1
|
Jackson Z, Xue B. Dynamic Trait Distribution as a Source for Shifts in Interaction Strength and Population Density. Am Nat 2024; 204:1-14. [PMID: 38857344 DOI: 10.1086/730264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractIntraspecific trait variation has been increasingly recognized as an important factor in determining species interactions and diversity. Eco-evolutionary models have studied the distribution of trait values within a population that changes over the generations as a result of selection and heritability. Nonheritable traits that can change within the lifetime, such as behavior, can cause trait-mediated indirect effects, often studied by modeling the dynamics of a homogeneous trait. Complementary to these approaches, we study the distribution of traits within a population and its dynamics on short timescales due to ecological processes. We consider several mechanisms by which the trait distribution can shift dynamically: phenotypic plasticity within each individual, differential growth among individuals, and preferential consumption by the predator. Through a simple predator-prey model that explicitly tracks the trait distribution within the prey, we identify the density and trait effects from the predator. We show that the dynamic shift of the trait distribution can lead to the modification of interaction strength between species and result in otherwise unexpected consequences. A particular example is the emergent promotion of the prey by the predator, where the introduction of the predator causes the prey population to increase rather than decrease.
Collapse
|
2
|
A neotropical mistletoe influences herbivory of its host plant by driving changes in the associated insect community. Naturwissenschaften 2022; 109:27. [DOI: 10.1007/s00114-022-01798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
3
|
Liu Z, Wang J, Meng D, Li L, Liu X, Gu Y, Yan Q, Jiang C, Yin H. The Self-Organization of Marine Microbial Networks under Evolutionary and Ecological Processes: Observations and Modeling. BIOLOGY 2022; 11:biology11040592. [PMID: 35453791 PMCID: PMC9031791 DOI: 10.3390/biology11040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The properties and structure of ecological networks in marine microbial communities determine ecosystem functions and stability; however, the principles of microbial network assemblages are poorly understood. In this study, we revealed the influences of species phylogeny and niches on the self-organization of marine microbial co-occurrence networks and provided a mathematical framework to simulate microbial network assemblages. Our results provide deep insights into network stability from the perspective of network assembly principles and not just network properties, such as complexity and modularity. Abstract Evolutionary and ecological processes are primary drivers of ecological network constrictions. However, the ways that these processes underpin self-organization and modularity in networks are poorly understood. Here, we performed network analyses to explore the evolutionary and ecological effects on global marine microbial co-occurrence networks across multiple network levels, including those of nodes, motifs, modules and whole networks. We found that both direct and indirect species interactions were evolutionarily and ecologically constrained across at least four network levels. Compared to ecological processes, evolutionary processes generally showed stronger long-lasting effects on indirect interactions and dominated the network assembly of particle-associated communities in spatially homogeneous environments. Regarding the large network path distance, the contributions of either processes to species interactions generally decrease and almost disappear when network path distance is larger than six. Accordingly, we developed a novel mathematical model based on scale-free networks by considering the joint effects of evolutionary and ecological processes. We simulated the self-organization of microbial co-occurrence networks and found that long-lasting effects increased network stability via decreasing link gain or loss. Overall, these results revealed that evolutionary and ecological processes played key roles in the self-organization and modularization of microbial co-occurrence networks.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Qingyun Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
| | - Chengying Jiang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
4
|
Tigreros N, Agrawal AA, Thaler JS. Genetic Variation in Parental Effects Contributes to the Evolutionary Potential of Prey Responses to Predation Risk. Am Nat 2021; 197:164-175. [PMID: 33523783 DOI: 10.1086/712341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDespite the ubiquity of parental effects and their potential effect on evolutionary dynamics, their contribution to the evolution of predator-prey interactions remains poorly understood. Using quantitative genetics, here we demonstrate that parental effects substantially contribute to the evolutionary potential of larval antipredator responses in a leaf beetle (Leptinotarsa decemlineata). Previous research showed that larger L. decemlineata larvae elicit stronger antipredator responses, and mothers perceiving predators improved offspring responses by increasing intraclutch cannibalism-an extreme form of offspring provisioning. We now report substantial additive genetic variation underlying maternal ability to induce intraclutch cannibalism, indicating the potential of this adaptive maternal effect to evolve by natural selection. We also show that paternal size, a heritable trait, affected larval responses to predation risk but that larval responses themselves had little additive genetic variation. Together, these results demonstrate how larval responses to predation risk can evolve via two types of parental effects, both of which provide indirect sources of genetic variation for offspring traits.
