1
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
2
|
E. M, S. U, R. K, M.W. R, J. P, F. A, J. H. J. L. Draft genome sequence of Collimonas sp. strain H4R21, an effective mineral-weathering bacterial strain isolated from the beech rhizosphere. Microbiol Resour Announc 2024; 13:e0030824. [PMID: 39037313 PMCID: PMC11320959 DOI: 10.1128/mra.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
We present the draft genome sequence of Collimonas sp. strain H4R21, isolated from the rhizosphere of Fagus sylvatica in the forest experimental site of Montiers (France). This genome features coding capacity for plant growth promotion, such as the ability to solubilize minerals, to produce siderophores and antifungal secondary metabolites.
Collapse
Affiliation(s)
- Morin E.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Uroz S.
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, France
| | - Kumar R.
- Novozymes Inc., Davis, California, USA
| | - Rey M.W.
- Novozymes Inc., Davis, California, USA
| | - Pham J.
- Novozymes Inc., Davis, California, USA
| | - Akum F.
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Leveau J. H. J.
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Uroz S, Bouche S, Morin E, Bocquart M, Kumar R, Rey MW, Pham J, Akum F, Leveau JHJ. Collimonas rhizosphaerae sp. nov., a novel species isolated from the beech rhizosphere. Int J Syst Evol Microbiol 2024; 74:006481. [PMID: 39078398 PMCID: PMC11288634 DOI: 10.1099/ijsem.0.006481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial strain H4R21T was isolated from beech rhizosphere soil sampled in the forest experimental site of Montiers (Meuse, France). It effectively weathers minerals, hydrolyses chitin and produces quorum sensing signal molecules. The strain is aerobic and Gram-stain-negative. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain H4R21T belongs to the genus Collimonas with high sequence similarity to C. arenae Ter10T (99.38 %), C. fungivorans Ter6T(98.97 %), C. pratensis Ter91T (98.76 %), C. humicola RLT1W51T (98.46 %) and C. silvisoli RXD178 T (98.46 %), but less than 98 % similarity to other strains of the genus Collimonas. The predominant quinone in H4R21T is ubiquinone-8 (Q8). The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and lipid. The major fatty acids identified were C12 : 0, C12:0 3-OH, C16 : 0 and C17:0 cyclo. The digital DNA G+C content of the genomic DNA was 59.5 mol%. Furthermore, the strain could be clearly distinguished from its closely related type strains by a combination of phylogenomic and in silico DNA-DNA hybridization results, and phenotypic characteristics. Therefore, strain H4R21T represents a novel species within the genus Collimonas, for which the name Collimonas rhizosphaerae sp. nov. is proposed, with strain H4R21T (=CFBP 9203T=DSM 117599T) as the type strain.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
- INRAE, UR1138, Biogéochimie des Ecosystèmes Forestiers, F-54280 Champenoux, France
| | - Ségolène Bouche
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
- INRAE, UR1138, Biogéochimie des Ecosystèmes Forestiers, F-54280 Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
| | - Mathilde Bocquart
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres-Microorganismes, 54000 Nancy, France
| | - Ravi Kumar
- Novozymes Inc., 1445 Drew Ave., Davis, CA 95618, USA
| | | | - Jonathan Pham
- Novozymes Inc., 1445 Drew Ave., Davis, CA 95618, USA
| | - Fidel Akum
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Das J, Kumar R, Yadav SK, Jha G. Nicotinic Acid Catabolism Modulates Bacterial Mycophagy in Burkholderia gladioli Strain NGJ1. Microbiol Spectr 2023; 11:e0445722. [PMID: 37014254 PMCID: PMC10269826 DOI: 10.1128/spectrum.04457-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Burkholderia gladioli strain NGJ1 exhibits mycophagous activity on a broad range of fungi, including Rhizoctonia solani, a devastating plant pathogen. Here, we demonstrate that the nicotinic acid (NA) catabolic pathway in NGJ1 is required for mycophagy. NGJ1 is auxotrophic to NA and it potentially senses R. solani as a NA source. Mutation in the nicC and nicX genes involved in NA catabolism renders defects in mycophagy and the mutant bacteria are unable to utilize R. solani extract as the sole nutrient source. As supplementation of NA, but not FA (fumaric acid, the end product of NA catabolism) restores the mycophagous ability of ΔnicC/ΔnicX mutants, we anticipate that NA is not required as a carbon source for the bacterium during mycophagy. Notably, nicR, a MarR-type of transcriptional regulator that functions as a negative regulator of the NA catabolic pathway is upregulated in ΔnicC/ΔnicX mutant and upon NA supplementation the nicR expression is reduced to the basal level in both the mutants. The ΔnicR mutant produces excessive biofilm and is completely defective in swimming motility. On the other hand, ΔnicC/ΔnicX mutants are compromised in swimming motility as well as biofilm formation, potentially due to the upregulation of nicR. Our data suggest that a defect in NA catabolism alters the NA pool in the bacterium and upregulates nicR which in turn suppresses bacterial motility as well as biofilm formation, leading to mycophagy defects. IMPORTANCE Mycophagy is an important trait through which certain bacteria forage over fungal mycelia and utilize fungal biomass as a nutrient source to thrive in hostile environments. The present study emphasizes that nicotinic acid (NA) is important for bacterial motility and biofilm formation during mycophagy by Burkholderia gladioli strain NGJ1. Defects in NA catabolism potentially alter the cellular NA pool, upregulate the expression of nicR, a negative regulator of biofilm, and therefore suppress bacterial motility as well as biofilm formation, leading to mycophagy defects.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
5
|
Qiao Y, Hou D, Lin Z, Wei S, Chen J, Li J, Zhao J, Xu K, Lu L, Tian S. Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131686. [PMID: 37270958 DOI: 10.1016/j.jhazmat.2023.131686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Sulfur (S) fertilizers, water management and crop rotation are important agronomic practices, related to soil heavy metal bioavailability. However, the mechanisms of microbial interactions remain unclear. Herein, we investigated how S fertilizers (S0 and Na2SO4) and water management affected plant growth, soil cadmium (Cd) bioavailability, and rhizospheric bacterial communities in the Oryza sativa L. (rice)-Sedum alfredii Hance (S. alfredii) rotation system through 16S rRNA gene sequencing and ICP-MS analysis. During rice cultivation, continuous flooding (CF) was better than alternating wetting and drying (AWD). CF treatment decreased soil Cd bioavailability by the promotion of insoluble metal sulfide production and soil pH, thus lowering Cd accumulation in grains. S application recruited more S-reducing bacteria in the rhizosphere of rice, whilst Pseudomonas promoted metal sulfide production and rice growth. During S. alfredii cultivation, S fertilizer recruited S-oxidizing and metal-activating bacteria in the rhizosphere. Thiobacillus may oxidize metal sulfides and enhance Cd and S absorption into S. alfredii. Notably, S oxidation decreased soil pH and elevated Cd content, thereby promoting S. alfredii growth and Cd absorption. These findings showed rhizosphere bacteria were involved in Cd uptake and accumulation in the rice-S. alfredii rotation system, thus providing useful information for phytoremediation coupled with argo-production.
