1
|
Li S, Dong Y, Sun X, Zhao Y, Zhao L, Zhang W, Xiao T. Seasonal and spatial variations of Synechococcus in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay. Front Microbiol 2024; 14:1322548. [PMID: 38274747 PMCID: PMC10808157 DOI: 10.3389/fmicb.2023.1322548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Synechococcus is abundant and globally widespread in various marine environments. Seasonal and spatial variations in Synechococcus abundance, pigment types, and genetic diversity were investigated based on flow cytometric analysis and high-throughput sequencing of cpcBA operon (encoding phycocyanin) and rpoC1 gene (encoding RNA polymerase) in a temperate semi-enclosed bay. Synechococcus abundance exhibited seasonal variations with the highest value in summer and the lowest value in winter, which was consistent with temperature variation. Three pigment types of Synechococcus type 1, type 2, and type 3 were distinguished based on cpcBA operon, which displayed obvious variations spatially between the inner and the outer bay. Freshwater discharge and water turbidity played important roles in regulating Synechococcus pigment types. Synechococcus assemblages were phylogenetically diverse (12 different lineages) based on rpoC1 gene and dominated by three core lineages S5.1-I, S5.1-IX, and S5.2-CB5 in different seasons. Our study demonstrated that Synechococcus abundance, pigment types, and genetic diversity displayed variations seasonally and spatially by different techniques, which were mainly driven by temperature, salinity, nutrients, and turbidity. The combination of more technical means provides more information for studying Synechococcus distribution. In this study, three pigment types of Synechococcus were discriminated simultaneously by dual lasers flow cytometer for the first time.
Collapse
Affiliation(s)
- Suheng Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoxia Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yuan Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Aguilera A, Alegria Zufia J, Bas Conn L, Gurlit L, Śliwińska-Wilczewska S, Budzałek G, Lundin D, Pinhassi J, Legrand C, Farnelid H. Ecophysiological analysis reveals distinct environmental preferences in closely related Baltic Sea picocyanobacteria. Environ Microbiol 2023; 25:1674-1695. [PMID: 37655642 DOI: 10.1111/1462-2920.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/31/2023] [Indexed: 09/02/2023]
Abstract
Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10-30°C), light (10-190 μmol photons m-2 s-1 ), and salinity (2-14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.
Collapse
Affiliation(s)
- Anabella Aguilera
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Bas Conn
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Leandra Gurlit
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Sylwia Śliwińska-Wilczewska
- Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Gracjana Budzałek
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Daniel Lundin
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
3
|
Abstract
Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.
Collapse
|
4
|
Zufia JA, Legrand C, Farnelid H. Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea. Sci Rep 2022; 12:14330. [PMID: 35995823 PMCID: PMC9395346 DOI: 10.1038/s41598-022-18454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Picocyanobacteria (< 2 µm in diameter) are significant contributors to total phytoplankton biomass. Due to the high diversity within this group, their seasonal dynamics and relationship with environmental parameters, especially in brackish waters, are largely unknown. In this study, the abundance and community composition of phycoerythrin rich picocyanobacteria (PE-SYN) and phycocyanin rich picocyanobacteria (PC-SYN) were monitored at a coastal (K-station) and at an offshore station (LMO; ~ 10 km from land) in the Baltic Sea over three years (2018–2020). Cell abundances of picocyanobacteria correlated positively to temperature and negatively to nitrate (NO3) concentration. While PE-SYN abundance correlated to the presence of nitrogen fixers, PC-SYN abundance was linked to stratification/shallow waters. The picocyanobacterial targeted amplicon sequencing revealed an unprecedented diversity of 2169 picocyanobacterial amplicons sequence variants (ASVs). A unique assemblage of distinct picocyanobacterial clades across seasons was identified. Clade A/B dominated the picocyanobacterial community, except during summer when low NO3, high phosphate (PO4) concentrations and warm temperatures promoted S5.2 dominance. This study, providing multiyear data, links picocyanobacterial populations to environmental parameters. The difference in the response of the two functional groups and clades underscore the need for further high-resolution studies to understand their role in the ecosystem.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