Collapse
|
5
|
Foffová H, Ćavar Zeljković S, Honěk A, Martinková Z, Tarkowski P, Saska P. Which Seed Properties Determine the Preferences of Carabid Beetle Seed Predators? INSECTS 2020; 11:insects11110757. [PMID: 33158042 PMCID: PMC7692740 DOI: 10.3390/insects11110757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The carabid beetles are well known for the consumption of weed seeds in arable land, but how they choose the seeds is poorly known. In this work, we try to explain the patterns in preferences of 37 species of carabids based on eight seed properties of 28 species of seeds. Surprisingly, chemical properties of the seeds did not affect the preferences. Instead, preferences were driven mainly by seed structural properties. The importance of particular seed properties was also affected by the degree of predator specialization. Abstract Ground beetles are important invertebrate seed predators in temperate agro-ecosystems. However, there is a lack of information regarding which seed properties are important to carabids when they select seeds for consumption. Therefore, seed properties, such as size, shape, morphological defence, and chemical composition, were measured, and in addition to seed taxonomy and ecology, these data were used to explain carabid preferences. Carabid preferences were assessed using a multi-choice experiment with 28 species of weed seeds presented to 37 species of Carabidae. Multiple regression on distance matrices (MRM) was used to determine the importance of particular sets of seed properties for carabids. The analysis was conducted for the full set of carabids (37 species) as well as for subsets of species belonging to the tribes of Harpalini or Zabrini. For the complete set of species, seed dimensions, seed mass, taxonomy, plant strategy, and seed coat properties significantly explained carabid preferences (proportion of explained variance, R2 = 0.465). The model for Harpalini fit the data comparably well (R2 = 0.477), and seed dimensions, seed mass and seed coat properties were significant. In comparison to that for Harpalini, the model for Zabrini had much lower explanatory power (R2 = 0.248), and the properties that significantly affected the preferences were seed dimensions, seed mass, taxonomy, plant strategy, and seed coat properties. This result suggests that the seed traits that carabids respond to may be specific to taxonomic and likely relate to the degree of specialisation for seeds. This study contributes to understanding the mechanisms that determine the preferences of carabid beetles for seeds.
Collapse
Affiliation(s)
- Hana Foffová
- Crop Research Institute, Functional Diversity in Agro-Ecosystems, Drnovská 507, Ruzyně, 161 06 Praha 6, Czech Republic; (A.H.); (Z.M.); (P.S.)
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00 Praha, Czech Republic
- Correspondence:
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (P.T.)
- Centre of Region Haná for Biotechnological and Agricultural Research, Department of Phytochemistry, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Alois Honěk
- Crop Research Institute, Functional Diversity in Agro-Ecosystems, Drnovská 507, Ruzyně, 161 06 Praha 6, Czech Republic; (A.H.); (Z.M.); (P.S.)
| | - Zdenka Martinková
- Crop Research Institute, Functional Diversity in Agro-Ecosystems, Drnovská 507, Ruzyně, 161 06 Praha 6, Czech Republic; (A.H.); (Z.M.); (P.S.)
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (P.T.)
- Centre of Region Haná for Biotechnological and Agricultural Research, Department of Phytochemistry, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Saska
- Crop Research Institute, Functional Diversity in Agro-Ecosystems, Drnovská 507, Ruzyně, 161 06 Praha 6, Czech Republic; (A.H.); (Z.M.); (P.S.)
| |
Collapse
|
6
|
Culshaw‐Maurer M, Sih A, Rosenheim JA. Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 2020; 23:1693-1714. [PMID: 32902103 PMCID: PMC7692946 DOI: 10.1111/ele.13601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Enemy-risk effects, often referred to as non-consumptive effects (NCEs), are an important feature of predator-prey ecology, but their significance has had little impact on the conceptual underpinning or practice of biological control. We provide an overview of enemy-risk effects in predator-prey interactions, discuss ways in which risk effects may impact biocontrol programs and suggest avenues for further integration of natural enemy ecology and integrated pest management. Enemy-risk effects can have important influences on different stages of biological control programs, including natural enemy selection, efficacy testing and quantification of non-target impacts. Enemy-risk effects can also shape the interactions of biological control with other pest management practices. Biocontrol systems also provide community ecologists with some of the richest examples of behaviourally mediated trophic cascades and demonstrations of how enemy-risk effects play out among species with no shared evolutionary history, important topics for invasion biology and conservation. We conclude that the longstanding use of ecological theory by biocontrol practitioners should be expanded to incorporate enemy-risk effects, and that community ecologists will find many opportunities to study enemy-risk effects in biocontrol settings.