Collapse
Affiliation(s)
- Yabei Qiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Dandi Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wei
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Kuan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Rüthi J, Cerri M, Brunner I, Stierli B, Sander M, Frey B. Discovery of plastic-degrading microbial strains isolated from the alpine and Arctic terrestrial plastisphere. Front Microbiol 2023; 14:1178474. [PMID: 37234546 PMCID: PMC10206078 DOI: 10.3389/fmicb.2023.1178474] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing plastic production and the release of some plastic in to the environment highlight the need for circular plastic economy. Microorganisms have a great potential to enable a more sustainable plastic economy by biodegradation and enzymatic recycling of polymers. Temperature is a crucial parameter affecting biodegradation rates, but so far microbial plastic degradation has mostly been studied at temperatures above 20°C. Here, we isolated 34 cold-adapted microbial strains from the plastisphere using plastics buried in alpine and Arctic soils during laboratory incubations as well as plastics collected directly from Arctic terrestrial environments. We tested their ability to degrade, at 15°C, conventional polyethylene (PE) and the biodegradable plastics polyester-polyurethane (PUR; Impranil®); ecovio® and BI-OPL, two commercial plastic films made of polybutylene adipate-co-terephthalate (PBAT) and polylactic acid (PLA); pure PBAT; and pure PLA. Agar clearing tests indicated that 19 strains had the ability to degrade the dispersed PUR. Weight-loss analysis showed degradation of the polyester plastic films ecovio® and BI-OPL by 12 and 5 strains, respectively, whereas no strain was able to break down PE. NMR analysis revealed significant mass reduction of the PBAT and PLA components in the biodegradable plastic films by 8 and 7 strains, respectively. Co-hydrolysis experiments with a polymer-embedded fluorogenic probe revealed the potential of many strains to depolymerize PBAT. Neodevriesia and Lachnellula strains were able to degrade all the tested biodegradable plastic materials, making these strains especially promising for future applications. Further, the composition of the culturing medium strongly affected the microbial plastic degradation, with different strains having different optimal conditions. In our study we discovered many novel microbial taxa with the ability to break down biodegradable plastic films, dispersed PUR, and PBAT, providing a strong foundation to underline the role of biodegradable polymers in a circular plastic economy.
Collapse
Affiliation(s)
- Joel Rüthi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Mattia Cerri
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Ivano Brunner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Stierli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Navarrete AA, Aburto F, González-Rocha G, Guzmán CM, Schmidt R, Scow K. Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158508. [PMID: 36063938 DOI: 10.1016/j.scitotenv.2022.158508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.
Collapse
Affiliation(s)
- Alejandro Atenas Navarrete
- Postgrado Facultad de Ciencias Forestales, Universidad de Concepción, Chile; Laboratorio de Investigación en Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Chile; Iniciativa Foresta Nativa, Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Soil and Crop Sciences Department, Texas A&M University, 370 Olsen Blvd. Heep Center, TX 77845, USA; Departamento de Planificación Territorial y Sistemas Urbanos, Facultad de Ciencias Ambientales, Universidad de Concepción, Chile.
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Chile
| | - Radomir Schmidt
- Working Lands Innovation Center at the Institute of the Environment, University of California, Davis, USA
| | - Kate Scow
- Soil Microbial Ecology Lab, Department of Land, Air and Water Resources, University of California, Davis, USA
| |
Collapse
|
8
|
Murata K, Suenaga M, Kai K. Genome Mining Discovery of Protegenins A-D, Bacterial Polyynes Involved in the Antioomycete and Biocontrol Activities of Pseudomonas protegens. ACS Chem Biol 2022; 17:3313-3320. [PMID: 34015911 DOI: 10.1021/acschembio.1c00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Some bacteria uniquely produce "bacterial polyynes", which possess a conjugated C≡C bond starting with a terminal alkyne, and use them as chemical weapons against hosts and competitors. Pseudomonas protegens Cab57, a biocontrol agent against plant pathogens, has an orphan biosynthetic gene cluster for bacterial polyynes (named protegenins). In this study, the isolation, structure elucidation, and biological characterization of protegenins A-D are reported. The structures of protegenins A-D determined by spectroscopic and chemical techniques were octadecanoic acid derivatives possessing an ene-tetrayne, ene-triyne-ene, or ene-triyne moiety. The protegenins exhibited weak to strong antioomycete activity against Pythium ultimum OPU774. The deletion of proA, a protegenin biosynthetic gene, resulted in the reduction of the antioomycete activity of P. protegens. The Gac/Rsm system, a quorum sensing-like system of Pseudomonas bacteria, regulated the production of protegenins. The production profile of protegenins was dependent on the culturing conditions, suggesting a control mechanism for protegenin production selectivity. P. protegens suppressed the damping-off of cucumber seedlings caused by P. ultimum, and this protective effect was reduced in the proA-deletion mutant. Altogether, protegenins are a new class of bacterial polyynes which contribute to the antioomycete and plant-protective effects of P. protegens.
Collapse
Affiliation(s)
- Kazuya Murata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mayuna Suenaga
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Smith TP, Mombrikotb S, Ransome E, Kontopoulos DG, Pawar S, Bell T. Latent functional diversity may accelerate microbial community responses to temperature fluctuations. eLife 2022; 11:e80867. [PMID: 36444646 PMCID: PMC9708066 DOI: 10.7554/elife.80867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to 'switch on' at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Shorok Mombrikotb
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | | | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| |
Collapse
|
10
|
Uroz S, Geisler O, Fauchery L, Lami R, Rodrigues AMS, Morin E, Leveau JHJ, Oger P. Genomic and transcriptomic characterization of the Collimonas quorum sensing genes and regulon. FEMS Microbiol Ecol 2022; 98:6679101. [PMID: 36040340 DOI: 10.1093/femsec/fiac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Collimonads are well-adapted to nutrient-poor environments. They are known to hydrolyse chitin, produce antifungal metabolites, weather minerals, and are effective biocontrol agents protecting plants from fungal diseases. The production of N-acyl homoserine lactones (AHLs) was suggested to be a conserved trait of collimonads, but little is known about the genes that underlie this production or the genes that are controlled by AHLs. To improve our understanding of the role of AHLs in the ecology of collimonads, we carried out transcriptomic analyses, combined with chemical and functional assays, on strain Collimonas pratensis PMB3(1). The main AHLs produced by this strain were identified as 3-hydroxy-hexa- and octa-noyl-homoserine lactone. Genome analysis permitted to identify putative genes coding for the autoinducer synthase (colI) and cognate transcriptional regulator (colR). The ability to produce AHLs was lost in ΔcolI and ΔcolR mutants. Functional assays revealed that the two mutants metabolized glucose, formate, oxalate, and leucine better than the wild-type (WT) strain. Transcriptome sequencing analyses revealed an up-regulation of different metabolic pathways and of motility in the QS-mutants compared to the WT strain. Overall, our results provide insights into the role of the AHL-dependent regulation system of Collimonas in environment colonization, metabolism readjustment, and microbial interactions.