5
|
Alegria Zufia J, Farnelid H, Legrand C. Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution. Front Microbiol 2021; 12:786590. [PMID: 34938282 PMCID: PMC8685431 DOI: 10.3389/fmicb.2021.786590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Picophytoplankton in the Baltic Sea includes the simplest unicellular cyanoprokaryotes (Synechococcus/Cyanobium) and photosynthetic picoeukaryotes (PPE). Picophytoplankton are thought to be a key component of the phytoplankton community, but their seasonal dynamics and relationships with nutrients and temperature are largely unknown. We monitored pico- and larger phytoplankton at a coastal site in Kalmar Sound (K-Station) weekly during 2018. Among the cyanoprokaryotes, phycoerythrin-rich picocyanobacteria (PE-rich) dominated in spring and summer while phycocyanin-rich picocyanobacteria (PC-rich) dominated during autumn. PE-rich and PC-rich abundances peaked during summer (1.1 × 105 and 2.0 × 105 cells mL–1) while PPE reached highest abundances in spring (1.1 × 105 cells mL–1). PPE was the main contributor to the total phytoplankton biomass (up to 73%). To assess nutrient limitation, bioassays with combinations of nitrogen (NO3 or NH4) and phosphorus additions were performed. PE-rich and PC-rich growth was mainly limited by nitrogen, with a preference for NH4 at >15°C. The three groups had distinct seasonal dynamics and different temperature ranges: 10°C and 17–19°C for PE-rich, 13–16°C for PC-rich and 11–15°C for PPE. We conclude that picophytoplankton contribute significantly to the carbon cycle in the coastal Baltic Sea and underscore the importance of investigating populations to assess the consequences of the combination of high temperature and NH4 in a future climate.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| |
Collapse
|
6
|
Phylogenetic and Phenogenetic Diversity of Synechococcus along a Yellow Sea Section Reveal Its Environmental Dependent Distribution and Co-Occurrence Microbial Pattern. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synechococcus is a dominant genus of the coastal phytoplankton with an effective contribution to primary productivity. Here, the phylogenetic and phenogenetic composition of Synechococcus in the coastal Yellow Sea was addressed by sequencing marker gene methods. Meanwhile, its co-occurrence pattern with bacterial and eukaryotic microbes was further investigated based on the construction of networks. The result revealed that Synechococcus abundance ranged from 9.8 × 102 cells mL−1 to 1.6 × 105 cells mL−1, which was significantly correlated to sampling depth and nutrient contents of nitrite, ammonia, and dissolved silicon. A total of eight Synechococcus phylogenetic lineages were detected, of which clade III was dominant in most of the samples. Meanwhile, clade I increased along the water column and even reached a maximum value of 76.13% at 20 m of station B. Phenogenetically, Synechococcus PT3 was always the predominant pigment type across the whole study zone. Only salinity was significantly correlated to the phenogenetic constitution. The networks revealed that Synechococcus co-occurred with 159 prokaryotes, as well as 102 eukaryotes including such possible grazers as Gymnodinium clades and Alveolata. Potential function prediction further showed that microbes co-occurring with Synechococcus were associated with diverse element cycles, but the exact mechanism needed further experimentation to verify. This research promotes exploring regularity in the genomic composition and niche position of Synechococcus in the coastal ecosystem and is significant to further discuss its potential participation in materials circulation and bottom-up effects in microbial food webs.
