1
|
Goto S, Urase T, Nakakura K. Novel and Simple Method for Quantification of 2,4,6-Trichlorophenol with Microbial Conversion to 2,4,6-Trichloroanisole. Microorganisms 2023; 11:2133. [PMID: 37763977 PMCID: PMC10535749 DOI: 10.3390/microorganisms11092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Contamination with 2,4,6-trichloroanisole (TCA) often causes taste and odor (T&O) problems in drinking water due to its low odor threshold concentration. Microbial O-methylation of the precursor 2,4,6-trichlorophenol (TCP) would be the dominant mechanism for TCA formation. Simple and rapid measurement of TCP in the low concentration range is necessary to control the problems induced by TCA. In this study, the combination of microbial conversion and instrumental analysis was proposed as a method of TCP quantification. Fungi and bacteria were isolated from various water samples and examined for their ability to produce TCA from TCP. As a result, a strain exhibiting quantitative TCA production and a high growth rate was obtained and named Mycolicibacterium sp. CB14. The conversion rate of TCP to TCA by this strain was found to be high and stable (85.9 ± 5.3%), regardless of the applied TCP concentration, although within the range of 0.1-10 µg/L. The limits of detection and quantification for TCP by this proposed method were determined to be 5.2 ng/L and 17.3 ng/L, respectively. By improving the methods, Mycolicibacterium sp. CB14 could be used for the quantification of TCP at very low concentration levels, which is sufficient to manage the T&O problem caused by TCA.
Collapse
Affiliation(s)
| | - Taro Urase
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (S.G.)
| | | |
Collapse
|
2
|
Zhang ST, Li T, Deng SK, Spain JC, Zhou NY. A cytochrome P450 system initiates 4-nitroanisole degradation in Rhodococcus sp. strain JS3073. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131886. [PMID: 37348368 DOI: 10.1016/j.jhazmat.2023.131886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Nitroanisoles are used widely as synthetic intermediates and explosives. Although bacteria have been reported to degrade 4-nitroanisole (4NA) under aerobic conditions, the key enzymes and the catalytic mechanism have remained elusive. Rhodococcus sp. strain JS3073 was isolated for its ability to grow on 4NA as the sole carbon and energy source. In this study, whole cell biotransformation experiments indicated that 4NA degradation is initiated by O-demethylation to form 4-nitrophenol (PNP), which undergoes subsequent degradation by a previously established pathway involving formation of 1,2,4-benzenetriol and release of nitrite. Based on comparative transcriptomics and heterologous expression, a novel three-component cytochrome P450 system encoded by pnaABC initiates the O-demethylation of 4NA to yield formaldehyde and PNP. The pnaABC genes encode a phthalate dioxygenase type reductase (PnaA), a cytochrome P450 monooxygenase (PnaB), and an EthD family protein (PnaC) with putative function similar to ferredoxins. This unusual P450 system also has a broad substrate specificity for nitroanisole derivatives. Sequence analysis of PnaAB revealed high identity with multiple self-sufficient P450s of the CYP116B subfamily. The findings revealed the molecular basis of the catabolic pathway for 4NA initiated by an unusual O-demethylase PnaABC and extends the understanding of the diversity among P450s and their electron transport chains.
