1
|
Zhang J, DeLuca TH, Chenpeng Z, Li A, Wang G, Sun S. Comparison of the seasonal and successional variation of asymbiotic and symbiotic nitrogen fixation along a glacial retreat chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165163. [PMID: 37391152 DOI: 10.1016/j.scitotenv.2023.165163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Climate change is resulting in accelerated retreat of glaciers worldwide and much nitrogen-poor debris is left after glacier retreats. Asymbiotic dinitrogen (N2) fixation (ANF) can be considered a 'hidden' source of nitrogen (N) for non-nodulating plants in N limited environments; however, seasonal variation and its relative importance in ecosystem N budgets, especially when compared with nodulating symbiotic N2-fixation (SNF), is not well-understood. In this study, seasonal and successional variations in nodulating SNF and non-nodulating ANF rates (nitrogenase activity) were compared along a glacial retreat chronosequence on the eastern edge of the Tibetan Plateau. Key factors regulating the N2-fixation rates as well as the contribution of ANF and SNF to ecosystem N budget were also examined. Significantly greater nitrogenase activity was observed in nodulating species (0.4-17,820.8 nmol C2H4 g-1 d-1) compared to non-nodulating species (0.0-9.9 nmol C2H4 g-1 d-1) and both peaked in June or July. Seasonal variation in acetylene reduction activity (ARA) rate in plant nodules (nodulating species) and roots (non-nodulating species) was correlated with soil temperature and moisture while ARA in non-nodulating leaves and twigs was correlated with air temperature and humidity. Stand age was not found to be a significant determinant of ARA rates in nodulating or non-nodulating plants. ANF and SNF contributed 0.3-51.5 % and 10.1-77.8 %, respectively, of total ecosystem N input in the successional chronosequence. In this instance, ANF exhibited an increasing trend with successional age while SNF increased only at stages younger than 29 yr and then decreased as succession proceeded. These findings help improve our understanding of ANF activity in non-nodulating plants and N budgets in post glacial primary succession.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Thomas H DeLuca
- College of Forestry, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Zhenni Chenpeng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China
| | - Andi Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China
| | - Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China.
| |
Collapse
|
2
|
Responses of Nitrogen-Fixing Bacteria Communities to Elevation, Season, and Slope Aspect Variations in Subtropical Forests of Yunnan, China. FORESTS 2022. [DOI: 10.3390/f13050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrogen-fixing bacteria play a significant role in tropical forest ecosystems. However, little is known about the comprehensive effects of altitude gradient (1000–2600 m), seasons (October, January, April, and July), and slope aspects (east and west) on the abundance and diversity of nitrogen-fixing bacteria in subtropical forest. Q-PCR and PCR-DGGE methods were performed to explore the abundance and diversity of nitrogen-fixing bacteria, respectively, in the Ailao Mountain subtropical forest. Our results showed that the abundance of nitrogen-fixing bacteria was highest in October and December, whereas it was lowest in April and July. Moreover, there was no difference in the total number of soil nitrogen-fixing bacteria on the eastern and western slopes. The diversity of soil nitrogen-fixing bacteria is higher at low and medium altitudes, but lower at high and medium altitudes with increasing altitude, and similar variation in the eastern and western slopes as well. Moreover, the most influential factors affecting the abundance of nitrogen-fixing bacteria was NH4+-N and herbal coverage, while those most affecting the diversity of nitrogen-fixing bacteria were NH4+-N and NO3−-N. In addition, permutational multivariate analysis demonstrated that the season had the greatest effects on the abundance of nitrogen-fixing, whereas altitude had the greatest effects on the diversity of nitrogen-fixing bacteria. These findings provide evidence that the variation in nitrogen-fixing bacteria is affected by multiple factors (altitudes, seasons and slope aspects) in the subtropical forests of Yunnan, China.
Collapse
|
3
|
Microbial diversity in intensively farmed lake sediment contaminated by heavy metals and identification of microbial taxa bioindicators of environmental quality. Sci Rep 2022; 12:80. [PMID: 34997015 PMCID: PMC8742047 DOI: 10.1038/s41598-021-03949-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
The cumulative effects of anthropogenic stress on freshwater ecosystems are becoming increasingly evident and worrisome. In lake sediments contaminated by heavy metals, the composition and structure of microbial communities can change and affect nutrient transformation and biogeochemical cycling of sediments. In this study, bacterial and archaeal communities of lake sediments under fish pressure contaminated with heavy metals were investigated by the Illumina MiSeq platform. Despite the similar content of most of the heavy metals in the lagoon sediments, we found that their microbial communities were different in diversity and composition. This difference would be determined by the resilience or tolerance of the microbial communities to the heavy metal enrichment gradient. Thirty-two different phyla and 66 different microbial classes were identified in sediment from the three lagoons studied. The highest percentages of contribution in the differentiation of microbial communities were presented by the classes Alphaproteobacteria (19.08%), Cyanophyceae (14.96%), Betaproteobacteria (9.01%) y Actinobacteria (7.55%). The bacteria that predominated in sediments with high levels of Cd and As were Deltaproteobacteria, Actinobacteria, Coriobacteriia, Nitrososphaeria and Acidobacteria (Pomacocha), Alphaproteobacteria, Chitinophagia, Nitrospira and Clostridia (Tipicocha) and Betaproteobacteria (Tranca Grande). Finally, the results allow us to expand the current knowledge of microbial diversity in lake sediments contaminated with heavy metals and to identify bioindicators taxa of environmental quality that can be used in the monitoring and control of heavy metal contamination.