Collapse
|
7
|
Holtrop T, Huisman J, Stomp M, Biersteker L, Aerts J, Grébert T, Partensky F, Garczarek L, Woerd HJVD. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat Ecol Evol 2020; 5:55-66. [PMID: 33168993 DOI: 10.1038/s41559-020-01330-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Stretching and bending vibrations of water molecules absorb photons of specific wavelengths, a phenomenon that constrains light energy available for aquatic photosynthesis. Previous work suggested that these absorption properties of water create a series of spectral niches but the theory was still too simplified to enable prediction of the spectral niches in real aquatic ecosystems. Here, we show with a state-of-the-art radiative transfer model that the vibrational modes of the water molecule delineate five spectral niches, in the violet, blue, green, orange and red parts of the spectrum. These five niches are effectively captured by chlorophylls and phycobilin pigments of cyanobacteria and their eukaryotic descendants. Global distributions of the spectral niches are predicted by satellite remote sensing and validated with observed large-scale distribution patterns of cyanobacterial pigment types. Our findings provide an elegant explanation for the biogeographical distributions of photosynthetic pigments across the lakes and oceans of our planet.
Collapse
Affiliation(s)
- Tadzio Holtrop
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Maayke Stomp
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Levi Biersteker
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Aerts
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| | - Théophile Grébert
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Laurence Garczarek
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Hendrik Jan van der Woerd
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 2018; 115:E2010-E2019. [PMID: 29440402 DOI: 10.1073/pnas.1717069115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marine Synechococcus cyanobacteria are major contributors to global oceanic primary production and exhibit a unique diversity of photosynthetic pigments, allowing them to exploit a wide range of light niches. However, the relationship between pigment content and niche partitioning has remained largely undetermined due to the lack of a single-genetic marker resolving all pigment types (PTs). Here, we developed and employed a robust method based on three distinct marker genes (cpcBA, mpeBA, and mpeW) to estimate the relative abundance of all known Synechococcus PTs from metagenomes. Analysis of the Tara Oceans dataset allowed us to reveal the global distribution of Synechococcus PTs and to define their environmental niches. Green-light specialists (PT 3a) dominated in warm, green equatorial waters, whereas blue-light specialists (PT 3c) were particularly abundant in oligotrophic areas. Type IV chromatic acclimaters (CA4-A/B), which are able to dynamically modify their light absorption properties to maximally absorb green or blue light, were unexpectedly the most abundant PT in our dataset and predominated at depth and high latitudes. We also identified populations in which CA4 might be nonfunctional due to the lack of specific CA4 genes, notably in warm high-nutrient low-chlorophyll areas. Major ecotypes within clades I-IV and CRD1 were preferentially associated with a particular PT, while others exhibited a wide range of PTs. Altogether, this study provides important insights into the ecology of Synechococcus and highlights the complex interactions between vertical phylogeny, pigmentation, and environmental parameters that shape Synechococcus community structure and evolution.
Collapse
|
9
|
Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Latała A. Allelopathic and Bloom-Forming Picocyanobacteria in a Changing World. Toxins (Basel) 2018; 10:E48. [PMID: 29361682 PMCID: PMC5793135 DOI: 10.3390/toxins10010048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
Picocyanobacteria are extremely important organisms in the world's oceans and freshwater ecosystems. They play an essential role in primary production and their domination in phytoplankton biomass is common in both oligotrophic and eutrophic waters. Their role is expected to become even more relevant with the effect of climate change. However, this group of photoautotrophic organisms still remains insufficiently recognized. Only a few works have focused in detail on the occurrence of massive blooms of picocyanobacteria, their toxicity and allelopathic activity. Filling the gap in our knowledge about the mechanisms involved in the proliferation of these organisms could provide a better understanding of aquatic environments. In this review, we gathered and described recent information about allelopathic activity of picocyanobacteria and occurrence of their massive blooms in many aquatic ecosystems. We also examined the relationships between climate change and representative picocyanobacterial genera from freshwater, brackish and marine ecosystems. This work emphasizes the importance of studying the smallest picoplanktonic fractions of cyanobacteria.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Adam Latała
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
10
|