Collapse
Affiliation(s)
- Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Kai Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL 32514-5751, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Abstract
Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I) supernucleophile species, was studied further from the anaerobic whole-cell biotransformation. Various allyl naphthyl ether derivatives were reacted with Blautia sp. MRG-PMF1 O-demethylase, and stereoisomers of allyl naphthyl ethers, including prenyl and but-2-enyl naphthyl ethers, were converted to the corresponding naphthol in a stereoselective manner. The allyl aryl ether cleavage reaction was regioselective, and 2-naphthyl ethers were converted faster than the corresponding 1-naphthyl ethers. However, MRG-PMF1 cocorrinoid O-demethylase was not able to convert (2-methylallyl) naphthyl ether substrates, and the conversion of propargyl naphthyl ether was extremely slow. From the results, it was proposed that the allyl ether cleavage reaction follows the nucleophilic conjugate substitution (SN2') mechanism. The reactivity and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. IMPORTANCE Biodegradation of environmental pollutants and valorization of biomaterials in a greener way is of great interest. Cobalamin-dependent O-demethylase in Blautia sp. MRG-PMF1 exclusively involves anaerobic C1 metabolism by cleaving the C-O bond of aromatic methoxy group and also produces various aryl alcohols by metabolizing allyl aryl ether compounds. Whereas methyl ether cleavage reaction is known to follow the SN2' mechanism, the reaction pattern and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase have never been studied. For the first time, stereoselectivity and the SN2' mechanism of allyl aryl ether cleavage reaction by Blautia sp. MRG-PMF1 O-demethylase is reported, and the results would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology.
Collapse
|
4
|
Arumugam B, Nagarajan V, Nattamai Perumal K, Annaraj J, Kannan Ramaraj S. Fabrication of wurtzite ZnO embedded functionalized carbon black as sustainable electrocatalyst for detecting endocrine disruptor trichlorophenol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Gopi PK, Ravikumar CH, Chen SM, Chen TW, Ali MA, Al-Hemaid FMA, El-Shikh MS, Alnakhli AK. Tailoring of bismuth vanadate impregnated on molybdenum/graphene oxide sheets for sensitive detection of environmental pollutants 2, 4, 6 trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111934. [PMID: 33472109 DOI: 10.1016/j.ecoenv.2021.111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In the present work, we reported a one pot simple colloidal-gel synthesis of molybdenum bismuth vanadate (MoBiVO4). The charge transfer property of MoBiVO4 was improved by developing a composite with graphene oxide (GO) through sonochemical technique. The optical and morphological analysis revealed that successful formation of GO-MoBiVO4 composite without any other filth. As prepared composite was used to modify the superficial surface of glassy carbon electrode (GO-MoBiVO4/GCE) and applied for the selective detection of environmental pollutant 2, 4, 6 trichrlorophenol (TCP). The electron channeling capability of GO with molybdenum bismuth vanadate possessed a superior electrochemical response in cyclic voltammetry (CV), whereas bare GCE and other modified electrodes provided an inferior response with lower current response. The differential pulse voltammetry (DPV) response of TCP at GO-MoBiVO4/GCE outcomes with low level detection of 0.4 nM and higher sensitivity of 2.49 μA μM-1 cm-2 with wider linear response 0.199-17.83 μM. Furthermore, the proposed sensor applied in practicability analysis and the results indicates GO-MoBiVO4/GCE prominent towards electrochemical detection of TCP.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Chandan Hunsur Ravikumar
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien-Chaitalay Road, Thakam, Bangkok 10150, Thailand; Centre for Nano and Materials Sciences, Jain global campus, Jain University, Jakkasandra post, Ramanagaram 52110, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - A K Alnakhli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Gu J, Chen X, Wang Y, Wang L, Szlavecz K, Ma Y, Ji R. Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol a (TBBPA) in the geophagous earthworm Metaphire guillelmi - hint for detoxification strategy. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122027. [PMID: 31954300 DOI: 10.1016/j.jhazmat.2020.122027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
The mechanisms underlying the bioaccumulation and detoxification of tetrabromobisphenol A (TBBPA) by terrestrial invertebrates are poorly understood. We used uniformly ring-14C-labelled TBBPA to investigate the bioaccumulation kinetics, metabolites distribution, and subsequent detoxification strategy of TBBPA in the geophagous earthworm Metaphire guillelmi in soil. The modeling of bioaccumulation kinetics showed a higher biota-soil-accumulation-factor of total 14C than that of the parent compound TBBPA, indicating that most of the ingested TBBPA was transformed into metabolites or sequestered as bound residues in the earthworms. Bound-residue formation in the digestive tract may hinder the accumulation of TBBPA in other parts of the body. Nonetheless, via the circulatory system, TBBPA was transferred to other tissues, especially the clitellum region, where sensitive organs are located. In the clitellum region, TBBPA was quickly transformed to less toxic dimethyl TBBPA ether and rapidly depurated through feces. We conclude that the detoxification of TBBPA in M. guillelmi occurred via bound-residue formation in the digestive tract as well as the generation and depuration of O-methylation metabolites. Our results provided direct evidence of TBBPA detoxification in earthworms. Further researches are needed to confirm whether O-methylation coupled with depuration is a common detoxification strategy for phenolic xenobiotics in other soil organisms needs to be determined.