Collapse
Affiliation(s)
- Michael Culshaw‐Maurer
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
- Department of Evolution and EcologyUniversity of CaliforniaDavisCA95616USA
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCA95616USA
| | - Jay A. Rosenheim
- Department of Entomology and NematologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
7
|
Cuny MAC, Traine J, Bustos-Segura C, Benrey B. Host density and parasitoid presence interact and shape the outcome of a tritrophic interaction on seeds of wild lima bean. Sci Rep 2019; 9:18591. [PMID: 31819127 PMCID: PMC6901471 DOI: 10.1038/s41598-019-55143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/22/2019] [Indexed: 01/17/2023] Open
Abstract
The interaction between the seed beetle Zabrotes subfasciatus and its parasitoid Stenocorse bruchivora, was investigated on seeds of two populations of wild lima bean, Phaseolus lunatus. By manipulating the number of beetle larvae per seed and the presence of parasitoids, we determined how factors related to beetle larvae density, the seed in which they feed and the parasitoid, may interact and affect host and parasitoid survival. Results showed that an increase in larval beetle density had a negative impact on beetle performance. This effect cascaded up to parasitoids, high larval density strongly reduced parasitoid emergence. Also, parasitoid presence resulted in faster beetle development and lower female weight. An interactive effect between larval host density and parasitoid presence affected the number of insects that emerged from the seeds. Beetle performance was better in the bean population with the largest seeds, while parasitoid emergence was the lowest in these seeds. This study shows that the impact of parasitoids on seed beetles is contingent on the interaction between density-mediated (direct mortality) and trait-mediated (e.g. non-consumptive) effects. Indirect trait-mediated effects of natural enemies are likely prevalent across insect communities, understanding their role in driving host-parasitoid interactions can have important implications for biological control.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Juan Traine
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
8
|
Abdala‐Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, van Dam NM, Wimp G, Mooney K, Björkman C. Tri-trophic interactions: bridging species, communities and ecosystems. Ecol Lett 2019; 22:2151-2167. [PMID: 31631502 PMCID: PMC6899832 DOI: 10.1111/ele.13392] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom-up and top-down controls over the distribution of biomass across trophic levels and other ecosystem-level variables. Here, we propose pathways to bridge these two long-standing perspectives. We argue that an expanded theory of tri-trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri-trophic theory systematically across all levels of biological organisation.
Collapse
Affiliation(s)
- Luis Abdala‐Roberts
- Departamento de Ecología TropicalCampus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánKm. 15.5 Carretera Mérida‐XmatkuilMX‐97000MéridaYucatánMéxico
| | - Adriana Puentes
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| | - Deborah L. Finke
- Division of Plant SciencesUniversity of Missouri1‐33 Agriculture BuildingUS‐65211ColumbiaMOUSA
| | - Robert J. Marquis
- Department of Biology and the Whitney R. Harris World Ecology CenterUniversity of Missouri–St. Louis1 University BoulevardUS‐63121St. LouisMOUSA
| | - Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Consejo Superior de Investigaciones CientíficasE‐29750Algarrobo‐Costa (Málaga)Spain
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AAWageningenThe Netherlands
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11CH‐2000NeuchâtelSwitzerland
| | - Arnaud Sentis
- UMR RECOVERIRSTEAAix Marseille University3275 route Cézanne13182Aix‐en‐ProvenceFrance
| | - Nicole M. van Dam
- Molecular Interaction EcologyFriedrich‐Schiller‐University Jena & German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigDeutscher Platz 5eDE‐04103LeipzigGermany
| | - Gina Wimp
- Department of BiologyGeorgetown University406 Reiss Science BuildingUS‐20057WashingtonDCUSA
| | - Kailen Mooney
- Department of Ecology and Evolutionary BiologyUniversity of California Irvine321 Steinhaus HallUS‐92697IrvineCAUSA
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| |
Collapse
|
9
|
Nell CS, Mooney KA. Plant structural complexity mediates trade‐off in direct and indirect plant defense by birds. Ecology 2019; 100:e02853. [DOI: 10.1002/ecy.2853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Colleen S. Nell
- Department of Ecology & Evolutionary Biology UC Irvine 321 Steinhaus Hall Irvine California 92697 USA
| | - Kailen A. Mooney
- Department of Ecology & Evolutionary Biology UC Irvine 321 Steinhaus Hall Irvine California 92697 USA
- Center for Environmental Biology UC Irvine Irvine California 92697 USA
| |
Collapse
|
10
|
Wetzel WC, Aflitto NC, Thaler JS. Plant genotypic diversity interacts with predation risk to influence an insect herbivore across its ontogeny. Ecology 2018; 99:2338-2347. [PMID: 30047598 DOI: 10.1002/ecy.2472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 11/11/2022]
Abstract
A growing number of studies have manipulated intraspecific plant diversity and found dramatic changes in the densities of associated insect herbivores and their predators. While these studies have been essential for quantifying the net ecological consequences of intraspecific plant diversity, they have been less effective at uncovering the ways in which plant diversity alters trophic interactions within arthropod communities. We manipulated intraspecific plant diversity and predation risk in the field in a factorial design to reveal how a mixture of plant genotypes changes the response of an herbivorous beetle (Leptinotarsa decemlineata) to a common stink bug predator (Podisus maculiventris). We repeated the manipulations twice across the ontogeny of the beetle to examine how the effects of diversity on the predator-prey interaction differ between larval and adult stages. We found that intraspecific plant diversity, mixtures of susceptible and resistant varieties of potato (Solanum tuberosum), reduced larval survival by 20% and adult oviposition by 34%, which surprisingly put survival and oviposition lower in the mixed-genotype plots than in the resistant monocultures. Moreover, we found that predation risk reduced larval survival 25% and 11% in resistant and susceptible monocultures, respectively, but had no effect in the mixture. This result indicated that our genotypic mixing treatment interacted nonadditively with predation risk such that plant diversity altered the predator-prey interaction by changing the responses of the beetles to their stink bug predators. In addition, even though predation risk reduced larval survival, it increased adult overwintering survival by 9%, independently of plant treatment, suggesting that these interactions change through ontogeny. A key implication of our study is that plant diversity influences arthropod communities not only by changing resource quality, as past studies have suggested, but also by changing interactions between species within the arthropod community.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nicholas C Aflitto
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Jennifer S Thaler
- Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
11
|
Peers MJL, Majchrzak YN, Neilson E, Lamb CT, Hämäläinen A, Haines JA, Garland L, Doran-Myers D, Broadley K, Boonstra R, Boutin S. Quantifying fear effects on prey demography in nature. Ecology 2018; 99:1716-1723. [PMID: 29897623 DOI: 10.1002/ecy.2381] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/18/2018] [Accepted: 04/05/2018] [Indexed: 02/03/2023]
Abstract
In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities.