Collapse
|
4
|
Compositional and abundance changes of nitrogen-cycling genes in plant-root microbiomes along a salt marsh chronosequence. Antonie Van Leeuwenhoek 2018; 111:2061-2078. [PMID: 29846874 DOI: 10.1007/s10482-018-1098-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Disentangling the relative influences of soil properties and plant-host on root-associated microbiomes in natural systems is challenging, given that spatially segregated soil types display distinct historical legacies. In addition, distant locations may also lead to biogeographical patterns of microbial communities. Here, we used an undisturbed salt marsh chronosequence spanning over a century of ecosystem development to investigate changes in the community composition and abundance of a set of nitrogen-cycling genes. Specifically, we targeted genes of diazotrophs and ammonia oxidizers associated with the bulk and rhizosphere soil of the plant species Limonium vulgare. Samples were collected across five distinct successional stages of the chronosequence (ranging from 5 to 105 years) at two time-points. Our results indicate that soil variables such as sand:silt:clay % content and pH strongly relates to the abundance of N-cycling genes in the bulk soil. However, in the rhizosphere samples, the abundance of ammonia-oxidizing organisms (both bacteria and archaea, AOB and AOA, respectively) was relatively constant across most of the successional stages, albeit displaying seasonal variation. This result indicates a potentially stronger control of plant host (rather than soil) on the abundance of these organisms. Interestingly, the plant host did not have a significant effect on the composition of AOA and AOB communities, being mostly divergent according to soil successional stages. The abundance of diazotrophic communities in rhizosphere samples was more affected by seasonality than those of bulk soil. Moreover, the abundance pattern of diazotrophs in the rhizosphere related to the systematic increase of plant biomass and soil organic matter along the successional gradient. These results suggest a potential season-dependent regulation of diazotrophs exerted by the plant host. Overall, this study contributes to a better understanding of how the natural formation of a soil and host plants influence the compositional and abundance changes of nitrogen-cycling genes in bulk and rhizosphere soil microhabitats.
Collapse
|
5
|
Amani D, Emira N, Ismail T, Jamel E, Dominique S, Rosa DC, Mejdi S. Extracellular enzymes and adhesive properties of medically important Candida spp. strains from landfill leachate. Microb Pathog 2018; 116:328-334. [PMID: 29407237 DOI: 10.1016/j.micpath.2018.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 01/30/2023]
Abstract
The virulence properties of Candida spp. presents in landfill leachate still unknown until today and they constitutes a serious source of potential danger for humans. We investigate the antifungal susceptibility, production of hydrolytic enzymes and biofilm formation on polystyrene as well as glass in Candida spp. strains isolated from a landfill leachate treatment station in Borj Chakir (Tunisia). 37 yeast strains were isolated belonging to the following species: C. robusta, C. lusitaniae, C. tropicalis, C. krusei. Most isolated yeast strains were resistant to Amphotericin B, produced several hydrolytic enzymes (67.56% produced phospholipase, 86.04% protease, 64.86% esterase) and most of them are able to degrade hemoglobin. All assayed Candida strains have been able to form biofilm on polystyrene depending on the species and strain of Candida. Landfills receiving clinical waste are a potential source of Candida ssp. strains with several virulence properties which allow them to survive in different aquatic biotopes.
Collapse
Affiliation(s)
- Dahmani Amani
- Water Research and Technologies Center (CERTE), Laboratory of Wastewater Treatment, University of Carthage, P.O. Box 273, 8020 Soliman, Tunis, Tunisia
| | - Noumi Emira
- Laboratoire des Maladies Transmissibles et des Substances Biologiquement Actives, Faculté de Pharmacie, Université de Monastir, Tunisia
| | - Trabelsi Ismail
- Water Research and Technologies Center (CERTE), Laboratory of Wastewater Treatment, University of Carthage, P.O. Box 273, 8020 Soliman, Tunis, Tunisia
| | - Eddouzi Jamel
- Laboratoire des Maladies Transmissibles et des Substances Biologiquement Actives, Faculté de Pharmacie, Université de Monastir, Tunisia; Institute of Microbiology, University Hospital Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| | - Sanglard Dominique
- Institute of Microbiology, University Hospital Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| | - Del Campo Rosa
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Carretera de Colmenar Km 9,1., 28034 Madrid, Spain
| | - Snoussi Mejdi
- Water Research and Technologies Center (CERTE), Laboratory of Wastewater Treatment, University of Carthage, P.O. Box 273, 8020 Soliman, Tunis, Tunisia.