Collapse
Affiliation(s)
- Jianqiang Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Key Laboratory of Environmental Engineering, Jiangsu Academy of Environmental Sciences, 176 Jiangdong Beilu Road, Nanjing, 210036, China
| | - Xian Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China
| | - Yongfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou, 362000, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Katalin Szlavecz
- Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
7
|
Bidleman TF, Brorström-Lundén E, Hansson K, Laudon H, Nygren O, Tysklind M. Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10974-10982. [PMID: 28885011 DOI: 10.1021/acs.est.7b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bromoanisoles (BAs) arise from O-methylation of bromophenols, produced by marine algae and invertebrates. BAs undergo sea-air exchange and are transported over the oceans. Here we report 2,4-DiBA and 2,4,6-TriBA in air and deposition on the Swedish west coast (Råö) and the interior of arctic Finland (Pallas). Results are discussed in perspective with previous measurements in the northern Baltic region in 2011-2013. BAs in air decreased from south to north in the order Råö > northern Baltic > Pallas. Geometric mean concentrations at Pallas increased significantly (p < 0.05) between 2002 and 2015 for 2,4-DiBA but not for 2,4,6-TriBA. The logarithm of BA partial pressures correlated significantly to reciprocal air temperature at the coastal station Råö and over the Baltic, but only weakly (2,4-DiBA) or not significantly (2,4,6-TriBA) at inland Pallas. Deposition fluxes of BAs were similar at both sites despite lower air concentrations at Pallas, due to greater precipitation scavenging at lower temperatures. Proportions of the two BAs in air and deposition were related to Henry's law partitioning and source regions. Precipitation concentrations were 10-40% of those in surface water of Bothnian Bay, northern Baltic Sea. BAs deposited in the bay catchment likely enter rivers and provide an unexpected source to northern estuaries. BAs may be precursors to higher molecular weight compounds identified by others in Swedish inland lakes.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| | - Eva Brorström-Lundén
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Katarina Hansson
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU) , SE-901 83 Umeå, Sweden
| | - Olle Nygren
- Building Office, Umeå University , SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| |
Collapse
|
8
|
Bai X, Zhang T, Qu Z, Li H, Yang Z. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants. CHEMOSPHERE 2017; 182:223-230. [PMID: 28499183 DOI: 10.1016/j.chemosphere.2017.04.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, the distribution of 2,4,6-trichloroanisole (2,4,6-TCA) in two water supply reservoirs and four associated drinking water treatment plants (DWTPs) were investigated. The 2,4,6-TCA concentrations were in the range of 1.53-2.36 ng L-1 in water supply reservoirs and 0.76-6.58 ng L-1 at DWTPs. To determine the contribution of filamentous fungi to 2,4,6-TCA in a full-scale treatment process, the concentrations of 2,4,6-TCA in raw water, settled water, post-filtration water, and finished water were measured. The results showed that 2,4,6-TCA levels continuously increased until chlorination, suggesting that 2,4,6-TCA could form without a chlorination reaction and fungi might be the major contributor to the 2,4,6-TCA formation. Meanwhile, twenty-nine fungal strains were isolated and identified by morphological and molecular biological methods. Of the seventeen isolated fungal species, eleven showed the capability to convert 2,4,6-trichlorophenol (2,4,6-TCP) to 2,4,6-TCA. The highest level of 2,4,6-TCA formation was carried out by Aspergillus versicolor voucher BJ1-3: 40.5% of the original 2,4,6-TCP was converted to 2,4,6-TCA. There was a significant variation in the capability of different species to generate 2,4,6-TCA. The results from the proportions of cell-free, cell-attached, and cell-bound 2,4,6-TCA suggested that 2,4,6-TCA generated by fungi was mainly distributed in their extracellular environment. In addition to 2,4,6-TCA, five putative volatile by-products were also identified by gas chromatography and mass spectrometry. These findings increase our understanding on the mechanisms involved in the formation of 2,4,6-TCA and provide insights into managing and controlling 2,4,6-TCA-related problems in drinking water.