Xia X, Guo W, Tan S, Liu H. Synechococcus Assemblages across the Salinity Gradient in a Salt Wedge Estuary. Front Microbiol 2017; 8:1254. [PMID: 28729864 PMCID: PMC5498518 DOI: 10.3389/fmicb.2017.01254] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 02/01/2023] Open
Abstract
Synechococcus are the most abundant and widely distributed picocyanobacteria in the ocean. The salt-wedge type of estuary possesses the complete horizontal and vertical gradient of salinity together with other physical and chemical parameters. In order to reveal whether such a complex environmental gradient harbors a high diversity of Synechococcus, we investigated the abundance, taxonomic composition and pigment genetic diversity of Synechococcus in surface and bottom waters across the salinity gradient in a salt-wedge estuary by flow cytometric analysis and pyrosequencing of the rpoC1 gene and cpcBA operon (encoding phycocyanin). Synechococcus were ubiquitously distributed in the studied region, with clear spatial variations both horizontally and vertically. The abundance and diversity of Synechococcus were low in the freshwater-dominated low salinity waters. By pyrosequencing of the rpoC1 gene, we have shown that with the increase of salinity, the dominant Synechococcus shifted from the freshwater Synechococcus to the combination of phylogenetic subcluster 5.2 and freshwater Synechococcus, and then the strictly marine subcluster 5.1 clade III. Besides, the composition of Synechococcus assemblage in the deep layer was markedly different from the surface in the stratified waters (dissimilarities: 40.32%-95.97%, SIMPER analysis). High abundance of clade III Synechococcus found in the brackish waters may revise our previous understanding that strains of this clade prefers oligotrophic environment. Our data also suggested that both the phylogenetic subcluster 5.3 Synechococcus, a lineage that was not well understood, and subcluster 5.1 clade I, a typical cold water lineage, were widely distributed in the bottom layer of the estuary. Clade I detected in the studied region was mainly contributed by subclade IG. Analysis of the cpcBA operon sequences revealed niche partitioning between type 1 and type 3 Synechococcus, with type 2 distributed broadly across the whole environmental gradients. Our results suggest that the salt wedge estuary provides various niches for different lineages of Synechococcus, making it an environment with high Synechococcus diversity compared with adjacent freshwater and shelf sea environments.
Collapse
Affiliation(s)
- Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Wang Guo
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Shangjin Tan
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and TechnologyHong Kong, Hong Kong
| |
Collapse
|
11
|
Xia X, Partensky F, Garczarek L, Suzuki K, Guo C, Yan Cheung S, Liu H. Phylogeography and pigment type diversity ofSynechococcuscyanobacteria in surface waters of the northwestern pacific ocean. Environ Microbiol 2016; 19:142-158. [DOI: 10.1111/1462-2920.13541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaomin Xia
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Frédéric Partensky
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Laurence Garczarek
- Sorbonne Universités, Université Paris 6, CNRS UMR 7144, Marine Plankton Group, MaPP teamCS 90074, Station Biologique, 29688Roscoff Cedex France
| | - Koji Suzuki
- Faculty of Environmental Earth ScienceHokkaido University/JST‐ CREST Japan
| | - Cui Guo
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Shun Yan Cheung
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| | - Hongbin Liu
- Division of Life ScienceThe Hong Kong University of Science and Technology Hong Kong
| |
Collapse
|
12
|
Bertos-Fortis M, Farnelid HM, Lindh MV, Casini M, Andersson A, Pinhassi J, Legrand C. Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors. Front Microbiol 2016; 7:625. [PMID: 27242679 PMCID: PMC4860504 DOI: 10.3389/fmicb.2016.00625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/15/2016] [Indexed: 11/30/2022] Open
Abstract
Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time- series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An “epidemic population structure” (dominance of asingle cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this clusters imultaneously occurred with opportunistic clusters/OTUs, e.g., Nodularia spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formeda consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocynobacteria and the bloom offilamentous/colonialclusters. These findings highlight that if environmental conditions can partially explain the presence of opportunistic picocyanobacteria, microbial and trophic interactions with filamentous/colonial cyanobacteria should also be considered as potential shaping factors for single-celled communities. Regional climate change scenarios in the Baltic Sea predict environmental shifts leading to higher temperature and lower salinity; conditions identified here as favorable for opportunistic filamentous/colonial cyanobacteria. Altogether, the diversity and complexity of cyanobacterial communities reported here is far greater than previously known, emphasizing the importance of microbial interactions between filamentous and picocyanobacteria in the context of environmental disturbances.