| |
Collapse
|
6
|
Hu Q, Zhang XX, Jia S, Huang K, Tang J, Shi P, Ye L, Ren H. Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater. WATER RESEARCH 2016; 101:309-317. [PMID: 27267479 DOI: 10.1016/j.watres.2016.05.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/14/2016] [Accepted: 05/29/2016] [Indexed: 05/08/2023]
Abstract
High-throughput sequencing-based metagenomic approaches were used to comprehensively investigate ultraviolet effects on the microbial community structure, and diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in biologically treated wastewater. After ultraviolet radiation, some dominant genera, like Aeromonas and Halomonas, in the wastewater almost disappeared, while the relative abundance of some minor genera including Pseudomonas and Bacillus increased dozens of times. Metagenomic analysis showed that 159 ARGs within 14 types were detectable in the samples, and the radiation at 500 mJ/cm(2) obviously increased their total relative abundance from 31.68 ppm to 190.78 ppm, which was supported by quantitative real time PCR. As the dominant persistent ARGs, multidrug resistance genes carried by Pseudomonas and bacitracin resistance gene bacA carried by Bacillus mainly contributed to the ARGs abundance increase. Bacterial community shift and MGEs replication induced by the radiation might drive the resistome alteration. The findings may shed new light on the mechanism behind the ultraviolet radiation effects on antibiotic resistance in wastewater.
Collapse
Affiliation(s)
- Qing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Shin W, Islam R, Benson A, Joe MM, Kim K, Gopal S, Samaddar S, Banerjee S, Sa T. Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. ACTA ACUST UNITED AC 2016. [DOI: 10.7745/kjssf.2016.49.1.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 2015; 183:26-41. [PMID: 26805616 DOI: 10.1016/j.micres.2015.11.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/16/2015] [Accepted: 11/21/2015] [Indexed: 11/28/2022]
Abstract
Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment.
Collapse
Affiliation(s)
- Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100, Vehari, Pakistan.
| | - Liyakat Hamid Mujawar
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia
| | - Tanvir Shahzad
- Department of Environmental Sciences & Engineering, Government College University, 38000, Faisalabad, Pakistan
| | - Talal Almeelbi
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Environmental Sciences, King Abdulaziz University, Jeddah 2158, Saudi Arabia
| | - Iqbal M I Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, Jeddah 2158, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
9
|
Dieng A, Duponnois R, Floury A, Laguerre G, Ndoye I, Baudoin E. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.). Syst Appl Microbiol 2014; 38:128-34. [PMID: 25466917 DOI: 10.1016/j.syapm.2014.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 11/29/2022]
Abstract
Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes. Soil samples were transferred into a greenhouse from three fields previously cultivated with Jatropha for 1, 2, and 15 years, and the two trap legumes were grown in them. Control soil samples were also taken from adjacent Jatropha-fallow plots. Both legumes tended to develop fewer but larger nodules when grown in Jatropha soils. Nearly all the nifH sequences amplified from nodule DNA were affiliated to the Bradyrhizobium genus. Only sequences from Acacia seyal nodules grown in the most recent Jatropha plantation were related to the Mesorhizobium genus, which was much a more conventional finding on A. seyal than the unexpected Bradyrhizobium genus. Apart from this particular case, only minor differences were found in the respective compositions of Jatropha soil versus control soil rhizobial populations. Lastly, the structure of these rhizobial populations was systematically imbalanced owing to the overwhelming dominance of a very small number of nifH genotypes, some of which were identical across soil types or even sites. Despite these weak and sparse effects on rhizobial diversity, future investigations should focus on the characterization of the nitrogen-fixing abilities of the predominant rhizobial strains.
Collapse
Affiliation(s)
- Amadou Dieng
- Institut de Recherche pour le Développement (IRD), UMR LSTM, Montpellier, France; Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Dakar, Senegal
| | - Robin Duponnois
- Institut de Recherche pour le Développement (IRD), UMR LSTM, Montpellier, France
| | - Antoine Floury
- Institut de Recherche pour le Développement (IRD), UMR LSTM, Montpellier, France
| | - Gisèle Laguerre
- Institut de Recherche pour le Développement (IRD), UMR LSTM, Montpellier, France
| | - Ibrahima Ndoye
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Dakar, Senegal
| | - Ezékiel Baudoin
- Institut de Recherche pour le Développement (IRD), UMR LSTM, Montpellier, France.
| |
Collapse
|
10
|
Rhizobia Indigenous to the Okavango Region in Sub-Saharan Africa: Diversity, Adaptations, and Host Specificity. Appl Environ Microbiol 2014; 80:7244-57. [PMID: 25239908 DOI: 10.1128/aem.02417-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/01/2023] Open
Abstract
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.
Collapse
|
11
|
Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl Environ Microbiol 2014; 80:6437-45. [PMID: 25107970 DOI: 10.1128/aem.01778-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants.