Collapse
Affiliation(s)
- Stephane Uroz
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France.,INRAE, UR1138 "Biogéochimie des écosystèmes forestiers", F-54280 Champenoux, France
| | - Océane Geisler
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Laure Fauchery
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Raphaël Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM, USR3579), Fédération de Recherche FR3724, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 "Interactions Arbres-Microorganismes", F-54280 Champenoux, France
| | - Johan H J Leveau
- Department of Plant Pathology, University of California - Davis, Davis, CA 95616, United States
| | - Philippe Oger
- Université Lyon, INSA de Lyon, CNRS UMR 5240, F-69622 Villeurbanne, France
| |
Collapse
|
11
|
Li J, Pan M, Zhang X, Zhou Y, Feng GD, Zhu H. Collimonas silvisoli sp. nov. and Collimonas humicola sp. nov., two novel species isolated from forest soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34678140 DOI: 10.1099/ijsem.0.005061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria, designated strains RXD178T, RXD172-2 and RLT1W51T, were isolated from two forest soil samples of Nanling National Nature Reserve in Guangdong Province, PR China. Phylogenetic analyses based on 16S rRNA gene sequences and 92 core genes showed that they belonged to the genus Collimonas, and were most closely related to four validly published species with similarities ranging from 99.4 to 98.2 %. The genomic DNA G+C contents of strains RXD178T, RXD172-2 and RLT1W51T were 57.1, 59.5 and 59.4 mol%, respectively. The genome-derived average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the novel strains and closely related type species were below 37.90 and 89.34 %, respectively. Meanwhile, the ANI and dDDH values between strains RXD172-2 and RLT1W51T were 98.27 and 83.50 %, respectively. The three novel strains contained C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) as the major fatty acids, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) comprised a relative higher proportion in strain RXD178T than in other strains. Both strains RXD172-2 and RLT1W51T had phosphatidylglycerol (PG), phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG) and an unidentified aminophospholipid (APL) as the main polar lipids while only PE and APL were detected in strain RXD178T. Ubiquinone 8 was the predominant quinone. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic analyses, strain RXD178T should be considered as representing one novel species within the genus Collimonas and strains RXD172-2 and RLT1W51T as another one, for which the names Collimonas silvisoli sp. nov. and Collimonas humicola sp. nov. are proposed, with RXD178T (=GDMCC 1.1925T=KACC 21987T) and RLT1W51T (=GDMCC 1.1923T=KACC 21985T) as the type strains, respectively.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mingkai Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xianjiao Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yang Zhou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Guang-Da Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
12
|
Akum FN, Kumar R, Lai G, Williams CH, Doan HK, Leveau JH. Identification of Collimonas gene loci involved in the biosynthesis of a diffusible secondary metabolite with broad-spectrum antifungal activity and plant-protective properties. Microb Biotechnol 2021; 14:1367-1384. [PMID: 33347710 PMCID: PMC8313283 DOI: 10.1111/1751-7915.13716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
In greenhouse and field trials, a bacterial mixture of Collimonas arenae Cal35 and Bacillus velezensis FZB42, but not Cal35 alone or FZB42 alone, was able to protect tomato plants from challenge with the soilborne fungal pathogen Fusarium oxysporum f.sp. lycopersici (Fol). To identify genes and mechanisms underlying this property in Cal35, we screened a random transposon insertion library for loss of function and identified two mutants that were impaired completely or partially in their ability to halt the growth of a wide range of fungal species. In mutant 46A06, the transposon insertion was located in a biosynthetic gene cluster that was predicted to code for a hybrid polyketide synthase-non-ribosomal peptide synthetase, while mutant 60C09 was impacted in a gene cluster for the synthesis and secretion of sugar repeat units. Our data are consistent with a model in which both gene clusters are necessary for the production of an antifungal compound we refer to as carenaemins. We also show that the ability to produce carenaemin contributed significantly to the observed synergy between Cal35 and FZB42 in protecting tomato plants from Fol. We discuss the potential for supplementing Bacillus-based biocontrol products with Collimonas bacteria to boost efficacy of such products.
Collapse
Affiliation(s)
- Fidele N. Akum
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | | | - Gary Lai
- Novozymes Inc1445 Drew AvenueDavisCAUSA
| | | | - Hung K. Doan
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Johan H.J. Leveau
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
13
|
Optimizing viability and yield and improving stability of Gram-negative, non-spore forming plant-beneficial bacteria encapsulated by spray-drying. Bioprocess Biosyst Eng 2021; 44:2289-2301. [PMID: 34184107 DOI: 10.1007/s00449-021-02604-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
This study investigates methods to commercialize safer alternatives to chemical pesticides that pose risks to human safety and the environment. Spray-drying encapsulation of the plant-protective, antifungal bacterium Collimonas arenae Cal35 in in situ cross-linked alginate microcapsules (CLAMs) was optimized to minimize losses during spray-drying and maximize yield of spray-dried powder. Only inlet temperature significantly affected survival during spray-drying, while inlet temperature, spray rate, and alginate concentration significantly affected yield of spray-dried powder. Lowering inlet temperature to 95 °C provided the greatest survival during spray-drying, while increasing inlet temperature and lowering spray rate and alginate concentration produced the highest yield. Without the CLAMs formulation, Cal35 did not survive spray-drying. When Cal35 was encapsulated in CLAMs in the presence of modified starch, shelf survival was extended to 3 weeks in a low oxygen, low humidity storage environment. Cal35 retained its antifungal activity throughout spray-drying and shelf storage, supporting its potential use as a formulated biofungicide product.
