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/15/2018] [Accepted: 01/13/2019] [Indexed: 11/21/2022] Open
Abstract
The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.
Collapse
|
32
|
Skinner J, Buonocore A, Hafed ZM. Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories. J Neurophysiol 2019; 121:513-529. [DOI: 10.1152/jn.00437.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two main types of small eye movements occur during gaze fixation: microsaccades and slow ocular drifts. While microsaccade generation has been relatively well studied, ocular drift control mechanisms are unknown. Here we explored the degree to which monkey smooth eye movements, on the velocity scale of slow ocular drifts, can be generated systematically. Two male rhesus macaque monkeys tracked a spot moving sinusoidally, but slowly, along the horizontal or vertical direction. Maximum target displacement in the motion trajectory was 30 min arc (0.5°), and we varied the temporal frequency of target motion from 0.2 to 5 Hz. We obtained an oculomotor “transfer function” by measuring smooth eye velocity gain (relative to target velocity) as a function of frequency, similar to past work with large-amplitude pursuit. Monkey eye velocities as slow as those observed during slow ocular drifts were clearly target motion driven. Moreover, as with large-amplitude smooth pursuit, eye velocity gain varied with temporal frequency. However, unlike with large-amplitude pursuit, exhibiting low-pass behavior, small-amplitude motion tracking was band pass, with the best ocular movement gain occurring at ~0.8–1 Hz. When oblique directions were tested, we found that the horizontal component of pursuit gain was larger than the vertical component. Our results provide a catalog of the control abilities of the monkey oculomotor system for slow target motions, and they also support the notion that smooth fixational ocular drifts are controllable. This has implications for neural investigations of drift control and the image-motion consequences of drifts on visual coding in early visual areas. NEW & NOTEWORTHY We studied the efficacy of monkey smooth pursuit eye movements for very slow target velocities. Pursuit was impaired for sinusoidal motions of frequency less than ~0.8–1 Hz. Nonetheless, eye trajectory was still sinusoidally modulated, even at velocities lower than those observed during gaze fixation with slow ocular drifts. Our results characterize the slow control capabilities of the monkey oculomotor system and provide a basis for future understanding of the neural mechanisms for slow ocular drifts.
Collapse
Affiliation(s)
- Julianne Skinner
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M. Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
33
|
Bellet ME, Bellet J, Nienborg H, Hafed ZM, Berens P. Human-level saccade detection performance using deep neural networks. J Neurophysiol 2018; 121:646-661. [PMID: 30565968 DOI: 10.1152/jn.00601.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccades are ballistic eye movements that rapidly shift gaze from one location of visual space to another. Detecting saccades in eye movement recordings is important not only for studying the neural mechanisms underlying sensory, motor, and cognitive processes, but also as a clinical and diagnostic tool. However, automatically detecting saccades can be difficult, particularly when such saccades are generated in coordination with other tracking eye movements, like smooth pursuits, or when the saccade amplitude is close to eye tracker noise levels, like with microsaccades. In such cases, labeling by human experts is required, but this is a tedious task prone to variability and error. We developed a convolutional neural network to automatically detect saccades at human-level accuracy and with minimal training examples. Our algorithm surpasses state of the art according to common performance metrics and could facilitate studies of neurophysiological processes underlying saccade generation and visual processing. NEW & NOTEWORTHY Detecting saccades in eye movement recordings can be a difficult task, but it is a necessary first step in many applications. We present a convolutional neural network that can automatically identify saccades with human-level accuracy and with minimal training examples. We show that our algorithm performs better than other available algorithms, by comparing performance on a wide range of data sets. We offer an open-source implementation of the algorithm as well as a web service.