Collapse
Affiliation(s)
- Michael J L Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Yasmine N Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Eric Neilson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Clayton T Lamb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Jessica A Haines
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Laura Garland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Darcy Doran-Myers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Kate Broadley
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2M9, Canada
| |
Collapse
|
12
|
Hermann SL, Thaler JS. The effect of predator presence on the behavioral sequence from host selection to reproduction in an invulnerable stage of insect prey. Oecologia 2018; 188:945-952. [DOI: 10.1007/s00442-018-4202-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
|
13
|
Tigreros N, Wang EH, Thaler JS. Prey nutritional state drives divergent behavioural and physiological responses to predation risk. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Long RA, Wambua A, Goheen JR, Palmer TM, Pringle RM. Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use. J Anim Ecol 2017; 86:739-748. [PMID: 28342277 DOI: 10.1111/1365-2656.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East Africa (as predicted in many recent climate-model simulations) may relax constraints on small-mammal distribution where LMH are rare or absent, whereas increased aridity and/or drought frequency may tighten them.
Collapse
Affiliation(s)
- Ryan A Long
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alois Wambua
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| | - Jacob R Goheen
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Todd M Palmer
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| |
Collapse
|
15
|
Wada Y, Iwasaki K, Ida TY, Yusa Y. Roles of the seasonal dynamics of ecosystem components in fluctuating indirect interactions on a rocky shore. Ecology 2017; 98:1093-1103. [PMID: 28112400 DOI: 10.1002/ecy.1743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 11/06/2022]
Abstract
Accurately evaluating the strengths of direct (i.e., consumptive and non-consumptive) effects and indirect (density- and trait-mediated) interactions is crucial for understanding the mechanisms of the maintenance and dynamics of an ecosystem. However, an in situ evaluation has not been conducted for a long enough period of time to fully consider the seasonality and life histories of the community components. We conducted a 9-month (from summer to spring) field experiment in an intertidal rocky shore ecosystem involving the carnivorous snail, Thais clavigera, its prey, the limpet Siphonaria sirius, and their resources, the cyanobacterium (blue-green alga) Lithoderma sp. and the green algae Ulva spp. From summer to autumn, the predation pressure was high, and the consumptive and non-consumptive effects of the predator had opposite (positive and negative, respectively) effects on the prey. Both the density- and trait-mediated indirect interactions decreased the coverage of Lithoderma and increased the coverage of Ulva. As the predation pressure decreased in autumn, the predator affected both the adults and the new recruits of the prey. The trait-mediated interactions still existed, but the density-mediated interactions were not detected. From winter to spring, no direct effects or indirect interactions were detected because of the low predation pressure. Our investigation highlights previously unnoticed processes-showing that the strengths of the direct effects and indirect interactions fluctuate greatly with the seasonality of the ecosystem components.