Collapse
|
14
|
The Rhizobacterium Pseudomonas alcaligenes AVO110 Induces the Expression of Biofilm-Related Genes in Response to Rosellinia necatrix Exudates. Microorganisms 2021; 9:microorganisms9071388. [PMID: 34202389 PMCID: PMC8304167 DOI: 10.3390/microorganisms9071388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizobacterium Pseudomonas alcaligenes AVO110 exhibits antagonism toward the phytopathogenic fungus Rosellinia necatrix. This strain efficiently colonizes R. necatrix hyphae and is able to feed on their exudates. Here, we report the complete genome sequence of P. alcaligenes AVO110. The phylogeny of all available P. alcaligenes genomes separates environmental isolates, including AVO110, from those obtained from infected human blood and oyster tissues, which cluster together with Pseudomonas otitidis. Core and pan-genome analyses showed that P. alcaligenes strains encode highly heterogenic gene pools, with the AVO110 genome encoding the largest and most exclusive variable region (~1.6 Mb, 1795 genes). The AVO110 singletons include a wide repertoire of genes related to biofilm formation, several of which are transcriptionally modulated by R. necatrix exudates. One of these genes (cmpA) encodes a GGDEF/EAL domain protein specific to Pseudomonas spp. strains isolated primarily from the rhizosphere of diverse plants, but also from soil and water samples. We also show that CmpA has a role in biofilm formation and that the integrity of its EAL domain is involved in this function. This study contributes to a better understanding of the niche-specific adaptations and lifestyles of P. alcaligenes, including the mycophagous behavior of strain AVO110.
Collapse
|
15
|
Repeated Exposure of Aspergillus niger Spores to the Antifungal Bacterium Collimonas fungivorans Ter331 Selects for Delayed Spore Germination. Appl Environ Microbiol 2021; 87:e0023321. [PMID: 33811027 DOI: 10.1128/aem.00233-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bacterial strain Collimonas fungivorans Ter331 (CfTer331) inhibits mycelial growth and spore germination in Aspergillus niger N402 (AnN402). The mechanisms underlying this antagonistic bacterial-fungal interaction have been extensively studied, but knowledge on the long-term outcome of this interaction is currently lacking. Here, we used experimental evolution to explore the dynamics of fungal adaptation to recurrent exposure to CfTer331. Specifically, five single-spore isolates (SSIs) of AnN402 were evolved under three selection scenarios in liquid culture, i.e., (i) in the presence of CfTer331 for 80 growth cycles, (ii) in the absence of the bacterium for 80 cycles, and (iii) in the presence of CfTer331 for 40 cycles and then in its absence for 40 cycles. The evolved SSI lineages were then evaluated for phenotypic changes from the founder fungal strain, such as germinability with or without CfTer331. The analysis showed that recurrent exposure to CfTer331 selected for fungal lineages with reduced germinability and slower germination, even in the absence of CfTer331. In contrast, when AnN402 evolved in the absence of the bacteria, lineages with increased germinability and faster germination were favored. SSIs that were first evolved in the presence of CfTer331 and then in its absence showed intermediate phenotypes but overall were more similar to SSIs that evolved in the absence of CfTer331 for 80 cycles. This suggests that traits acquired from exposure to CfTer331 were reversible upon removal of the selection pressure. Overall, our study provides insights into the effects on fungi from the long-term coculture with bacteria. IMPORTANCE The use of antagonistic bacteria for managing fungal diseases is becoming increasingly popular, and thus there is a need to understand the implications of their long-term use against fungi. Most efforts have so far focused on characterizing the antifungal properties and mode of action of the bacterial antagonists, but the possible outcomes of the persisting interaction between antagonistic bacteria and fungi are not well understood. In this study, we used experimental evolution in order to explore the evolutionary aspects of an antagonistic bacterial-fungal interaction, using the antifungal bacterium Collimonas fungivorans and the fungus Aspergillus niger as a model system. We show that evolution in the presence or absence of the bacteria selects for fungal lineages with opposing and conditionally beneficial traits, such as slow and fast spore germination, respectively. Overall, our studies reveal that fungal responses to biotic factors related to antagonism could be to some extent predictable and reversible.
Collapse
|
16
|
Embacher J, Neuhauser S, Zeilinger S, Kirchmair M. Microbiota Associated with Different Developmental Stages of the Dry Rot Fungus Serpula lacrymans. J Fungi (Basel) 2021; 7:354. [PMID: 33946450 PMCID: PMC8147175 DOI: 10.3390/jof7050354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
The dry rot fungus Serpula lacrymans causes significant structural damage by decaying construction timber, resulting in costly restoration procedures. Dry rot fungi decompose cellulose and hemicellulose and are often accompanied by a succession of bacteria and other fungi. Bacterial-fungal interactions (BFI) have a considerable impact on all the partners, ranging from antagonistic to beneficial relationships. Using a cultivation-based approach, we show that S. lacrymans has many co-existing, mainly Gram-positive, bacteria and demonstrate differences in the communities associated with distinct fungal parts. Bacteria isolated from the fruiting bodies and mycelia were dominated by Firmicutes, while bacteria isolated from rhizomorphs were dominated by Proteobacteria. Actinobacteria and Bacteroidetes were less abundant. Fluorescence in situ hybridization (FISH) analysis revealed that bacteria were not present biofilm-like, but occurred as independent cells scattered across and within tissues, sometimes also attached to fungal spores. In co-culture, some bacterial isolates caused growth inhibition of S. lacrymans, and vice versa, and some induced fungal pigment production. It was found that 25% of the isolates could degrade pectin, 43% xylan, 17% carboxymethylcellulose, and 66% were able to depolymerize starch. Our results provide first insights for a better understanding of the holobiont S. lacrymans and give hints that bacteria influence the behavior of S. lacrymans in culture.
Collapse
Affiliation(s)
| | | | | | - Martin Kirchmair
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (J.E.); (S.N.); (S.Z.)
| |
Collapse
|
17
|
Picard L, Paris C, Dhalleine T, Morin E, Oger P, Turpault MP, Uroz S. The mineral weathering ability of Collimonas pratensis PMB3(1) involves a Malleobactin-mediated iron acquisition system. Environ Microbiol 2021; 24:784-802. [PMID: 33817942 DOI: 10.1111/1462-2920.15508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.