Collapse
Affiliation(s)
- Xiuzhi Bai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China.
| | - Zhipeng Qu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, PR China.
| |
Collapse
|
9
|
Sinkkonen A, Ollila S, Romantschuk M. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:756-759. [PMID: 25065827 DOI: 10.1080/03601234.2014.929865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soils are often polluted by chlorophenols in timber production areas in the northern hemisphere. The tcpA gene encodes the first step of 2,4,6-trichlorophenol (246-TCP) degradation. We tested tcpA gene frequency in three natural pristine soils with different 246-TCP degradation capacity. Gene tcpA frequency increased more in spiked than non-spiked 10-L pails containing coniferous humus soil with high degradation capacity, in contrast to soils where degradation was slower. As the soil in each mesocosm originated from a spatially separate field plot, changes in tcpA gene frequency affected 246-TCP degradation over a range of soil origins. This indicates that the abundance of and changes in tcpA gene frequency could be utilized in estimating the efficacy of natural attenuation and biostimulation treatments in controlled conditions.
Collapse
Affiliation(s)
- Aki Sinkkonen
- a University of Helsinki , Department of Environmental Sciences , Lahti , Finland
| | | | | |
Collapse
|
10
|
Faludi T, Andrási N, Vasanits-Zsigrai A, Záray G, Molnár-Perl I. Systematic derivatization, mass fragmentation and acquisition studies in the analysis of chlorophenols, as their silyl derivatives by gas chromatography–mass spectrometry. J Chromatogr A 2013; 1302:133-42. [DOI: 10.1016/j.chroma.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
|
11
|
Ning D, Wang H. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 2012; 7:e45887. [PMID: 23029295 PMCID: PMC3447798 DOI: 10.1371/journal.pone.0045887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022] Open
Abstract
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research.
Collapse
Affiliation(s)
- Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Butler E, Whelan MJ, Sakrabani R, van Egmond R. Fate of triclosan in field soils receiving sewage sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 167:101-109. [PMID: 22561896 DOI: 10.1016/j.envpol.2012.03.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/23/2012] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues.
Collapse
Affiliation(s)
- E Butler
- Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK.
| | | | | | | |
Collapse
|
13
|
Recio E, Alvarez-Rodríguez ML, Rumbero A, Garzón E, Coque JJR. Destruction of chloroanisoles by using a hydrogen peroxide activated method and its application to remove chloroanisoles from cork stoppers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12589-12597. [PMID: 22074456 DOI: 10.1021/jf2035753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A chemical method for the efficient destruction of 2,4,6-trichloroanisole (TCA) and pentachloroanisole (PCA) in aqueous solutions by using hydrogen peroxide as an oxidant catalyzed by molybdate ions in alkaline conditions was developed. Under optimal conditions, more than 80.0% TCA and 75.8% PCA were degraded within the first 60 min of reaction. Chloroanisoles destruction was followed by a concomitant release of up to 2.9 chloride ions per TCA molecule and 4.6 chloride ions per PCA molecule, indicating an almost complete dehalogenation of chloroanisoles. This method was modified to be adapted to chloroanisoles removal from the surface of cork materials including natural cork stoppers (86.0% decrease in releasable TCA content), agglomerated corks (78.2%), and granulated cork (51.3%). This method has proved to be efficient and inexpensive with practical application in the cork industry to lower TCA levels in cork materials.