Collapse
Affiliation(s)
- Yoko Wada
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| | - Keiji Iwasaki
- Institute for Natural Science, Nara University, 1500 Misasagi-cho, Nara, 6318502 Japan
| | - Takashi Y Ida
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| | - Yoichi Yusa
- Faculty of Science, Nara Women's University, Kitauoya-nishi, Nara, 6308506 Japan
| |
Collapse
|
16
|
Tigreros N, Norris RH, Wang EH, Thaler JS. Maternally induced intraclutch cannibalism: an adaptive response to predation risk? Ecol Lett 2017; 20:487-494. [DOI: 10.1111/ele.12752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rachel H. Norris
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY12854 USA
| | - Eugenia H. Wang
- Department of Entomology Cornell University Ithaca NY12854 USA
| | - Jennifer S. Thaler
- Department of Entomology Cornell University Ithaca NY12854 USA
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY12854 USA
| |
Collapse
|
17
|
Kaplan I, Carrillo J, Garvey M, Ode PJ. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:112-119. [PMID: 27436656 DOI: 10.1016/j.cois.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, Purdue University, United States.
| | - Juli Carrillo
- Department of Entomology, Purdue University, United States
| | - Michael Garvey
- Department of Entomology, Purdue University, United States
| | - Paul J Ode
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, United States
| |
Collapse
|
18
|
Kwan CK, Sanford E, Long J. Copper Pollution Increases the Relative Importance of Predation Risk in an Aquatic Food Web. PLoS One 2015; 10:e0133329. [PMID: 26172044 PMCID: PMC4501717 DOI: 10.1371/journal.pone.0133329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/24/2015] [Indexed: 11/18/2022] Open
Abstract
Although the cascading impact of predators depends critically on the relative role of lethal predation and predation risk, we lack an understanding of how human-caused stressors may shift this balance. Emergent evidence suggests that pollution may increase the importance of predator consumptive effects by weakening the effects of fear perceived by prey. However, this oversimplification ignores the possibility that pollution may also alter predator consumptive effects. In particular, contaminants may impair the consumptive effects of predators by altering density-dependent interactions among prey conspecifics. No study has directly compared predator consumptive and non-consumptive effects in polluted versus non-polluted settings. We addressed this issue by using laboratory mesocosms to examine the impact of sublethal doses of copper on tri-trophic interactions among estuarine predator crabs Cancer productus, carnivorous whelk prey Urosalpinx cinerea, and the basal resource barnacles Balanus glandula. We investigated crab consumptive effects (whelks culled without crab chemical cues), non-consumptive effects (whelks not culled with crab chemical cues), and total effects (whelks culled with crab chemical cues) on whelks in copper polluted and non-polluted waters. Realistic copper concentrations suppressed the effects of simulated crab lethal predation (whelk culling) by removing density-dependent feeding by whelks. Specifically, reductions in conspecific density occurring in elevated copper levels did not trigger the normal increase in whelk consumption rates of barnacles. Weakened effects of fear were only observed at extremely high copper levels, suggesting consumptive effects were more sensitive to pollution. Thus, pollution may shape communities by altering the roles of predators and interactions among prey.
Collapse
Affiliation(s)
- Christopher Kent Kwan
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California Davis, Bodega Bay, California, United States of America
| | - Eric Sanford
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California Davis, Bodega Bay, California, United States of America
| | - Jeremy Long
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
19
|
Haavisto F, Jormalainen V. Seasonality elicits herbivores' escape from trophic control and favors induced resistance in a temperate macroalga. Ecology 2014. [DOI: 10.1890/13-2387.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. Oecologia 2014; 176:669-76. [DOI: 10.1007/s00442-014-3069-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
21
|
Wang B, Geng XZ, Ma LB, Cook JM, Wang RW. A trophic cascade induced by predatory ants in a fig-fig wasp mutualism. J Anim Ecol 2014; 83:1149-57. [DOI: 10.1111/1365-2656.12219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Wang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Science; Kunming Yunnan 650223 China
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Menglun 666303 China
| | - Xiang-Zong Geng
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Science; Kunming Yunnan 650223 China
- School of Environmental & Biological Engineering; Nanjing University of Science and Technology; Jiangsu 210094 China
| | - Li-Bin Ma
- School of Life Sciences; Northeast Normal University; Changchun 130024 China
| | - James M. Cook
- Hawkesbury Institute for the Environment; University of Western Sydney; Hawkesbury Campus, Locked Bag 1797 Penrith 2751 NSW Australia
- School of Biological Sciences; University of Reading; Whiteknights Reading RG6 6AS UK
| | - Rui-Wu Wang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Science; Kunming Yunnan 650223 China
| |
Collapse
|
22
|
Plant defenses and predation risk differentially shape patterns of consumption, growth, and digestive efficiency in a guild of leaf-chewing insects. PLoS One 2014; 9:e93714. [PMID: 24718036 PMCID: PMC3981721 DOI: 10.1371/journal.pone.0093714] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/05/2014] [Indexed: 12/02/2022] Open
Abstract
Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality.
Collapse
|
23
|
|
24
|
Kim TN. Plant damage and herbivore performance change with latitude for two old-field plant species, but rarely as predicted. OIKOS 2014. [DOI: 10.1111/j.1600-0706.2013.00946.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Wada Y, Iwasaki K, Yusa Y. Changes in algal community structure via density- and trait-mediated indirect interactions in a marine ecosystem. Ecology 2013; 94:2567-74. [DOI: 10.1890/12-0725.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Predator diversity effects in an exotic freshwater food web. PLoS One 2013; 8:e72599. [PMID: 23991126 PMCID: PMC3749145 DOI: 10.1371/journal.pone.0072599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.