Collapse
|
12
|
Wu X, Xu J, Dong F, Liu X, Zheng Y. Responses of soil microbial community to different concentration of fomesafen. JOURNAL OF HAZARDOUS MATERIALS 2014; 273:155-164. [PMID: 24731936 DOI: 10.1016/j.jhazmat.2014.03.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/10/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Fomesafen degrades slowly in soils and has been linked to crop damage. However, the effect of its residues on soil microbial communities is unknown. The goal of this work was to assess the effect of applying three different doses of fomesafen on microbial community structure and functional diversity as measured by phospholipid fatty acid (PLFA) levels, community-level physiological profiles (CLPPs) and real-time PCR. Our results indicate that applying 100 times the recommended dose of fomesafen (T100) adversely affects soil microbial activity and stresses soil microbial communities as reflected by the reduced respiratory quotient (qCO2, QR). The PLFA analysis showed that high levels of fomesafen treatment (T100) decreased the total amount of PLFAs and both bacterial (both Gram-positive (GP) bacteria and Gram-negative (GN) bacteria) and fungal biomass but increased the microbial stress level. However, the BIOLOG results are not consistent with our other results. The addition of fomesafen significantly increased the average well color development, substrate utilization, and the functional diversity index (H'). Additionally, the abundance of the nifH (N2-fixing bacteria) gene was reduced in the presence of high concentrations of fomesafen (T100). Taken together, these results suggest that the addition of fomesafen can alter the microbial community structure and functional diversity of the soil, and these parameters do not recover even after a 90-day incubation period.
Collapse
Affiliation(s)
- Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Yuanmingyuan, West Road No. 2, Haidian District, Beijing 100193, China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Yuanmingyuan, West Road No. 2, Haidian District, Beijing 100193, China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Yuanmingyuan, West Road No. 2, Haidian District, Beijing 100193, China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Yuanmingyuan, West Road No. 2, Haidian District, Beijing 100193, China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Yuanmingyuan, West Road No. 2, Haidian District, Beijing 100193, China.
| |
Collapse
|
13
|
Rai S, Singh DK, Annapurna K. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum). J Basic Microbiol 2014; 55:62-73. [PMID: 24677076 DOI: 10.1002/jobm.201300867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/18/2014] [Indexed: 11/05/2022]
Abstract
The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site.
Collapse
Affiliation(s)
- Sandhya Rai
- Department of Zoology, University of Delhi, New Delhi, India
| | | | | |
Collapse
|
14
|
Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS One 2013; 8:e74500. [PMID: 24058578 PMCID: PMC3772945 DOI: 10.1371/journal.pone.0074500] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/02/2013] [Indexed: 12/04/2022] Open
Abstract
Background Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. Methodology/Principal Findings In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D) had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K), indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season) were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. Conclusions Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.
Collapse
|
15
|
Hathaway JJM, Sinsabaugh RL, Dapkevicius MDLNE, Northup DE. Diversity of Ammonia Oxidation ( amoA) and Nitrogen Fixation ( nifH) Genes in Lava Caves of Terceira, Azores, Portugal. GEOMICROBIOLOGY JOURNAL 2013; 31:221-235. [PMID: 26778867 PMCID: PMC4711379 DOI: 10.1080/01490451.2012.752424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lava caves are an understudied ecosystem in the subterranean world, particularly in regard to nitrogen cycling. The diversity of ammonia oxidation (amoA) and nitrogen fixation (nifH) genes in bacterial mats collected from lava cave walls on the island of Terceira (Azores, Portugal) was investigated using denaturing gradient gel electrophoresis (DGGE). A total of 55 samples were collected from 11 lava caves that were selected with regard to surface land use. Land use types above the lava caves were categorized into pasture, forested, and sea/urban, and used to determine if land use influenced the ammonia oxidizing and nitrogen fixing bacterial communities within the lava caves. The soil and water samples from each lava cave were analyzed for total organic carbon, inorganic carbon, total nitrogen, ammonium, nitrate, phosphate and sulfate, to determine if land use influences either the nutrient content entering the lava cave or the nitrogen cycling bacteria present within the cave. Nitrosospira-like sequences dominated the ammonia-oxidizing bacteria (AOB) community, and the majority of the diversity was found in lava caves under forested land. The nitrogen fixation community was dominated by Klebsiella pneumoniae-like sequences, and diversity was evenly distributed between pasture and forested land, but very little overlap in diversity was observed. The results suggest that land use is impacting both the AOB and the nitrogen fixing bacterial communities.
Collapse
Affiliation(s)
| | | | | | - Diana E. Northup
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
16
|
Izumi H, Elfstrand M, Fransson P. Suillus mycelia under elevated atmospheric CO2 support increased bacterial communities and scarce nifH gene activity in contrast to Hebeloma mycelia. MYCORRHIZA 2013; 23:155-165. [PMID: 23001334 DOI: 10.1007/s00572-012-0460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Bacterial communities associated with mycorrhizal roots are likely to respond to rising atmospheric CO(2) levels in terms of biomass, community composition and activity since they are supported by the carbon (C) flow outside the root tips, especially by exudation of low molecular weight organic compounds. We studied how general bacterial and diazotrophic communities associated with ectomycorrhizal (ECM) fungi respond to different belowground C supply conditions, mediated by elevated atmospheric CO(2) concentration under nitrogen (N) limited conditions. Microcosm systems were constructed using forest soil and Scots pine seedlings, which were either pre-inoculated with one of the ECM fungal species Hebeloma velutipes or Suillus variegatus, or non-inoculated. These fungal species differ in C allocation and exudation patterns. Seedlings were maintained under ambient (380 ppm) or elevated (700 ppm) CO(2) levels for 6 months. Quantitative polymerase chain reaction (PCR) showed a significant increase in 16S rRNA gene copy numbers for Suillus-inoculated microcosms under elevated CO(2) compared to ambient CO(2). The copy numbers of the nitrogenase reductase (nifH) gene were under the detection limit in all samples regardless the CO(2) treatments. Denaturing gradient gel electrophoresis analysis of PCR-amplified nifH genes revealed simple and consistent communities in all samples throughout the incubation period. A nested reverse transcription PCR approach revealed that expression of nifH genes were detected in some microcosms. Our findings suggest that the effect of mycorrhizal fungi on soil bacteria may vary depending on C supply and fungal species.