Collapse
Affiliation(s)
- Laura Picard
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Cédric Paris
- Université de Lorraine, EA 4367 « Laboratoire d'Ingénierie des Biomolécules », Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Vandœuvre-lès-Nancy, F-54505, France.,Plateau d'Analyse Structurale et Métabolomique (PASM) - SF4242 EFABA, Vandœuvre-lès-Nancy, F-54505, France
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR 5240 « Microbiologie, Adaptation et Pathogénie », Villeurbanne, F-69621, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| |
Collapse
|
18
|
Qu Z, Liu B, Ma Y, Xu J, Sun H. The response of the soil bacterial community and function to forest succession caused by forest disease. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhao‐Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing China
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing China
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing China
| | - Jie Xu
- Collaborative Innovation Center of Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing China
| |
Collapse
|
19
|
Draft Genome Sequence of Collimonas pratensis Strain PMB3(1), an Effective Mineral-Weathering and Chitin-Hydrolyzing Bacterial Strain. Microbiol Resour Announc 2020; 9:9/37/e00601-20. [PMID: 32912907 PMCID: PMC7484066 DOI: 10.1128/mra.00601-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We announce the draft genome sequence of Collimonas pratensis PMB3(1), isolated from the Scleroderma citrinum mycorrhizosphere. In addition to its mineral-weathering effectiveness and antifungal activity, this strain is characterized by genomic features that give it great potential as a biocontrol and plant growth-promoting agent in nutrient-poor soils. We announce the draft genome sequence of Collimonas pratensis PMB3(1), isolated from the Scleroderma citrinum mycorrhizosphere. In addition to its mineral-weathering effectiveness and antifungal activity, this strain is characterized by genomic features that give it great potential as a biocontrol and plant growth-promoting agent in nutrient-poor soils.
Collapse
|
20
|
Terasaki M, Nishida H. Bacterial DNA Diversity among Clear and Cloudy Sakes, and Sake-kasu. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1875036202013010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
The traditional Japanese alcoholic drink, sake, is classified into two types: those that contain sediment produced during the production process (cloudy sakes) and those that do not contain such sediment (clear sakes). Leftover pressed sediment from the sake production process, sake-kasu (sake cake or sake lees), is commercially available and is highly nutritious for humans.
Objective:
The purpose of this study was to determine the difference among component bacterial DNA sequences of clear and cloudy sakes, and sake-kasu.
Methods:
We compared the 16S rDNA sequences from 44 samples of clear sake, 3 samples of cloudy sake, and 11 samples of sake-kasu.
Results:
The DNA sequences were divided into three major clusters; however, sequences in sake-kasu were located in just one cluster forming two lineages. The microbial diversity in sake-kasu was lower than that in clear and cloudy sakes, which may be because some of the contaminating bacterial cells do not lyse during the production process and remain intact, along with yeast cells, in sake-kasu.
Conclusion:
Bacterial DNA frequently detected in sake samples was from environmental bacterial contamination that occurs early in the sake production process. Contaminating bacteria are usually killed by the ethanol produced as the sake yeast grows; after which, if bacteria lyse, the bacterial DNA is released into the sake solution. However, if the bacterial cells do not lyse, they will precipitate toward the sediment. Thus, there is bacterial DNA diversity in clear and cloudy sake, but less diversity in sake-kasu.
Collapse
|
21
|
Yadav SK, Das J, Kumar R, Jha G. Calcium regulates the mycophagous ability of Burkholderia gladioli strain NGJ1 in a type III secretion system-dependent manner. BMC Microbiol 2020; 20:216. [PMID: 32689944 PMCID: PMC7372643 DOI: 10.1186/s12866-020-01897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/12/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A rice associated bacterium Burkholderia gladioli strain NGJ1 demonstrates mycophagy, a phenomenon wherein bacteria feed on fungi. Previously, we have reported that NGJ1 utilizes type III secretion system (T3SS) to deliver a prophage tail-like protein (Bg_9562) into fungal cells to establish mycophagy. RESULTS In this study, we report that calcium ion concentration influences the mycophagous ability of NGJ1 on Rhizoctonia solani, an important fungal pathogen. The calcium limiting condition promotes mycophagy while high calcium environment prevents it. The expression of various T3SS apparatus encoding genes of NGJ1 was induced and secretion of several potential T3SS effector proteins (including Bg_9562) into extracellular milieu was triggered under calcium limiting condition. Using LC-MS/MS proteome analysis, we identified several calcium regulated T3SS effector proteins of NGJ1. The expression of genes encoding some of these effector proteins was upregulated during mycophagous interaction of NGJ1 with R. solani. Further, mutation of one of these genes (endo-β-1, 3- glucanase) rendered the mutant NGJ1 bacterium defective in mycophagy while complementation with full length copy of the gene restored its mycophagous activity. CONCLUSION Our study provides evidence that low calcium environment triggers secretion of various T3SS effectors proteins into the extracellular milieu and suggests the importance of cocktail of these proteins in promoting mycophagy.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Mosquera S, Stergiopoulos I, Leveau JHJ. Interruption of Aspergillus niger spore germination by the bacterially produced secondary metabolite collimomycin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:306-313. [PMID: 32162788 DOI: 10.1111/1758-2229.12833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Collimonas fungivorans Ter331 (CfTer331) is a soil bacterium that produces collimomycin, a secondary metabolite that inhibits the vegetative growth of fungi. Here we show that CfTer331 can also interfere with fungal spore germination and that collimomycin biosynthesis is required for this activity. More specifically, in co-cultures of Aspergillus niger N402 (AnN402) co-nidiospores with CfTer331, the rate of transition from the isotropic to polarized stage of the germination process was reduced and the relatively few AnN402 conidiospores that completed the germination process were less likely to survive than those that were arrested in the isotropic phase. By contrast, a collimomycin-deficient mutant of CfTer331 had no effect on germination: in its presence, as in the absence or delayed presence of CfTer331, unhindered germination of conidiospores allowed rapid establishment of AnN402 mycelium and the subsequent acidification of the culture medium to the detriment of any bacteria present. However, when challenged early enough with CfTer331, the collimomycin-dependent arrest of the AnN402 germination process enabled CfTer331 to prevent AnN402 from forming mycelia and to gain dominance in the culture. We propose that the collimomycin-dependent arrest of spore germination represents an early intervention strategy used by CfTer331 to mitigate niche construction by fungi in nature.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8751
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8751
| | - Johan H J Leveau
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616-8751
| |
Collapse
|
23
|