Collapse
|
27
|
Heithaus MR, Wirsing AJ, Frid A, Dill LM. Behavioral Indicators in Marine Conservation: Lessons from a Pristine Seagrass Ecosystem. Isr J Ecol Evol 2013. [DOI: 10.1560/ijee.53.3.355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Geraldi NR, Macreadie PI. Restricting prey dispersal can overestimate the importance of predation in trophic cascades. PLoS One 2013; 8:e55100. [PMID: 23408957 PMCID: PMC3567106 DOI: 10.1371/journal.pone.0055100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish--Opsanus tau), prey (mud crab--Panopeus herbstii) and resource (ribbed musse--Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.
Collapse
Affiliation(s)
- Nathan R Geraldi
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA.
| | | |
Collapse
|
29
|
Luttbeg B, Trussell GC. How the informational environment shapes how prey estimate predation risk and the resulting indirect effects of predators. Am Nat 2013; 181:182-94. [PMID: 23348773 DOI: 10.1086/668823] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prey often behaviorally respond to changes in the intensity of predation risk, and these responses can often significantly shape community dynamics, but flexible responses to changes in predation risk require that prey have accurate and timely estimates of predation risk. We present a model of how a prey's environment should shape the cognitive rules they use to assess predation risk and present how these rules shape the effects predators have on prey and the prey's resources. In the model, prey can rely on a combination of a fixed estimate of predation risk and a flexible estimate of predation risk shaped by their recent experience. Prey relied more on their experience to estimate predation risk when predator cues were more reliable and when predator densities were lower. In addition, when the prey cognitive rules favored a greater use of their experience to estimate predation risk, the presence of predators caused larger nonconsumptive effects and generally smaller consumptive effects on prey and the prey's resources. These differences in prey cognition also altered the effects that alterations of cue reliability and predator densities had on prey and their resources.
Collapse
Affiliation(s)
- Barney Luttbeg
- Department of Zoology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | |
Collapse
|
30
|
Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. Proc Natl Acad Sci U S A 2012; 109:12075-80. [PMID: 22778426 DOI: 10.1073/pnas.1208070109] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most organisms face the problem of foraging and maintaining growth while avoiding predators. Typical animal responses to predator exposure include reduced feeding, elevated metabolism, and altered development rate, all of which can be beneficial in the presence of predators but detrimental in their absence. How then do animals balance growth and predator avoidance? In a series of field and greenhouse experiments, we document that the tobacco hornworm caterpillar, Manduca sexta, reduced feeding by 30-40% owing to the risk of predation by stink bugs, but developed more rapidly and gained the same mass as unthreatened caterpillars. Assimilation efficiency, extraction of nitrogen from food, and percent body lipid content all increased during the initial phase (1-3 d) of predation risk, indicating that enhanced nutritional physiology allows caterpillars to compensate when threatened. However, we report physiological costs of predation risk, including altered body composition (decreased glycogen) and reductions in assimilation efficiency later in development. Our findings indicate that hornworm caterpillars use temporally dynamic compensatory mechanisms that ameliorate the trade-off between predator avoidance and growth in the short term, deferring costs to a period when they are less vulnerable to predation.
Collapse
|
31
|
Peacor SD, Pangle KL, Schiesari L, Werner EE. Scaling-up anti-predator phenotypic responses of prey: impacts over multiple generations in a complex aquatic community. Proc Biol Sci 2011; 279:122-8. [PMID: 21593036 DOI: 10.1098/rspb.2011.0606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-consumptive effects (NCEs) of predators owing to induced changes in prey traits are predicted to influence the structure of ecological communities. However, evidence of the importance of NCEs is limited primarily to simple systems (e.g. two to four species) over relatively short periods (e.g. less than one generation). We examined the NCEs of a fish predator, arising from phenotypic plasticity in zooplankton prey traits, over multiple generations of a diverse zooplankton community. The presence of fish, caged to remove consumptive effects, strongly influenced zooplankton community structure, through both direct and indirect NCE pathways, altering the abundance of many taxa by magnitudes as large as 3 to 10-fold. Presence of fish affected different species of cladocerans and copepods both positively and negatively. A particularly striking result was the reversal of dominance in copepod taxa: presence of fish reduced the ratio of calanoids to cyclopoids from 6.3 to 0.43. Further, the NCE of fish had a strong negative trophic cascade to zooplankton resources (phytoplankton). To our knowledge, this is the first experiment to show that NCEs can influence the abundance of multiple prey species over time spans of multiple prey generations. Our findings demonstrate that adaptive phenotypic plasticity of individuals can scale-up to affect the structure of ecological communities.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
32
|
Pearson DE. Trait- and density-mediated indirect interactions initiated by an exotic invasive plant autogenic ecosystem engineer. Am Nat 2011; 176:394-403. [PMID: 20715973 DOI: 10.1086/656274] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Indirect interactions are important for structuring ecological systems. However, research on indirect effects has been heavily biased toward top-down trophic interactions, and less is known about other indirect-interaction pathways. As autogenic ecosystem engineers, plants can serve as initiators of nontrophic indirect interactions that, like top-down pathways, can involve both trait-mediated indirect interactions (TMIIs) and density-mediated indirect interactions (DMIIs). Using microcosms, I examined a plant --> predator --> consumer interaction pathway involving the exotic autogenic ecosystem engineer Centaurea maculosa; native Dictyna spiders (which exhibit density and trait [web-building] responses to C. maculosa); Dictyna's insect prey, Urophora affinis; and Urophora's host plant (a secondary receiver species) to quantify DMIIs and TMIIs in an autogenic engineered pathway. Both DMIIs and TMIIs were strong enough to reduce Urophora populations, but only DMIIs, which were 4.3 times stronger than TMIIs, were strong enough to also reduce Urophora's fecundity and increase the fecundity of its host plant. Prior field studies support these results, suggesting that the differences between DMIIs and TMIIs are even stronger in nature. This study illustrates that autogenic ecosystem engineers can initiate powerful indirect interactions that generally parallel predator-initiated interactions but also differ in important functional ways.