Collapse
Affiliation(s)
- Hironari Izumi
- Department of Forest Mycology and Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | | | | |
Collapse
|
17
|
Kizilova AK, Titova LV, Kravchenko IK, Iutinskaya GA. Evaluation of the diversity of nitrogen-fixing bacteria in soybean rhizosphere by nifH gene analysis. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712050116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl Environ Microbiol 2012; 78:7960-7. [PMID: 22941088 DOI: 10.1128/aem.02273-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.
Collapse
|
19
|
Meng X, Wang L, Long X, Liu Z, Zhang Z, Zed R. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.). Res Microbiol 2012; 163:349-56. [PMID: 22564556 DOI: 10.1016/j.resmic.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke.
Collapse
Affiliation(s)
- Xianfa Meng
- Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 2011; 162:820-31. [DOI: 10.1016/j.resmic.2011.01.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/11/2011] [Indexed: 11/15/2022]
|
21
|
Mao Y, Yannarell AC, Mackie RI. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One 2011; 6:e24750. [PMID: 21935454 PMCID: PMC3173469 DOI: 10.1371/journal.pone.0024750] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/16/2011] [Indexed: 11/18/2022] Open
Abstract
Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.
Collapse
Affiliation(s)
- Yuejian Mao
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Anthony C. Yannarell
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Roderick I. Mackie
- Energy Biosciences Institute, University of Illinois, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sato A, Watanabe T, Unno Y, Purnomo E, Osaki M, Shinano T. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L. Microbes Environ 2011; 24:81-7. [PMID: 21566359 DOI: 10.1264/jsme2.me08565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.
Collapse
Affiliation(s)
- Atsuya Sato
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kitaku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Li X, Penttinen P, Gu Y, Zhang X. Diversity of nifH gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0339-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
24
|
Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 2011; 28:493-503. [DOI: 10.1007/s11274-011-0840-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
|
25
|
Zhan J, Sun Q. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 2011; 167:157-65. [PMID: 21665448 DOI: 10.1016/j.micres.2011.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/15/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
Abstract
The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community.
Collapse
Affiliation(s)
- Jing Zhan
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| | | |
Collapse
|
26
|
Zou Y, Zhang J, Yang D, Chen X, Zhao J, Xiu W, Lai X, Li G. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus Chinensis steppe. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.chnaes.2011.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Burbano CS, Liu Y, Rösner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T. Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:383-9. [PMID: 23761284 DOI: 10.1111/j.1758-2229.2010.00238.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although some sugarcane cultivars may benefit substantially from biological nitrogen fixation (BNF), the responsible bacteria have been not identified yet. Here, we examined the active diazotrophic bacterial community in sugarcane roots from Africa and America by reverse transcription (RT)-PCR using broad-range nifH-specific primers. Denaturing gradient gel electrophoresis (DGGE) profiles obtained from sugarcane showed a low diversity at all sample locations with one phylotype amounting up to 100% of the nifH transcripts. This major phylotype has 93.9-99.6% DNA identity to the partial nifH sequence from a strain affiliated with Rhizobium rosettiformans. In addition, nifH transcripts of this phylotype were also detected in spruce roots sampled in Germany, where they made up 91% of nifH transcripts detected. In contrast, in control soil or shoot samples two distinct nifH transcript sequences distantly related to nifH from Sulfurospirillum multivorans or Bradyrhizobium elkanii, respectively, were predominant. These results suggest that R. rosettiformans is involved in root-associated nitrogen fixation with sugarcane and spruce, plants that do not form root-nodule symbioses.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Lab of General Microbiology, Center for Biomolecular Interactions Bremen (CBIB), University of Bremen, D-28359 Bremen, Germany. Embrapa Agrobiologia, km 447, Estrada Antiga Rio-São Paulo, Seropédica, 23890-000, Rio de Janeiro, Brazil. Centro de Ciencias Genomicas, UNAM, Apdo. Postal No. 565-A, Cuernavaca, Mor., México
| | | | | | | | | | | | | |
Collapse
|
28
|
Pereira e Silva MC, Semenov AV, van Elsas JD, Salles JF. Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiol Ecol 2011; 77:57-68. [PMID: 21385188 DOI: 10.1111/j.1574-6941.2011.01081.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale.
Collapse
Affiliation(s)
- Michele C Pereira e Silva
- Department of Microbial Ecology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Zhan J, Sun Q. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. J Environ Sci (China) 2011; 23:476-487. [PMID: 21520818 DOI: 10.1016/s1001-0742(10)60433-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in tailings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings.