Collapse
Affiliation(s)
- Mireia Bertos-Fortis
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Hanna M Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Markus V Lindh
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Michele Casini
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research Lysekil, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Sciences, Umeå University Umeå, Sweden
| | - Jarone Pinhassi
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| |
Collapse
|
13
|
Genetic diversity of picocyanobacteria in tibetan lakes: assessing the endemic and universal distributions. Appl Environ Microbiol 2014; 80:7640-50. [PMID: 25281375 DOI: 10.1128/aem.02611-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of picocyanobacteria in seven alkaline lakes on the Tibetan Plateau was analyzed using the molecular marker 16S-23S rRNA internal transcribed spacer sequence. A total of 1,077 environmental sequences retrieved from the seven lakes were grouped into seven picocyanobacterial clusters, with two clusters newly described here. Each of the lakes was dominated by only one or two clusters, while different lakes could have disparate communities, suggesting low alpha diversity but high beta diversity of picocyanobacteria in these high-altitude freshwater and saline lakes. Several globally distributed clusters were found in these Tibetan lakes, such as subalpine cluster I and the Cyanobium gracile cluster. Although other clusters likely exhibit geographic restriction to the plateau temporally, reflecting endemicity, they can indeed be distributed widely on the plateau. Lakes with similar salinities may have similar genetic populations despite a large geographic distance. Canonical correspondence analysis identified salinity as the only environmental factor that may in part explain the diversity variations among lakes. Mantel tests suggested that the community similarities among lakes are independent of geographic distance. A portion of the picocyanobacterial clusters appear to be restricted to a narrow salinity range, while others are likely adapted to a broad range. A seasonal survey of Lake Namucuo across 3 years did not show season-related variations in diversity, and depth-related population partitioning was observed along a vertical profile of the lake. Our study emphasizes the high dispersive potential of picocyanobacteria and suggests that the regional distribution may result from adaptation to specified environments.
Collapse
|
14
|
Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME JOURNAL 2014; 8:1892-903. [PMID: 24621524 PMCID: PMC4139726 DOI: 10.1038/ismej.2014.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here.
Collapse
|
15
|
Humily F, Partensky F, Six C, Farrant GK, Ratin M, Marie D, Garczarek L. A gene island with two possible configurations is involved in chromatic acclimation in marine Synechococcus. PLoS One 2013; 8:e84459. [PMID: 24391958 PMCID: PMC3877281 DOI: 10.1371/journal.pone.0084459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/21/2013] [Indexed: 12/31/2022] Open
Abstract
Synechococcus, the second most abundant oxygenic phototroph in the marine environment, harbors the largest pigment diversity known within a single genus of cyanobacteria, allowing it to exploit a wide range of light niches. Some strains are capable of Type IV chromatic acclimation (CA4), a process by which cells can match the phycobilin content of their phycobilisomes to the ambient light quality. Here, we performed extensive genomic comparisons to explore the diversity of this process within the marine Synechococcus radiation. A specific gene island was identified in all CA4-performing strains, containing two genes (fciA/b) coding for possible transcriptional regulators and one gene coding for a phycobilin lyase. However, two distinct configurations of this cluster were observed, depending on the lineage. CA4-A islands contain the mpeZ gene, encoding a recently characterized phycoerythrobilin lyase-isomerase, and a third, small, possible regulator called fciC. In CA4-B islands, the lyase gene encodes an uncharacterized relative of MpeZ, called MpeW. While mpeZ is expressed more in blue light than green light, this is the reverse for mpeW, although only small phenotypic differences were found among chromatic acclimaters possessing either CA4 island type. This study provides novel insights into understanding both diversity and evolution of the CA4 process.