Collapse
Affiliation(s)
- Marie E Bellet
- Institute for Ophthalmic Research, University of Tübingen , Tübingen , Germany
| | - Joachim Bellet
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen , Tübingen , Germany.,International Max Planck Research School for Cognitive and Systems Neuroscience , Tübingen , Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen , Tübingen , Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen , Tübingen , Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen , Tübingen , Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen , Tübingen , Germany.,Bernstein Center for Computational Neuroscience , Tübingen , Germany
| |
Collapse
|
34
|
No supplementary evidence of attention to a spatial cue when saccadic facilitation is absent. Sci Rep 2018; 8:13289. [PMID: 30185930 PMCID: PMC6125402 DOI: 10.1038/s41598-018-31633-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
Attending a location in space facilitates responses to targets at that location when the time between cue and target is short. Certain types of exogenous cues – such as sudden peripheral onsets – have been described as reflexive and automatic. Recent studies however, have been showing many cases where exogenous cues are less automatic than previously believed and do not always result in facilitation. A lack of the behavioral facilitation, however, does not automatically necessitate a lack of underlying attention to that location. We test exogenous cueing in two experiments where facilitation is and is not likely to be observed with saccadic responses. We also test alternate measures linked to the allocation of attention such as saccadic curvature, microsaccades and pupil size. As expected, we find early facilitation as measured by saccadic reaction time when CTOAs are predictable but not when they are randomized within a block. We find no impact of the cue on microsaccade direction for either experiment, and only a slight dip in the frequency of microsaccades after the cue. We do find that change in pupil size to the cue predicts the magnitude of the validity effect, but only in the experiment where facilitation was observed. In both experiments, we observed a tendency for saccadic curvature to deviate away from the cued location and this was stronger for early CTOAs and toward vertical targets. Overall, we find that only change in pupil size is consistent with observed facilitation. Saccadic curvature is influenced by the onset of the cue, buts its direction is indicative of oculomotor inhibition whether we see RT facilitation or not. Microsaccades were not diagnostic in either experiment. Finally, we see little to no evidence of attention at the cued location in any additional measures when facilitation of saccadic responses is absent.
Collapse
|
35
|
Abstract
Small saccades, known as microsaccades, occur frequently during fixation. Several recent studies have argued that a considerable fraction of these movements are present in the traces from one eye only. This claim contrasts with the findings of older reports, which concluded that microsaccades, like larger saccades, are virtually always binocular events. Here we examined the characteristics of small saccades by means of two of the most established high-resolution eye-tracking techniques available. A binocular Dual Purkinje Image eye-tracker was used to record eye movements while observers fixated, with their head immobilized, on markers displayed on a monitor. A specially designed eye-coil system was used to measure eye movements during normal head-free viewing, while subjects fixated on markers at various distances. Monocular microsaccades were virtually absent in both datasets. In the head-fixed data, not a single monocular microsaccade was observed. In the head-free data, only one event appeared to be monocular out of more than a thousand saccades. Monocular microsaccades do not seem to occur during normal head-free or head-immobilized fixation.
Collapse
Affiliation(s)
- Yu Fang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christopher Gill
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Martina Poletti
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Michele Rucci
- Center for Visual Science, University of Rochester, Rochester, NY, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
36
|
Chen CY, Hafed ZM. Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons. Front Neural Circuits 2018; 12:58. [PMID: 30087598 PMCID: PMC6066560 DOI: 10.3389/fncir.2018.00058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 02/03/2023] Open
Abstract