Collapse
Affiliation(s)
- Jing Zhan
- School of Life Science, Anhui University, Hefei 230039, China.
| | | |
Collapse
|
32
|
Thompson FL, Bruce T, Gonzalez A, Cardoso A, Clementino M, Costagliola M, Hozbor C, Otero E, Piccini C, Peressutti S, Schmieder R, Edwards R, Smith M, Takiyama LR, Vieira R, Paranhos R, Artigas LF. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing. Arch Microbiol 2010; 193:105-14. [PMID: 21076816 DOI: 10.1007/s00203-010-0644-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/26/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Departments of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hrčková K, Simek M, Hrouzek P, Lukešová A. Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions. Folia Microbiol (Praha) 2010; 55:467-73. [PMID: 20941582 DOI: 10.1007/s12223-010-0078-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 05/11/2010] [Indexed: 10/19/2022]
Abstract
The potential for N(2) fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C(2)H(4) per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.
Collapse
Affiliation(s)
- K Hrčková
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | | | | | | |
Collapse
|
34
|
Nimnoi P, Lumyong S, Pongsilp N. Impact of rhizobial inoculants on rhizosphere bacterial communities of three medicinal legumes assessed by denaturing gradient gel electrophoresis (DGGE). ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0128-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Díaz-Cárdenas C, Patel BKC, Baena S. Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int J Syst Evol Microbiol 2010; 60:1437-1443. [DOI: 10.1099/ijs.0.010926-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, mesophilic, non-spore-forming, chemotrophic, chlorophyll-lacking, nitrogen-fixing bacterium, designated strain USBA 355T, was isolated from the saline spring ‘Salado de Consotá’ situated in the Colombian Andes. The non-flagellated cells of strain USBA 355T were straight to slightly curved rods (0.6–0.7 × 3.0–3.5 μm). Growth occurred optimally at 30 °C (growth temperature range between 20 and 40 °C), at pH 6.5–6.7 (pH growth range between 5.0 and 8.0) and at 0.5 % NaCl (w/v) (range between 0 and 4 %). The major quinone present was Q-10 and the predominant fatty acids identified were C19 : 0 cyclo ω8c, C18 : 1
ω7c and C18 : 0. The G+C content of the chromosomal DNA was 71±1 mol%. 16S rRNA gene sequence analysis indicated that strain USBA 355T formed a distant phylogenetic line of descent with members of the genus Thalassobaculum, family Rhodospirillaceae, class Alphaproteobacteria (90 % gene sequence similarity). Comparison of the phylogenetic, chemotaxonomic and physiological features of strain USBA 355T with all other members of the family Rhodospirillaceae suggested that it represents a novel genus and species for which the name Tistlia consotensis gen. nov., sp. nov. is proposed. The type strain of the type species is USBA 355T (=JCM 15529T=KCTC 22406T).
Collapse
Affiliation(s)
- C. Díaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| | - B. K. C. Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane 4111, Australia
| | - S. Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, Colombia
| |
Collapse
|
36
|
PCR-denaturing gradient gel electrophoresis analysis to assess the effects of a genetically modified cucumber mosaic virus-resistant tomato plant on soil microbial communities. Appl Environ Microbiol 2010; 76:3370-3. [PMID: 20348288 DOI: 10.1128/aem.00018-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of a genetically modified cucumber mosaic virus (CMV)-resistant tomato on soil microbial communities were evaluated in this study. Soil position and environmental factors played more dominant roles than the tomato genotype in the variation of soil microbial communities.
Collapse
|
37
|
Diep CN, Cam PM, Vung NH, Lai TT, My NTX. Isolation of Pseudomonas stutzeri in wastewater of catfish fish-ponds in the Mekong Delta and its application for wastewater treatment. BIORESOURCE TECHNOLOGY 2009; 100:3787-3791. [PMID: 19299124 DOI: 10.1016/j.biortech.2009.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The aim of this study was to explore the potential for reducing soluble N load in fishpond wastewater using naturally occurring denitrifying bacteria. Twenty-seven isolates were selected from in wastewater (liquid/solid) of catfish-ponds located along the Tien river, in the Mekong Delta, Vietnam in SW-LB medium (artificial seawater Luria-Britani medium) supplemented with 10 mM NH4 and NO3 and twenty-five isolates were identified as Pseudomonas stutzeri based on similarity of PCR-16S rRNA using universal primers and specific primers. Four isolates were effective in lowering soluble N (NH4, NO2 and NO3) levels in fishpond water from 10 mg/L to negligible amounts after four days. Further experiments are underway to determine the fate of N lost from solution and the relative activity of ammonia oxidation, and nitrite and nitrate reduction by P. stutzeri isolates.
Collapse
Affiliation(s)
- Cao Ngoc Diep
- Microbiology Department, Biotechnology R&D Institute, Can Tho University, Can Tho City, Vietnam.
| | | | | | | | | |
Collapse
|
38
|
Taketani RG, dos Santos HF, van Elsas JD, Rosado AS. Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm. Antonie van Leeuwenhoek 2009; 96:343-54. [PMID: 19468855 PMCID: PMC2729449 DOI: 10.1007/s10482-009-9351-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/12/2009] [Indexed: 02/01/2023]
Abstract
An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N2 fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N2 fixation and hydrocarbon degradation in natural ecosystems.