Collapse
Affiliation(s)
- Florian Humily
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Frédéric Partensky
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Christophe Six
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Gregory K. Farrant
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Morgane Ratin
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Dominique Marie
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| | - Laurence Garczarek
- Université Pierre et Marie Curie (Paris VI), Station Biologique, Roscoff, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7144, Oceanic Plankton group, Marine Phototrophic Prokaryotes team, Roscoff, France
| |
Collapse
|
16
|
Choi DH, Noh JH, Lee JH. Application of pyrosequencing method for investigating the diversity of synechococcus subcluster 5.1 in open ocean. Microbes Environ 2013; 29:17-22. [PMID: 24389411 PMCID: PMC4041225 DOI: 10.1264/jsme2.me13063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synechococcus are distributed throughout the world's oceans and are composed of diverse genetic lineages. However, as they are much less abundant than Prochlorococcus in oligotrophic open oceans, their in-depth genetic diversity cannot be investigated using commonly used primers targeting both Prochlorococcus and Synechococcus. Thus, in this study, we designed a primer specific to the 16S-23S rRNA internal transcribed spacer (ITS) of the Synechococcus subcluster 5.1. Using the primer, we could selectively amplify Synechococcus sequences in oligotrophic seawater samples. Further, we showed that a barcoded amplicon pyrosequencing method could be applicable to investigate Synechococcus diversity using sequences retrieved in GenBank and obtained from environmental samples. Allowing sequence analyses of a large number of samples, this high-throughput method would be useful to study global biodiversity and biogeographic patterns of Synechococcus in marine environments.
Collapse
Affiliation(s)
- Dong Han Choi
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology
| | | | | |
Collapse
|
17
|
Motwani NH, Gorokhova E. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS One 2013; 8:e79230. [PMID: 24260175 PMCID: PMC3832457 DOI: 10.1371/journal.pone.0079230] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Our current knowledge on the microbial component of zooplankton diet is limited, and it is generally assumed that bacteria-sized prey is not directly consumed by most mesozooplankton grazers in the marine food webs. We questioned this assumption and conducted field and laboratory studies to examine picocyanobacteria contribution to the diets of Baltic Sea zooplankton, including copepods. First, qPCR targeting ITS-1 rDNA sequence of the picocyanobacteria Synechococcus spp. was used to examine picocyanobacterial DNA occurrence in the guts of Baltic zooplankton (copepods, cladocerans and rotifers). All field-collected zooplankton were found to consume picocyanobacteria in substantial quantities. In terms of Synechococcus quantity, the individual gut content was highest in cladocerans, whereas biomass-specific gut content was highest in rotifers and copepod nauplii. Moreover, the gut content in copepods was positively related to the picocyanobacteria abundance and negatively to the total phytoplankton abundance in the water column at the time of sampling. This indicates that increased availability of picocyanobacteria resulted in the increased intake of this prey and that copepods may rely more on picoplankton when food in the preferred size range declines. Second, a feeding experiments with a laboratory reared copepod Acartia tonsa fed a mixture of the picocyanobacterium Synechococcus bacillaris and microalga Rhodomonas salina confirmed that copepods ingested Synechococcus, even when the alternative food was plentiful. Finally, palatability of the picocyanobacteria for A. tonsa was demonstrated using uptake of 13C by the copepods as a proxy for carbon uptake in feeding experiment with 13C-labeled S. bacillaris. These findings suggest that, if abundant, picoplankton may become an important component of mesozooplankton diet, which needs to be accounted for in food web models and productivity assessments.
Collapse
Affiliation(s)
- Nisha H. Motwani
- Department of Systems Ecology, Stockholm University, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Systems Ecology, Stockholm University, Stockholm, Sweden
- Department of Applied Environmental Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Severin I, Confurius-Guns V, Stal LJ. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch Microbiol 2012; 194:483-91. [PMID: 22228487 PMCID: PMC3354318 DOI: 10.1007/s00203-011-0787-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 01/05/2023]
Abstract
Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.