The primate superior colliculus is traditionally studied from the perspectives of gaze control, target selection, and selective attention. However, this structure is also visually responsive, and it is the primary visual structure in several species. Thus, understanding the visual tuning properties of the primate superior colliculus is important, especially given that the superior colliculus is part of an alternative visual pathway running in parallel to the predominant geniculo-cortical pathway. In recent previous studies, we have characterized receptive field organization and spatial frequency tuning properties in the primate (rhesus macaque) superior colliculus. Here, we explored additional aspects like orientation tuning, putative center-surround interactions, and temporal frequency tuning characteristics of visually-responsive superior colliculus neurons. We found that orientation tuning exists in the primate superior colliculus, but that such tuning is relatively moderate in strength. We also used stimuli of different sizes to explore contrast sensitivity and center-surround interactions. We found that stimulus size within a visual receptive field primarily affects the slope of contrast sensitivity curves without altering maximal firing rate. Additionally, sustained firing rates, long after stimulus onset, strongly depend on stimulus size, and this is also reflected in local field potentials. This suggests the presence of inhibitory interactions within and around classical receptive fields. Finally, primate superior colliculus neurons exhibit temporal frequency tuning for frequencies lower than 30 Hz, with critical flicker fusion frequencies of <20 Hz. These results support the hypothesis that the primate superior colliculus might contribute to visual performance, likely by mediating coarse, but rapid, object detection and identification capabilities for the purpose of facilitating or inhibiting orienting responses. Such mediation may be particularly amplified in blindsight subjects who lose portions of their primary visual cortex and therefore rely on alternative visual pathways including the pathway through the superior colliculus.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
37
|
Lowet E, Gomes B, Srinivasan K, Zhou H, Schafer RJ, Desimone R. Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus. Neuron 2018; 99:207-214.e3. [PMID: 29937279 DOI: 10.1016/j.neuron.2018.05.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
Attention can be "covertly" directed without eye movements; yet, even during fixation, there are continuous microsaccades (MSs). In areas V4 and IT of macaques, we found that firing rates and stimulus representations were enhanced by attention but only following a MS toward the attended stimulus. The onset of neural attentional modulations was tightly coupled to the MS onset. The results reveal a major link between the effects of covert attention on cortical visual processing and the overt movement of the eyes.
Collapse
Affiliation(s)
- Eric Lowet
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Bruno Gomes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pa, Brazil; Instituto Tecnológico Vale Desenvolvimento Sustentável, Belém-Pa, Brazil
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huihui Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Robert John Schafer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Tian X, Yoshida M, Hafed ZM. Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades. J Neurophysiol 2018; 119:1962-1980. [PMID: 29465321 DOI: 10.1152/jn.00752.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsaccades are systematically modulated by peripheral spatial cues, and these eye movements have been implicated in perceptual and motor performance changes in cueing tasks. However, an additional oculomotor factor that may also influence performance in these tasks, fixational eye position itself, has been largely neglected so far. Using precise eye tracking and real-time retinal-image stabilization, we carefully analyzed fixational eye position dynamics and related them to microsaccade generation during spatial cueing. As expected, during baseline fixation, microsaccades corrected for a foveal motor error away from the preferred retinal locus of fixation (the so-called ocular position "set point" of the oculomotor system). However, we found that this relationship was violated during a short period immediately after cue onset; a subset of cue-directed "express microsaccades" that were highly precise in time and direction, and that were larger than regular microsaccades, occurred. These movements, having <100-ms latencies from cue onset, were triggered when fixational eye position was already at the oculomotor set point when the cue appeared; they were thus error-increasing rather than error-decreasing. Critically, even when no microsaccades occurred, fixational eye position itself was systematically deviated toward the cue, again with ~100-ms latency, suggesting that the oculomotor system establishes a new set point at different postcue times. This new set point later switched to being away from the cue after ~200-300 ms. Because eye position alters the location of retinal images, our results suggest that both eye position and microsaccades can be associated with performance changes in spatial cueing tasks. NEW & NOTEWORTHY Covert spatial cueing tasks are a workhorse for studying cognitive processing in humans and monkeys, but gaze is not perfectly stable during these tasks. We found that minute fixational eye position changes, independent of the more studied microsaccades, are not random in cueing tasks and are thus not "averaged out" in analyses. These changes can additionally dictate microsaccade times. Thus, in addition to microsaccadic influences, retinal image changes associated with fixational eye position are relevant for performance in cueing tasks.