Ye X, Li Z, Luo X, Wang W, Li Y, Li R, Zhang B, Qiao Y, Zhou J, Fan J, Wang H, Huang Y, Cao H, Cui Z, Zhang R. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. MICROBIOME 2020; 8:49. [PMID: 32252828 PMCID: PMC7137222 DOI: 10.1186/s40168-020-00824-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Myxobacteria are micropredators in the soil ecosystem with the capacity to move and feed cooperatively. Some myxobacterial strains have been used to control soil-borne fungal phytopathogens. However, interactions among myxobacteria, plant pathogens, and the soil microbiome are largely unexplored. In this study, we aimed to investigate the behaviors of the myxobacterium Corallococcus sp. strain EGB in the soil and its effect on the soil microbiome after inoculation for controlling cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). RESULTS A greenhouse and a 2-year field experiment demonstrated that the solid-state fermented strain EGB significantly reduced the cucumber Fusarium wilt by 79.6% (greenhouse), 66.0% (2015, field), and 53.9% (2016, field). Strain EGB adapted to the soil environment well and decreased the abundance of soil-borne FOC efficiently. Spatiotemporal analysis of the soil microbial community showed that strain EGB migrated towards the roots and root exudates of the cucumber plants via chemotaxis. Cooccurrence network analysis of the soil microbiome indicated a decreased modularity and community number but an increased connection number per node after the application of strain EGB. Several predatory bacteria, such as Lysobacter, Microvirga, and Cupriavidus, appearing as hubs or indicators, showed intensive connections with other bacteria. CONCLUSION The predatory myxobacterium Corallococcus sp. strain EGB controlled cucumber Fusarium wilt by migrating to the plant root and regulating the soil microbial community. This strain has the potential to be developed as a novel biological control agent of soil-borne Fusarium wilt. Video abstract.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenhui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Rui Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaqin Fan
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of plant immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
24
|
Kumar V, Thakur V, Ambika, Kumar V, Kumar R, Singh D. Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 2020; 112:637-646. [DOI: 10.1016/j.ygeno.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
|
25
|
Nicolitch O, Feucherolles M, Churin JL, Fauchery L, Turpault MP, Uroz S. A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Sci Rep 2019; 9:14403. [PMID: 31591410 PMCID: PMC6779897 DOI: 10.1038/s41598-019-50730-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022] Open
Abstract
The access and recycling of the base cations are essential processes for the long-lasting functioning of forest ecosystems. While the role of soil bacterial communities has been demonstrated in mineral weathering and tree nutrition, our understanding of the link between the availability of base cations and the functioning of these communities remains limited. To fill this gap, we developed a microcosm approach to investigate how an increase in key base cations (potassium or magnesium) impacted the taxonomic and functional structures of the bacterial communities. During a 2-month period after fertilization with available potassium or magnesium, soil properties, global functions (metabolic potentials and respiration) as well as mineral weathering bioassays and 16S rRNA amplicon pyrosequencing were monitored. Our analyses showed no or small variations in the taxonomic structure, total densities and global functions between the treatments. In contrast, a decrease in the frequency and effectiveness of mineral weathering bacteria was observed in the fertilized treatments. Notably, quantitative PCR targeting specific genera known for their mineral weathering ability (i.e., Burkholderia and Collimonas) confirmed this decrease. These new results suggest that K and Mg cation availability drives the distribution of the mineral weathering bacterial communities in forest soil.
Collapse
Affiliation(s)
- O Nicolitch
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - M Feucherolles
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - J-L Churin
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - L Fauchery
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France
| | - M-P Turpault
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France
| | - S Uroz
- INRA, Université de Lorraine, UMR 1136 "Interactions Arbres Microorganismes", Centre INRA de Nancy, 54280, Champenoux, France.
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, 54280, Champenoux, France.
| |
Collapse
|
26
|
Uroz S, Courty PE, Oger P. Plant Symbionts Are Engineers of the Plant-Associated Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:905-916. [PMID: 31288964 DOI: 10.1016/j.tplants.2019.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/09/2023]
Abstract
Plants interact throughout their lives with environmental microorganisms. These interactions determine plant development, nutrition, and fitness in a dynamic and stressful environment, forming the basis for the holobiont concept in which plants and plant-associated microbes are not considered as independent entities but as a single evolutionary unit. A primary open question concerns whether holobiont structure is shaped by its microbial members or solely by the plant. Current knowledge of plant-microbe interactions argues that the establishment of symbiosis directly and indirectly conditions the plant-associated microbiome. We propose to define the impact of the symbiont on the plant microbiome as the 'symbiosis cascade effect', in which the symbionts and their plant host jointly shape the plant microbiome.
Collapse
Affiliation(s)
- Stephane Uroz
- Institut National de la Recherche Agronomique (INRA) Unité Mixte de Recherche (UMR) 1136, Interactions Arbres-Microorganismes, F-54280, Champenoux, France; Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, F-54500 Vandoeuvre-lès-, Nancy, France; INRA Unité de Recherche (UR) 1138, Biogéochimie des Écosystèmes Forestiers, F-54280, Champenoux, France.
| | - Pierre Emmanuel Courty
- Agroécologie, Institut National de la Recherche, Agronomique (INRA), AgroSup Dijon, Centre, National de la Recherche Scientifique (CNRS), Université de Bourgogne, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Phil Oger
- Université de Lyon, Institut National des Sciences Appliquées (INSA) de Lyon, CNRS UMR, 5240, Villeurbanne, France
| |
Collapse
|
27
|
Kai K. Bioorganic chemistry of signaling molecules in microbial communication. JOURNAL OF PESTICIDE SCIENCE 2019; 44:200-207. [PMID: 31530977 PMCID: PMC6718359 DOI: 10.1584/jpestics.j19-02] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 06/01/2023]
Abstract
Microorganisms produce and secrete a variety of secondary metabolites including fatty acids, polyketides, terpenoids, alkaloids, and peptides. Among them, many molecules act as chemical signals that play important roles in inter-/intra-species microbial communication or the interaction with host organisms. In this review, I focus on our recent reports of the microbial signaling molecules involved in bacterium-fungus, bacterium-plant, and fungus-plant interactions. Their potential contribution to pest management is also discussed.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefectural University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599–8531, Japan
| |
Collapse
|
28
|
Araujo R, Dunlap C, Barnett S, Franco CM. Decoding Wheat Endosphere-Rhizosphere Microbiomes in Rhizoctonia solani-Infested Soils Challenged by Streptomyces Biocontrol Agents. FRONTIERS IN PLANT SCIENCE 2019; 10:1038. [PMID: 31507625 PMCID: PMC6718142 DOI: 10.3389/fpls.2019.01038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 05/21/2023]
Abstract
The endosphere and the rhizosphere are pertinent milieus with microbial communities that perturb the agronomic traits of crop plants through beneficial or detrimental interactions. In this study, we challenged these communities by adding Streptomyces biocontrol strains to wheat seeds in soils with severe Rhizoctonia solani infestation. Wheat plants were grown in a glasshouse standardized system, and the bacterial and fungal microbiomes of 233 samples of wheat roots (endosphere) and rhizosphere soils were monitored for 20 weeks, from seed to mature plant stage. The results showed highly dynamic and diverse microbial communities that changed over time, with Sphingomonas bacteria and Aspergillus, Dipodascus, and Trichoderma fungi increasing over time. Application of biocontrol Streptomyces strains promoted plant growth and maturation of wheat heads and modulated the root microbiome, decreasing Paenibacillus and increasing other bacterial and fungal OTUs. The soils with the highest levels of R. solani had increased reads of Thanatephorus (Rhizoctonia anamorph) and increased root disease levels and increased Balneimonas, Massilia, Pseudomonas, and unclassified Micrococcaceae. As we enter the era of biologically sustainable agriculture, it may be possible to reduce and limit the effects of serious fungal infestations by promoting a beneficial microbiome through the application of biocontrol agents during different periods of plant development.