Collapse
Affiliation(s)
- Dean E Pearson
- United States Department of Agriculture Forest Service, Missoula, Montana 59801, USA.
| |
Collapse
|
33
|
Utsumi S, Ando Y, Miki T. Linkages among trait-mediated indirect effects: a new framework for the indirect interaction web. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0237-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Utsumi S, Kishida O, Ohgushi T. Trait-mediated indirect interactions in ecological communities. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0236-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Affiliation(s)
- Shawn A Steffan
- Department of Entomology, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
36
|
Kaplan I, Thaler JS. Plant resistance attenuates the consumptive and non-consumptive impacts of predators on prey. OIKOS 2010. [DOI: 10.1111/j.1600-0706.2009.18311.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Schmidt-Entling MH, Siegenthaler E. Herbivore release through cascading risk effects. Biol Lett 2009; 5:773-6. [PMID: 19586964 DOI: 10.1098/rsbl.2009.0436] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predators influence prey through consumption, and through trait-mediated effects such as emigration in response to predation risk (risk effects). We studied top-down effects of (sub-) adult wolf spiders (Lycosidae) on arthropods in a meadow. We compared risk effects with the overall top-down effect (including consumption) by gluing the chelicers of wolf spiders to prevent them from killing the prey. In a field experiment, we created three treatments that included either: (i) intact ('predation') wolf spiders; (ii) wolf spiders with glued chelicers ('risk spiders'); or (iii) no (sub-) adult wolf spiders. Young wolf spiders were reduced by their (sub-) adult congeners. Densities of sheetweb spiders (Linyphiidae), a known intraguild prey of wolf spiders, were equally reduced by the presence of risk and predation wolf spiders. Plant- and leafhoppers (Auchenorrhyncha) showed the inverse pattern of higher densities in the presence of both risk and predation wolf spiders. We conclude that (sub-) adult wolf spiders acted as top predators, which reduced densities of intermediate predators and thereby enhanced herbivores. Complementary to earlier studies that found trait-mediated herbivore suppression, our results demonstrate that herbivores can be enhanced through cascading risk effects by top predators.
Collapse
Affiliation(s)
- Martin H Schmidt-Entling
- Institute of Ecology and Evolution, University of Bern, Balzerstrasse 6, 3012 Bern, Switzerland.
| | | |
Collapse
|
38
|
Abrams PA. Measuring the impact of dynamic antipredator traits on predator-prey-resource interactions. Ecology 2008; 89:1640-9. [PMID: 18589528 DOI: 10.1890/07-0764.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article analyzes the limitations of the most widely used method for quantifying the impact of dynamic antipredator traits on food chain dynamics and discusses alternative approaches. The standard method for a predator-prey-resource chain estimates the effects of the prey's defensive behavior by comparing population densities or fitness measures in a "predator cue" treatment to those in a no-predator treatment. This design has been interpreted as providing a measure of the "nonconsumptive effect" of the predator on the prey and the "trait-mediated indirect effect" of the predator on the resource. Other approaches involve measurements of the impact of the behavior in the presence of functional predators. The questions addressed here are: (1) How consistent are the results of different approaches? (2) How time-dependent are their results? (3) How well do they correspond to theoretical measures of effect size? (4) How useful are the measurements in understanding system dynamics? A model of a tritrophic system in which the prey species adjusts a defensive trait adaptively is used to evaluate the experimental designs. Measures of changes in prey fitness or population density in a cue treatment generally include offsetting effects of the cost of the behavior and the benefit of more resources. This means that the sign of the effect, as well as its magnitude, may change depending on when the experiment is terminated. Because predation is not present in the cue treatment, few conclusions can be drawn about the impact of the behavior on population densities or fitness of the prey in a natural setting with predators. Cue experiments often do not accurately separate trait-mediated from density-mediated effects on the resource. Most scalar measures of effects are sensitive to experimental duration and initial densities. Use of a wider range of experimental designs to measure trait-related effects is called for.