Collapse
Affiliation(s)
- Xiaoguang Tian
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Masatoshi Yoshida
- Department of System Neuroscience, National Institute for Physiological Sciences , Okazaki , Japan.,School of Life Science, The Graduate University for Advanced Studies , Hayama , Japan
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| |
Collapse
|
39
|
Chances and challenges for an active visual search perspective. Behav Brain Sci 2018; 40:e150. [PMID: 29342597 DOI: 10.1017/s0140525x16000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using fixations as the fundamental unit of visual search is an appealing gear change in a paradigm that has long dominated attention research. To truly inform theories of search, however, additional challenges must be faced, including (1) an empirically motivated definition of fixation in the presence of fixational saccades and (2) the biases and limitations of transsaccadic perception and memory.
Collapse
|
40
|
Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biol Psychol 2017; 129:36-44. [DOI: 10.1016/j.biopsycho.2017.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
|
41
|
Bellet J, Chen CY, Hafed ZM. Sequential hemifield gating of α- and β-behavioral performance oscillations after microsaccades. J Neurophysiol 2017; 118:2789-2805. [PMID: 28794193 DOI: 10.1152/jn.00253.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Microsaccades are tiny saccades that occur during gaze fixation. Even though visual processing has been shown to be strongly modulated close to the time of microsaccades, both at central and peripheral eccentricities, it is not clear how these eye movements might influence longer term fluctuations in brain activity and behavior. Here we found that visual processing is significantly affected and, in a rhythmic manner, even several hundreds of milliseconds after a microsaccade. Human visual detection efficiency, as measured by reaction time, exhibited coherent rhythmic oscillations in the α- and β-frequency bands for up to ~650-700 ms after a microsaccade. Surprisingly, the oscillations were sequentially pulsed across visual hemifields relative to microsaccade direction, first occurring in the same hemifield as the movement vector for ~400 ms and then the opposite. Such pulsing also affected perceptual detection performance. Our results suggest that visual processing is subject to long-lasting oscillations that are phase locked to microsaccade generation, and that these oscillations are dependent on microsaccade direction.NEW & NOTEWORTHY We investigated long-term microsaccadic influences on visual processing and found rhythmic oscillations in behavioral performance at α- and β-frequencies (~8-20 Hz). These oscillations were pulsed at a much lower frequency across visual hemifields, first occurring in the same hemifield as the microsaccade direction vector for ~400 ms before switching to the opposite hemifield for a similar interval. Our results suggest that saccades temporally organize visual processing and that such organization can sequentially switch hemifields.
Collapse
Affiliation(s)
- Joachim Bellet
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany; .,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| |
Collapse
|
42
|
Microsaccade-rate indicates absorption by music listening. Conscious Cogn 2017; 55:59-78. [PMID: 28787663 DOI: 10.1016/j.concog.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
The power of music is a literary topos, which can be attributed to intense and personally significant experiences, one of them being the state of absorption. Such phenomenal states are difficult to grasp objectively. We investigated the state of musical absorption by using eye tracking. We utilized a load related definition of state absorption: multimodal resources are committed to create a unified representation of music. Resource allocation was measured indirectly by microsaccade rate, known to indicate cognitive processing load. We showed in Exp. 1 that microsaccade rate also indicates state absorption. Hence, there is cross-modal coupling between an auditory aesthetic experience and fixational eye movements. When removing the fixational stimulus in Exp. 2, saccades are no longer generated upon visual input and the cross-modal coupling disappeared. Results are interpreted in favor of the load hypothesis of microsaccade rate and against the assumption of general slowing by state absorption.