Collapse
Affiliation(s)
- Ricardo Araujo
- Department of Medical Biotechnology, Flinders University, Adelaide, SA, Australia
- i3S, University of Porto, Porto, Portugal
- *Correspondence: Ricardo Araujo,
| | - Christopher Dunlap
- Crop Bioprotection Research, The United States Department of Agriculture, Peoria, IL, United States
| | - Steve Barnett
- Department of Medical Biotechnology, Flinders University, Adelaide, SA, Australia
- South Australian Research & Development Institute (SARDI), Adelaide, SA, Australia
| | | |
Collapse
|
29
|
Kai K, Sogame M, Sakurai F, Nasu N, Fujita M. Collimonins A–D, Unstable Polyynes with Antifungal or Pigmentation Activities from the Fungus-Feeding Bacterium Collimonas fungivorans Ter331. Org Lett 2018; 20:3536-3540. [DOI: 10.1021/acs.orglett.8b01311] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mai Sogame
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Fumie Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Norihiro Nasu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms. Appl Environ Microbiol 2018; 84:AEM.02322-17. [PMID: 29374032 DOI: 10.1128/aem.02322-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo90, Mg1.8Fe0.2SiO4), goethite, smectite, and pyrite as Fe sources for a Chloromonas brevispina-bacterial coculture through laboratory-based experimentation. Fo90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo90-bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina coculture also increased the rate of Fo90 dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified Gammaproteobacteria, Betaproteobacteria, and Sphingobacteria, all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas, which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions.IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo90 was bioavailable to Chloromonas brevispina snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo90-containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo90 dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales.
Collapse
|
31
|
Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME JOURNAL 2018; 12:1252-1262. [PMID: 29358736 DOI: 10.1038/s41396-017-0035-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
Plants release a wide set of secondary metabolites including volatile organic compounds (VOCs). Many of those compounds are considered to function as defense against herbivory, pests, and pathogens. However, little knowledge exists about the role of belowground plant VOCs for attracting beneficial soil microorganisms. We developed an olfactometer system to test the attraction of soil bacteria by VOCs emitted by Carex arenaria roots. Moreover, we tested whether infection of C. arenaria with the fungal pathogen Fusarium culmorum modifies the VOCs profile and bacterial attraction. The results revealed that migration of distant bacteria in soil towards roots can be stimulated by plant VOCs. Upon fungal infection, the blend of root VOCs changed and specific bacteria with antifungal properties were attracted. Tests with various pure VOCs indicated that those compounds can diffuse over long distance but with different diffusion abilities. Overall, this work highlights the importance of plant VOCs in belowground long-distance plant-microbe interactions.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Maria Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Jasper Melenhorst
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.,Department of Soil Quality, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Swain DM, Yadav SK, Tyagi I, Kumar R, Kumar R, Ghosh S, Das J, Jha G. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat Commun 2017; 8:404. [PMID: 28864820 PMCID: PMC5581363 DOI: 10.1038/s41467-017-00529-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 07/05/2017] [Indexed: 11/09/2022] Open
Abstract
Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Isha Tyagi
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
34
|
Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol Mol Biol Rev 2017; 81:81/2/e00063-16. [PMID: 28404790 DOI: 10.1128/mmbr.00063-16] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously.
Collapse
|
35
|
S. RAO T, KUMAR RAJESH, BALAMURUGAN P, VITHAL GK. Microbial Fouling in a Water Treatment Plant and Its Control Using Biocides. Biocontrol Sci 2017; 22:105-119. [DOI: 10.4265/bio.22.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- T. S. RAO
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities
| | - RAJESH KUMAR
- Biofouling & Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities
| | | | | |
Collapse
|
36
|
Wu H, Li J, Liu W, Bai X, Liu D, Zhang J. Identification and characterization of ZL261, a novel Collimonas pratensis strain with antagonistic activity toward Monilinia fructicola. SCIENCE CHINA. LIFE SCIENCES 2016; 59:1345-1347. [PMID: 27734270 DOI: 10.1007/s11427-016-0066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Huiling Wu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jieqiong Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Weicheng Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xuelian Bai
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dewen Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiewei Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
37
|
Werner S, Polle A, Brinkmann N. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 2016; 100:8651-65. [DOI: 10.1007/s00253-016-7792-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 11/25/2022]
|
38
|
Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 2016; 92:fiw179. [PMID: 27559028 DOI: 10.1093/femsec/fiw179] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research.
Collapse
Affiliation(s)
- Sarah R Johnston
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Andrew J Weightman
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| |
Collapse
|
39
|
Schulz-Bohm K, Tyc O, de Boer W, Peereboom N, Debets F, Zaagman N, Janssens TKS, Garbeva P. Fungus-associated bacteriome in charge of their host behavior. Fungal Genet Biol 2016; 102:38-48. [PMID: 27486066 DOI: 10.1016/j.fgb.2016.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
Bacterial-fungal interactions are widespread in nature and there is a growing number of studies reporting distinct fungus-associated bacteria. However, little is known so far about how shifts in the fungus-associated bacteriome will affect the fungal host's lifestyle. In the present study, we describe for the first time the bacterial community associated with the saprotrophic fungus Mucor hiemalis, commonly found in soil and rhizosphere. Two broad-spectrum antibiotics that strongly altered the bacterial community associated with the fungus were applied. Our results revealed that the antibiotic treatment did not significantly reduce the amount of bacteria associated to the fungus but rather changed the community composition by shifting from initially dominating Alpha-Proteobacteria to dominance of Gamma-Proteobacteria. A novel approach was applied for the isolation of fungal-associated bacteria which also revealed differences between bacterial isolates obtained from the original and the antibiotic-treated M. hiemalis. The shift in the composition of the fungal-associated bacterial community led to significantly reduced fungal growth, changes in fungal morphology, behavior and secondary-metabolites production. Furthermore, our results showed that the antibiotic-treated isolate was more attractive and susceptible to mycophagous bacteria as compared to the original isolate. Overall, our study highlights the importance of the fungus-associated bacteriome for the host's lifestyle and interactions and indicate that isolation with antibacterials is not sufficient to eradicate the associated bacteria.