Collapse
Affiliation(s)
- Ina Severin
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands.
| | | | | |
Collapse
|
19
|
Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl Environ Microbiol 2010; 76:2955-60. [PMID: 20228109 DOI: 10.1128/aem.02868-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the Chesapeake Bay, picocyanobacteria were usually 100-fold less abundant in winter than in summer. However, little is known about how picocyanobacterial populations shift between winter and summer in the bay. This is due mainly to undetectable winter picocyanobacterial populations in bacterial 16S rRNA clone libraries. In this study, the winter and summer picocyanobacterial populations in the bay were detected using picocyanobacterium-specific primers and were compared based on the analysis of rRNA internal transcribed spacer sequences. Temperature was found to be the dominant environmental factor controlling picocyanobacterial populations in the Chesapeake Bay. In the summer, marine cluster B Synechococcus dominated the upper bay, while a unique cluster, CB1 (marine cluster A [MC-A] Synechococcus), made up the vast majority in the middle and lower bay. In the winter, the picocyanobacteria shifted to completely different populations. Subclades CB6 and CB7, which belong to MC-A Synechococcus and Cyanobium, respectively, made up the entire winter picocyanobacterial populations in the bay. Interestingly, the winter members in subclade CB6 clustered closely with Synechococcus CC9311, a coastal strain known to have a greater capacity to sense and respond to changing environments than oceanic strains.
Collapse
|
20
|
Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 2008; 9:R90. [PMID: 18507822 PMCID: PMC2441476 DOI: 10.1186/gb-2008-9-5-r90] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/17/2008] [Accepted: 05/28/2008] [Indexed: 12/20/2022] Open
Abstract
Local niche occupancy of marine Synechococcus lineages is facilitated by lateral gene transfers. Genomic islands act as repositories for these transferred genes. Background The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group. Results Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance. Conclusion We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data.
Collapse
Affiliation(s)
- Alexis Dufresne
- Université Paris 6 and CNRS, UMR 7144, Station Biologique, 29682 Roscoff, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ, Partensky F. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol 2008; 8:R259. [PMID: 18062815 PMCID: PMC2246261 DOI: 10.1186/gb-2007-8-12-r259] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/22/2007] [Accepted: 12/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine Synechococcus owe their specific vivid color (ranging from blue-green to orange) to their large extrinsic antenna complexes called phycobilisomes, comprising a central allophycocyanin core and rods of variable phycobiliprotein composition. Three major pigment types can be defined depending on the major phycobiliprotein found in the rods (phycocyanin, phycoerythrin I or phycoerythrin II). Among strains containing both phycoerythrins I and II, four subtypes can be distinguished based on the ratio of the two chromophores bound to these phycobiliproteins. Genomes of eleven marine Synechococcus strains recently became available with one to four strains per pigment type or subtype, allowing an unprecedented comparative genomics study of genes involved in phycobilisome metabolism. RESULTS By carefully comparing the Synechococcus genomes, we have retrieved candidate genes potentially required for the synthesis of phycobiliproteins in each pigment type. This includes linker polypeptides, phycobilin lyases and a number of novel genes of uncharacterized function. Interestingly, strains belonging to a given pigment type have similar phycobilisome gene complements and organization, independent of the core genome phylogeny (as assessed using concatenated ribosomal proteins). While phylogenetic trees based on concatenated allophycocyanin protein sequences are congruent with the latter, those based on phycocyanin and phycoerythrin notably differ and match the Synechococcus pigment types. CONCLUSION We conclude that the phycobilisome core has likely evolved together with the core genome, while rods must have evolved independently, possibly by lateral transfer of phycobilisome rod genes or gene clusters between Synechococcus strains, either via viruses or by natural transformation, allowing rapid adaptation to a variety of light niches.
Collapse
Affiliation(s)
- Christophe Six
- UMR 7144 Université Paris VI and CNRS, Station Biologique, Groupe Plancton Océanique, F-29682 Roscoff cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|