Collapse
|
43
|
Yu G, Yang M, Yu P, Dorris MC. Time compression of visual perception around microsaccades. J Neurophysiol 2017; 118:416-424. [PMID: 28298299 DOI: 10.1152/jn.00029.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Even during fixation, our eyes are in constant motion. For example, microsaccades are small (typically <1°) eye movements that occur 1~3 times/second. Despite their tiny and transient nature, our percept of visual space is compressed before microsaccades (Hafed ZM, Lovejoy LP, Krauzlis RJ. Eur J Neurosci 37: 1169-1181, 2013). As visual space and time are interconnected at both the physical and physiological levels, we asked whether microsaccades also affect the temporal aspects of visual perception. Here we demonstrate that the perceived interval between transient visual stimuli was compressed if accompanied by microsaccades. This temporal compression extended approximately ±200 ms from microsaccade occurrence, and depending on their particular pattern, multiple microsaccades further enhanced or counteracted this temporal compression. The compression of time surrounding microsaccades resembles that associated with more voluntary macrosaccades (Morrone MC, Ross J, Burr D. Nat Neurosci 8: 950-954, 2005). Our results suggest common neural processes underlying both saccade and microsaccade misperceptions, mediated, likely, through extraretinal mechanisms.NEW & NOTEWORTHY Here we show that humans perceive the duration of visual events as compressed if they are accompanied by microsaccades. Despite the tiny and transient nature of microsaccades, time compression extended more than ±200 ms from their occurrence. Moreover, the number, pattern, and temporal coincidence of microsaccades relative to visual events all contribute to this time misperception. Our results reveal a detailed picture of how our visual time percepts are altered by microsaccades.
Collapse
Affiliation(s)
- Gongchen Yu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and.,University of Chinese Academy of Sciences, Shanghai, China
| | - Mingpo Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and
| | - Peng Yu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and.,University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Christopher Dorris
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and
| |
Collapse
|
44
|
Meyberg S, Sommer W, Dimigen O. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study. Neuropsychologia 2017; 99:64-80. [PMID: 28254651 DOI: 10.1016/j.neuropsychologia.2017.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/21/2017] [Accepted: 02/26/2017] [Indexed: 11/16/2022]
Abstract
Covert shifts of attention that follow the presentation of a cue are associated with lateralized components in the event-related potential (ERP): the "early directing attention negativity" (EDAN) and the "anterior directing attention negativity" (ADAN). Traditionally, these shifts are thought to take place while gaze is fixated and, thus, in the absence of saccades. However, microsaccades of small amplitude (<1°) occur frequently and involuntarily also during fixation and are closely correlated with spatial attention. To investigate potential links between microsaccades and lateralized ERP components, we simultaneously recorded eye movements and ERPs in a spatial cueing task. As a first major result, we show that both the posterior EDAN and the orientation of microsaccades align more strongly with the location of the task-relevant part of the cue stimulus than with the direction of the attention shift indicated by that cue. A coupling between microsaccades and EDAN was also present on the single-trial level: The EDAN was largest when microsaccades were oriented toward the relevant cue, but absent when microsaccades were oriented away from it, suggesting that EDAN and microsaccades are generated by the same neural network, which selects relevant stimuli and orients behavior toward them. As a second major result, we show that small corneoretinal artifacts from microsaccades, which fall below conventional EOG rejection thresholds, contaminate the measurement of the ADAN. After correcting the EEG for microsaccade-related artifacts with an optimized variant of independent component analysis, ADAN was abolished at frontal sites, but a genuine ADAN was still present at central sites. Thus, the combined measurement of microsaccades and lateralized ERPs sheds new light onto cue-elicited shifts of covert attention.
Collapse
Affiliation(s)
| | - Werner Sommer
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Olaf Dimigen
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
45
|
Meyberg S, Sinn P, Engbert R, Sommer W. Revising the link between microsaccades and the spatial cueing of voluntary attention. Vision Res 2017; 133:47-60. [PMID: 28163059 DOI: 10.1016/j.visres.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 11/19/2022]
Abstract
Microsaccades - i.e., small fixational saccades generated in the superior colliculus (SC) - have been linked to spatial attention. While maintaining fixation, voluntary shifts of covert attention toward peripheral targets result in a sequence of attention-aligned and attention-opposing microsaccades. In most previous studies the direction of the voluntary shift is signaled by a spatial cue (e.g., a leftwards pointing arrow) that presents the most informative part of the cue (e.g., the arrowhead) in the to-be attended visual field. Here we directly investigated the influence of cue position and tested the hypothesis that microsaccades align with cue position rather than with the attention shift. In a spatial cueing task, we presented the task-relevant part of a symmetric cue either in the to-be attended visual field or in the opposite field. As a result, microsaccades were still weakly related to the covert attention shift; however, they were strongly related to the position of the cue even if that required a movement opposite to the cued attention shift. Moreover, if microsaccades aligned with cue position, we observed stronger cueing effects on manual response times. Our interpretation of the data is supported by numerical simulations of a computational model of microsaccade generation that is based on SC properties, where we explain our findings by separate attentional mechanisms for cue localization and the cued attention shift. We conclude that during cueing of voluntary attention, microsaccades are related to both - the overt attentional selection of the task-relevant part of the cue stimulus and the subsequent covert attention shift.