Collapse
Affiliation(s)
- Peter A Abrams
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Affiliation(s)
- Peter A Abrams
- Department of Ecology and Evolutionary Biology, Zoology Building, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S3G5, Canada.
| |
Collapse
|
40
|
Abstract
Insectivorous birds and ants co-occur in most terrestrial communities, and theory predicts that emergent properties (i.e., nonadditive effects) can determine their combined influence on arthropods and plants. In a three-year factorial experiment, I investigated whether the effects of birds on pine and its arthropods differed based on the presence of ants that were predators of most arthropods, but mutualists with tended aphid species. Birds and ants reduced the abundance of most herbivorous and carnivorous arthropods in an additive fashion, with the effects of ants being stronger than those of birds. In sharp contrast, the opposing influences of birds and ants on tended aphid species interacted strongly; ants only increased tended aphid abundance in the absence of birds, while birds only reduced their abundance in the presence of ants. This interaction was mirrored in total herbivore abundance because tended aphids dominated the herbivore community. I develop a novel lexicon to discuss the emergent properties from these effects of opposing sign (predation, mutualism). Despite having emergent effects on herbivores, birds indirectly increased pine wood and foliage growth to a similar extent whether or not ants were present, while ants had no detectable effects. Birds also indirectly increased the abundance of some pine phloem monoterpenes, but these effects differed based on the presence or absence of ants. Thus, I report on a novel yet possibly widespread indirect interaction between intraguild predators, herbivore mutualists, and plant traits (growth, secondary chemistry) mediated through a species-rich community of arthropods.
Collapse
Affiliation(s)
- Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
41
|
Abstract
Indirect effects, whether density-mediated (DMII) or trait-mediated (TMII), have been recognized as potentially important drivers of community dynamics. However, empirical studies that have attempted to detect TMII or to quantify the relative strength of DMII and TMII in short-term studies have used a range of different metrics. We review these studies and assess both the consistency of a variety of different metrics and their robustness to (or ability to detect) ecological phenomena such as the dependence of forager behaviour on conspecific density. Quantifying indirect effects over longer time scales when behaviour and population density vary is more challenging, but also necessary if we really intend to incorporate indirect effects into predictions of long-term community dynamics; we discuss some problems associated with this effort and conclude with general recommendations for quantifying indirect effects.
Collapse
Affiliation(s)
- Toshinori Okuyama
- Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA.
| | | |
Collapse
|
42
|
Trussell GC, Ewanchuk PJ, Matassa CM. Habitat effects on the relative importance of trait- and density-mediated indirect interactions. Ecol Lett 2006; 9:1245-52. [PMID: 17040327 DOI: 10.1111/j.1461-0248.2006.00981.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab (Carcinus maenas), an intermediate consumer (the snail, Nucella lapillus) and a basal resource (the barnacle, Semibalanus balanoides) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.
Collapse
|
43
|
Peacor SD, Allesina S, Riolo RL, Pascual M. Phenotypic plasticity opposes species invasions by altering fitness surface. PLoS Biol 2006; 4:e372. [PMID: 17076585 PMCID: PMC1629039 DOI: 10.1371/journal.pbio.0040372] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 09/07/2006] [Indexed: 11/19/2022] Open
Abstract
Understanding species invasion is a central problem in ecology because invasions of exotic species severely impact ecosystems, and because invasions underlie fundamental ecological processes. However, the influence on invasions of phenotypic plasticity, a key component of many species interactions, is unknown. We present a model in which phenotypic plasticity of a resident species increases its ability to oppose invaders, and plasticity of an invader increases its ability to displace residents. Whereas these effects are expected due to increased fitness associated with phenotypic plasticity, the model additionally reveals a new and unforeseen mechanism by which plasticity affects invasions: phenotypic plasticity increases the steepness of the fitness surface, thereby making invasion more difficult, even by phenotypically plastic invaders. Our results should apply to phenotypically plastic responses to any fluctuating environmental factors including predation risk, and to other factors that affect the fitness surface such as the generalism of predators. We extend the results to competition, and argue that phenotypic plasticity's effect on the fitness surface will destabilize coexistence at local scales, but stabilize coexistence at regional scales. Our study emphasizes the need to incorporate variable interaction strengths due to phenotypic plasticity into invasion biology and ecological theory on competition and coexistence in fragmented landscapes.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA.
| | | | | | | |
Collapse
|