Collapse
Affiliation(s)
- Rodrigo Gouvêa Taketani
- Laboratório de Ecologia Microbiana Molecular, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
39
|
Demba Diallo M, Reinhold-Hurek B, Hurek T. Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol Ecol 2008; 65:220-8. [PMID: 18631250 DOI: 10.1111/j.1574-6941.2008.00545.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bias of widely used degenerate nifH-specific primer sets was first tested using denaturing gradient gel electrophoresis (DGGE), and their application for profiling of complex communities assessed for roots of Oryza longistaminata. When primers (P) with mismatches at nondegenerate positions were used on genomic DNA of Azotobacter vinelandii, which harbors three single divergent nifH genes, template-to-product ratios were highly skewed. In contrast, we obtained no evidence for a large PCR bias when we used highly degenerate primers with no mismatches (Z). Similar results were obtained for reverse transcription (RT)-PCR amplifications from root RNA from O. longistaminata grown at the river bed of the Okavango, where Z-primers detected a more complex nifH pool, corroborating that the P-primers are quite biased in the nifH sequences they amplify. In microcosms of O. longistaminata grown in the phytotron in the presence or absence of constant low nitrogen input (25 kg NH4NO3 ha(-1) year(-1)), roots of nitrogen-treated plants showed similar, slightly higher levels of nifH-mRNA. However, nitrogen treatment had a strong effect on the composition and diversity of expressed nifH pools that shifted towards methylotroph-related nitrogenases. Thus the active population of diazotrophs was not resistant towards low rates of nitrogen input and decreased significantly in richness, as also observed for plant species richness in grasslands by others.
Collapse
|
40
|
Composition of nifH in a wastewater treatment system reliant on N2 fixation. Appl Microbiol Biotechnol 2008; 79:811-8. [DOI: 10.1007/s00253-008-1486-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/30/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
41
|
Lovell CR, Decker PV, Bagwell CE, Thompson S, Matsui GY. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening. J Microbiol Methods 2008; 73:160-71. [PMID: 18400320 DOI: 10.1016/j.mimet.2008.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/01/2008] [Accepted: 02/14/2008] [Indexed: 11/30/2022]
Abstract
Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.
Collapse
Affiliation(s)
- Charles R Lovell
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, United States.
| | | | | | | | | |
Collapse
|
42
|
Talbot G, Topp E, Palin MF, Massé DI. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. WATER RESEARCH 2008; 42:513-37. [PMID: 17719078 DOI: 10.1016/j.watres.2007.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 05/16/2023]
Abstract
Molecular techniques have unveiled the complexity of the microbial consortium in anaerobic bioreactors and revealed the presence of several uncultivated species. This paper presents a review of the panoply of classical and recent molecular approaches and multivariate analyses that have been, or might be used to establish the interactions and functions of these anaerobic microorganisms. Most of the molecular approaches used so far are based on the analysis of small subunit ribosomal RNA but recent studies also use quantification of functional gene expressions. There are now several studies that have developed quantitative real-time PCR assays to investigate methanogens. With a view to improving the stability and performance of bioreactors, monitoring with molecular methods is also discussed. Advances in metagenomics and proteomics will lead to the development of promising lab-on chip technologies for cost-effective monitoring.
Collapse
Affiliation(s)
- G Talbot
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, Canada J1M 0C8.
| | | | | | | |
Collapse
|
43
|
Zul D, Denzel S, Kotz A, Overmann J. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microbiol 2007; 73:6916-29. [PMID: 17873072 PMCID: PMC2074975 DOI: 10.1128/aem.01533-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches.
Collapse
Affiliation(s)
- Delita Zul
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | | | |
Collapse
|
44
|
Welsh AK, McLean RJC. Characterization of bacteria in mixed biofilm communities using denaturing gradient gel electrophoresis (DGGE). CURRENT PROTOCOLS IN MICROBIOLOGY 2007; Chapter 1:Unit 1E.1. [PMID: 18770601 DOI: 10.1002/9780471729259.mc01e01s4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Most microorganisms in nature, including those within biofilms, live in mixed populations. PCR-based molecular genetic techniques are very useful in studying microbial diversity since unculturable as well as culturable organisms can be investigated. One such technique is denaturing gradient gel electrophoresis (DGGE), which separates PCR-amplified community 16S rRNA (and other gene) sequences on the basis of G+C content. Unlike other community fingerprinting techniques, bands from DGGE gels can be excised, and sequenced to identify community members. Thus DGGE can be used to describe overall microbial diversity as well as to identify individual community members. This protocol describes a method for using DGGE to study microbial diversity within biofilm populations.