Collapse
Affiliation(s)
| | - Petra Sinn
- Universität Potsdam, 14469 Potsdam, Germany
| | | | - Werner Sommer
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
46
|
Buonocore A, Chen CY, Tian X, Idrees S, Münch TA, Hafed ZM. Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control. J Neurophysiol 2017; 117:1894-1910. [PMID: 28202573 DOI: 10.1152/jn.00811.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/22/2022] Open
Abstract
Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements' kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients' timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known "main sequence" relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic "Go" system driving eye movements but also a "Pause" system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general.NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany; .,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Xiaoguang Tian
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Saad Idrees
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and
| | - Thomas A Münch
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
47
|
Larsen DA, Bek T. The frequency of small saccades during fixation is age independent in children between 5 and 16 years of age. Acta Ophthalmol 2017; 95:79-84. [PMID: 27535612 DOI: 10.1111/aos.13222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Fixational eye movements are necessary for maintaining normal vision by preventing a stabilized image on the retina that would result in visual fading. The movements can be divided into tremor, drifts and saccades that may be related to movements of gaze and to fixation. It has previously been shown that the frequency of fixational saccades with an amplitude larger than 3° depends on age. The purpose of this study was to investigate whether other parameters describing fixational saccades also depend on age which necessitates age correction in studies of fixation during visual development. METHODS Fixational eye movements were recorded in 36 normal children aged 5-16 years. Parameters describing fixational saccades were characterized using a standardized algorithm and were correlated with age. RESULTS There was a significant linear relation between the amplitude and duration of fixational saccades (r2 = 0.37, p < 0.0001). The relation between the number of saccadic movements and the amplitude was unimodal and showed no correlation with age. However, the number of saccades per examination with an amplitude larger than 1° showed a negative correlation with age (r2 = 0.23, p = 0.003). CONCLUSIONS The overall frequency and amplitude of fixational saccades show no correlation with age that necessitates correction in clinical studies of visual development. The decreasing frequency of large saccadic eye movements with increasing child age may be due to improved attention.
Collapse
Affiliation(s)
| | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
48
|
Chen CY, Hafed ZM. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus. J Neurophysiol 2017; 117:1657-1673. [PMID: 28100659 DOI: 10.1152/jn.00911.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
Saccades cause rapid retinal-image shifts that go perceptually unnoticed several times per second. The mechanisms for saccadic suppression have been controversial, in part because of sparse understanding of neural substrates. In this study we uncovered an unexpectedly specific neural locus for spatial frequency-specific saccadic suppression in the superior colliculus (SC). We first developed a sensitive behavioral measure of suppression in two macaque monkeys, demonstrating selectivity to low spatial frequencies similar to that observed in earlier behavioral studies. We then investigated visual responses in either purely visual SC neurons or anatomically deeper visual motor neurons, which are also involved in saccade generation commands. Surprisingly, visual motor neurons showed the strongest visual suppression, and the suppression was dependent on spatial frequency, as in behavior. Most importantly, suppression selectivity for spatial frequency in visual motor neurons was highly predictive of behavioral suppression effects in each individual animal, with our recorded population explaining up to ~74% of behavioral variance even on completely different experimental sessions. Visual SC neurons had mild suppression, which was unselective for spatial frequency and thus only explained up to ~48% of behavioral variance. In terms of spatial frequency-specific saccadic suppression, our results run contrary to predictions that may be associated with a hypothesized SC saccadic suppression mechanism, in which a motor command in the