Collapse
Affiliation(s)
- Eliseo Recio
- Instituto de Biotecnología de León (INBIOTEC), 24006-León, Spain
| | | | | | | | | |
Collapse
|
14
|
Caliz J, Vila X, Martí E, Sierra J, Cruañas R, Garau MA, Montserrat G. Impact of chlorophenols on microbiota of an unpolluted acidic soil: microbial resistance and biodegradation. FEMS Microbiol Ecol 2011; 78:150-64. [PMID: 21426365 DOI: 10.1111/j.1574-6941.2011.01093.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The impact of 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) on the microbial community of an acidic forest soil was studied under controlled laboratory conditions by spiking microcosms with the pollutants at concentrations ranging from 0.1 to 5000 mg kg(-1). A decrease in the cumulative respirometric values and changes in the bacterial and fungal community composition were detected at 1000 mg MCP kg(-1), 100 mg TCP kg(-1) and 100 and 1000 mg PCP kg(-1). However, drastic effects on the microbial community were revealed only at higher concentrations of MCP and TCP, although the toxicity of PCP was expected to be stronger. The acidic condition of the soil presumably reduces bioavailability of PCP, leading to less pronounced effects than the other pollutants. This finding highlights the consideration of pollutant bioavailability in each environment to adequately assess contamination effects. Twenty-two different chlorophenol-resistant and potentially degrading microorganisms were isolated from highly polluted microcosms. The most resistant isolates were related to Burkholderia arboris, Bacillus circulans, Paenibacillus taichungensis, Luteibacter rhizovicina and Janibacter melonis. These isolates also showed the capacity to reduce the concentration of TCP or PCP between 15% and 35% after 5 days of incubation (initial concentration of 50 mg L(-1)). The isolate related to B. circulans is an atypical case of a member of the Firmicutes group for which chlorophenol-degrading capacities have been described.
Collapse
Affiliation(s)
- Joan Caliz
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
The analysis of natural cork stoppers in transversal sections as an effective tool to determine the origin of the taint by 2,4,6-trichloroanisole. Eur Food Res Technol 2009. [DOI: 10.1007/s00217-009-1153-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Molecular fingerprinting by PCR-denaturing gradient gel electrophoresis reveals differences in the levels of microbial diversity for musty-earthy tainted corks. Appl Environ Microbiol 2009; 75:1922-31. [PMID: 19201983 DOI: 10.1128/aem.02758-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community structure of cork with marked musty-earthy aromas was analyzed using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Cork stoppers and discs were used for DNA extraction and were analyzed by using selective primers for bacteria and fungi. Stoppers clearly differed from discs harboring a different fungal community. Moreover, musty-earthy samples of both types were shown to have a specific microbiota. The fungi Penicillium glabrum and Neurospora spp. were present in all samples and were assumed to make only a small contribution to off-odor development. In contrast, Penicillium islandicum and Penicillium variabile were found almost exclusively in 2,4,6-trichloroanisole (TCA) tainted discs. Conversely, Rhodotorula minuta and Rhodotorula sloofiae were most common in cork stoppers, where only small amounts of TCA were detected. Alpha- and gammaproteobacteria were the most commonly found bacteria in either control or tainted cork stoppers. Specific Pseudomonas and Actinobacteria were detected in stoppers with low amounts of TCA and 2-methoxy-3,5-dimethylpyrazine. These results are discussed in terms of biological degradation of taint compounds by specific microorganisms. Reliable and straightforward microbial identification methods based on a molecular approach provided useful data to determine and evaluate the risk of taint formation in cork.
Collapse
|
17
|
Campoy S, Álvarez-Rodríguez ML, Recio E, Rumbero A, Coque JJR. Biodegradation of 2,4,6-TCA by the white-rot fungusPhlebia radiatais initiated by a phase I (O-demethylation)-phase II (O-conjugation) reactions system: implications for the chlorine cycle. Environ Microbiol 2009; 11:99-110. [DOI: 10.1111/j.1462-2920.2008.01744.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|