Collapse
Affiliation(s)
- Allana K Welsh
- Texas State University-San Marcos, San Marcos, Texas, USA
| | | |
Collapse
|
45
|
Villadas PJ, Fernández-López M, Ramírez-Saad H, Toro N. Rhizosphere-bacterial community in Eperua falcata (Caesalpiniaceae) a putative nitrogen-fixing tree from French Guiana rainforest. MICROBIAL ECOLOGY 2007; 53:317-27. [PMID: 17186143 DOI: 10.1007/s00248-006-9158-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 07/04/2006] [Accepted: 08/18/2006] [Indexed: 05/13/2023]
Abstract
The rainforest of French Guiana is still largely unaffected by human activity. Various pristine sites like the Paracou Research Station are devoted to study this tropical ecosystem. We used culture-independent techniques, like polymerase chain reaction-temperature gradient gel electrophoresis, and construction of clone libraries of partial 16S rRNA and nifH genes, to analyze the composition of the bacterial community in the rhizosphere of mature trees of Eperua falcata and Dicorynia guianensis, both species within the Caesalpiniaceae family. E. falcata is one of the more abundant pioneer tree species in this ecosystem and so far, no root nodules have ever been found. However, its nitrogen-fixing status is regarded as "uncertain", whereas D. guianensis is clearly considered a non-nitrogen-fixing plant. The rhizospheres of these mature trees contain specific bacterial communities, including several currently found uncultured microorganisms. In these communities, there are putative nitrogen-fixing bacteria specifically associated to each tree: D. guianensis harbors several Rhizobium spp. and E. falcata members of the genera Burkholderia and Bradyrhizobium. In addition, nifH sequences in the rhizosphere of the latter tree were very diverse. Retrieved sequences were related to bacteria belonging to the alpha-, beta-, and gamma-Proteobacteria in the E. falcata rhizoplane, whereas only two sequences related to gamma-Proteobacteria were found in D. guianensis. Differences in the bacterial communities and the abundance and diversity of nifH sequences in E. falcata rhizosphere suggest that this tree could obtain nitrogen through a nonnodulating bacterial interaction.
Collapse
Affiliation(s)
- P J Villadas
- Grupo de Ecologia Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, C/ Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | |
Collapse
|
46
|
SU Y, SHINANO T, PURNOMO E, OSAKI M. Growth promotion of rice by inoculation of acid-tolerant, N2-fixing bacteria isolated from acid sulfate paddy soil in South Kalimantan, Indonesia. TROPICS 2007. [DOI: 10.3759/tropics.16.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Shrestha A, Toyota K, Okazaki M, Suga Y, Quevedo MA, Loreto AB, Mariscal AA. Enhancement of Nitrogen-fixing Activity of Enterobacteriaceae Strains Isolated from Sago Palm (Metroxylon sagu) by Microbial Interaction with Non-nitrogen Fixers. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Archana Shrestha
- Graduate school of Bio-Applications and System Engineerings, Tokyo University of Agriculture and Technology
| | - Koki Toyota
- Graduate school of Bio-Applications and System Engineerings, Tokyo University of Agriculture and Technology
| | - Masanori Okazaki
- Graduate school of Bio-Applications and System Engineerings, Tokyo University of Agriculture and Technology
| | - Yuko Suga
- National Agricultural Research Center for Western Region
| | - Marcelo A. Quevedo
- Philippine Root Crop Research and Training Center (PhilRootcrops), Leyte State University
| | - Alan B. Loreto
- Philippine Root Crop Research and Training Center (PhilRootcrops), Leyte State University
| | - Algerico A. Mariscal
- Philippine Root Crop Research and Training Center (PhilRootcrops), Leyte State University
| |
Collapse
|
48
|
Su ZC, Zhang HW, Li XY, Zhang Q, Zhang CG. Toxic effects of acetochlor, methamidophos and their combination on nifH gene in soil. J Environ Sci (China) 2007; 19:864-873. [PMID: 17966876 DOI: 10.1016/s1001-0742(07)60144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.
Collapse
Affiliation(s)
- Zhen-Cheng Su
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
49
|
Timonen S, Hurek T. Characterization of culturable bacterial populations associating withPinus sylvestris–Suillus bovinusmycorrhizospheres. Can J Microbiol 2006; 52:769-78. [PMID: 16917536 DOI: 10.1139/w06-016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial isolations were carried out on Pinus sylvestris – Suillus bovinus mycorrhizospheres obtained directly from boreal pine forest. When samples were taken during dry weather, the numbers of bacterial colony-forming units were significantly higher in uncolonized short roots and external mycelia than in mycorrhizal roots and soil outside the mycorrhizosphere. In contrast, the colony-forming unit counts were similar in all hypogeous samples after rainy weather. Culturable bacteria were absent from most Suillus bovinus sporocarps. The bacteria isolated from all types of mycorr hizo sphere samples, i.e. short roots, mycorrhizal roots, and external mycelia, consisted primarily of Burkholderia spp., whereas most isolates from soil outside the mycorrhizosphere were identified as Paenibacillus spp. This study shows that mycorrhizal external mycelia can expand the habitat favourable for common rhizosphere bacteria into the soil far from the immediate rhizosphere. Some of these bacteria may help the trees with nitrogen acquisition, since potentially diazotrophic bacteria harbouring nitrogenase reductase (nifH) genes were isolated from mycorrhizal root tips.Key words: boreal forest soil, Burkholderia, ectomycorrhiza, nitrogen fixation, Paenibacillus.
Collapse
Affiliation(s)
- Sari Timonen
- Department of Applied Biology, P.O. Box 27, 00014 University of Helsinki, Finland.
| | | |
Collapse
|
50
|
Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 2006; 70:510-47. [PMID: 16760312 PMCID: PMC1489536 DOI: 10.1128/mmbr.00047-05] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.
Collapse
Affiliation(s)
- Jorge Lalucat
- Department de Biologia, Microbiologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|