visual motor and motor neurons is first relayed to the more superficial purely visual neurons, to suppress them and to then potentially be fed back to cortex. Instead, an extraretinal modulatory signal mediating spatial-frequency-specific suppression may already be established in visual motor neurons.NEW & NOTEWORTHY Saccades, which repeatedly realign the line of sight, introduce spurious signals in retinal images that normally go unnoticed. In part, this happens because of perisaccadic suppression of visual sensitivity, which is known to depend on spatial frequency. We discovered that a specific subtype of superior colliculus (SC) neurons demonstrates spatial-frequency-dependent suppression. Curiously, it is the neurons that help mediate the saccadic command itself that exhibit such suppression, and not the purely visual ones.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany; .,Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| |
Collapse
|
49
|
Peel TR, Hafed ZM, Dash S, Lomber SG, Corneil BD. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment. PLoS Biol 2016; 14:e1002531. [PMID: 27509130 PMCID: PMC4980061 DOI: 10.1371/journal.pbio.1002531] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. Our eyes are constantly in motion. This study shows that the frontal eye fields (an area of the frontal cortex) contribute to the strategic deployment of microsaccades, which aid vision by precisely translating retinal images by a few photoreceptors. Microsaccades are small, fixational eye movements that precisely relocate the visual axis. Despite evidence that microsaccades can be strategically controlled in high-acuity visual tasks, impacting visual processing, and considerable knowledge about how microsaccades are generated by the oculomotor brainstem, little is known about the cortical substrates that control microsaccades. To address this gap, we examined microsaccades generated by non-human primates before, during, and after large-volume reversible unilateral or bilateral inactivation of the frontal eye fields, a key oculomotor area in the frontal cortex. In support of a role for the frontal eye fields in microsaccades, microsaccade metrics and kinematics were altered during frontal eye fields inactivation. More surprisingly, frontal eye fields inactivation also impaired the generation of microsaccades following presentation of peripheral cues, regardless of the side of the cue or inactivation configuration. To our knowledge, our results constitute the first direct evidence for the contribution of any cortical area to microsaccade generation and suggest that the frontal eye fields can provide the top-down signals to the oculomotor brainstem needed to strategically guide microsaccades.
Collapse
Affiliation(s)
- Tyler R. Peel
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany
| | - Suryadeep Dash
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Brian D. Corneil
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
50
|
Abstract
UNLABELLED During visual fixation, the eye generates microsaccades and slower components of fixational eye movements that are part of the visual processing strategy in humans. Here, we show that ongoing heartbeat is coupled to temporal rate variations in the generation of microsaccades. Using coregistration of eye recording and ECG in humans, we tested the hypothesis that microsaccade onsets are coupled to the relative phase of the R-R intervals in heartbeats. We observed significantly more microsaccades during the early phase after the R peak in the ECG. This form of coupling between heartbeat and eye movements was substantiated by the additional finding of a coupling between heart phase and motion activity in slow fixational eye movements; i.e., retinal image slip caused by physiological drift. Our findings therefore demonstrate a coupling of the oculomotor system and ongoing heartbeat, which provides further evidence for bodily influences on visuomotor functioning. SIGNIFICANCE STATEMENT In the present study, we show that microsaccades are coupled to heartbeat. Moreover, we revealed a strong modulation of slow eye movements around the R peak in the ECG. These results suggest that heartbeat as a basic physiological signal is related to statistical modulations of fixational eye movements, in particular, the generation of microsaccades. Therefore, our findings add a new perspective on the principles underlying the generation of fixational eye movements. Importantly, our study highlights the need to record eye movements when studying the influence of heartbeat in neuroscience to avoid misinterpretation of eye-movement-related artifacts as heart-evoked modulations of neural processing.
Collapse
|