Collapse
Affiliation(s)
- Kristin Schulz-Bohm
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Olaf Tyc
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Wietse de Boer
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Department of Soil Quality, Wageningen University & Research Centre (WUR), PO Box 47, 6700 AA Wageningen, Netherlands
| | - Nils Peereboom
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands; Laboratory of Genetics, Wageningen University & Research Centre (WUR), PO Box 16, 6700 AA Wageningen, Netherlands
| | - Fons Debets
- Laboratory of Genetics, Wageningen University & Research Centre (WUR), PO Box 16, 6700 AA Wageningen, Netherlands
| | - Niels Zaagman
- MicroLife Solutions b.v., Science Park 406, 1098 XH Amsterdam, Netherlands
| | | | - Paolina Garbeva
- Department Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, PO Box 50, 6700 AB Wageningen, Netherlands.
| |
Collapse
|
40
|
Ballhausen MB, Vandamme P, de Boer W. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas. PLoS One 2016; 11:e0157552. [PMID: 27309848 PMCID: PMC4911057 DOI: 10.1371/journal.pone.0157552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Peter Vandamme
- Laboratory for Microbiology, Gent University, Gent, Belgium
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
41
|
Uroz S, Oger P, Tisserand E, Cébron A, Turpault MP, Buée M, De Boer W, Leveau JHJ, Frey-Klett P. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 2016; 6:27756. [PMID: 27302652 PMCID: PMC4908602 DOI: 10.1038/srep27756] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/25/2016] [Indexed: 11/09/2022] Open
Abstract
The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.
Collapse
Affiliation(s)
- S Uroz
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France.,INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, Champenoux, France
| | - P Oger
- UMR5276 Laboratoire de Géologie de Lyon, Ecole Normale de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - E Tisserand
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| | - A Cébron
- CNRS, LIEC UMR7360 Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France.,Université de Lorraine, LIEC UMR7360 Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France
| | - M-P Turpault
- INRA UR 1138 "Biogéochimie des Ecosystèmes Forestiers", Centre INRA de Nancy, Champenoux, France
| | - M Buée
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| | - W De Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Wageningen, The Netherlands
| | - J H J Leveau
- Department of Plant Pathology, University of California, Davis CA 95616, USA
| | - P Frey-Klett
- INRA-Université de Lorraine , UMR1136 « Interactions Arbres-Microorganismes », F-54280 Champenoux, France
| |
Collapse
|
42
|
Hervé V, Ketter E, Pierrat JC, Gelhaye E, Frey-Klett P. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood. PLoS One 2016; 11:e0147100. [PMID: 26824755 PMCID: PMC4732817 DOI: 10.1371/journal.pone.0147100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.
Collapse
Affiliation(s)
- Vincent Hervé
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
- * E-mail:
| | - Elodie Ketter
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| | - Jean-Claude Pierrat
- INRA, UMR 1092 LERFOB, F-54280 Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000 Nancy, France
| | - Eric Gelhaye
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| | - Pascale Frey-Klett
- INRA, Interactions Arbres–Microorganismes, UMR1136, F-54280 Champenoux, France
- Université de Lorraine, Interactions Arbres–Microorganismes, UMR1136, F-54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
43
|
Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P. Microbial Small Talk: Volatiles in Fungal-Bacterial Interactions. Front Microbiol 2016; 6:1495. [PMID: 26779150 PMCID: PMC4700264 DOI: 10.3389/fmicb.2015.01495] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that volatile organic compounds (VOCs) play an important role in the interactions between fungi and bacteria, two major groups of soil inhabiting microorganisms. Yet, most of the research has been focused on effects of bacterial volatiles on suppression of plant pathogenic fungi whereas little is known about the responses of bacteria to fungal volatiles. In the current study we performed a metabolomics analysis of volatiles emitted by several fungal and oomycetal soil strains under different nutrient conditions and growth stages. The metabolomics analysis of the tested fungal and oomycetal strains revealed different volatile profiles dependent on the age of the strains and nutrient conditions. Furthermore, we screened the phenotypic responses of soil bacterial strains to volatiles emitted by fungi. Two bacteria, Collimonas pratensis Ter291 and Serratia plymuthica PRI-2C, showed significant changes in their motility, in particular to volatiles emitted by Fusarium culmorum. This fungus produced a unique volatile blend, including several terpenes. Four of these terpenes were selected for further tests to investigate if they influence bacterial motility. Indeed, these terpenes induced or reduced swimming and swarming motility of S. plymuthica PRI-2C and swarming motility of C. pratensis Ter291, partly in a concentration-dependent manner. Overall the results of this work revealed that bacteria are able to sense and respond to fungal volatiles giving further evidence to the suggested importance of volatiles as signaling molecules in fungal-bacterial interactions.
Collapse
Affiliation(s)
- Ruth Schmidt
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Victor de Jager
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Soil Quality, Wageningen UniversityWageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| |
Collapse
|
44
|
Song C, Schmidt R, de Jager V, Krzyzanowska D, Jongedijk E, Cankar K, Beekwilder J, van Veen A, de Boer W, van Veen JA, Garbeva P. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics 2015; 16:1103. [PMID: 26704531 PMCID: PMC4690342 DOI: 10.1186/s12864-015-2289-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Collimonas is a genus belonging to the class of Betaproteobacteria and consists mostly of soil bacteria with the ability to exploit living fungi as food source (mycophagy). Collimonas strains differ in a range of activities, including swimming motility, quorum sensing, extracellular protease activity, siderophore production, and antimicrobial activities. RESULTS In order to reveal ecological traits possibly related to Collimonas lifestyle and secondary metabolites production, we performed a comparative genomics analysis based on whole-genome sequencing of six strains representing 3 recognized species. The analysis revealed that the core genome represents 43.1 to 52.7% of the genomes of the six individual strains. These include genes coding for extracellular enzymes (chitinase, peptidase, phospholipase), iron acquisition and type II secretion systems. In the variable genome, differences were found in genes coding for secondary metabolites (e.g. tripropeptin A and volatile terpenes), several unknown orphan polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), nonribosomal peptide synthetase (NRPS) gene clusters, a new lipopeptide and type III and type VI secretion systems. Potential roles of the latter genes in the interaction with other organisms were investigated. Mutation of a gene involved in tripropeptin A biosynthesis strongly reduced the antibacterial activity against Staphylococcus aureus, while disruption of a gene involved in the biosynthesis of the new lipopeptide had a large effect on the antifungal/oomycetal activities. CONCLUSIONS Overall our results indicated that Collimonas genomes harbour many genes encoding for novel enzymes and secondary metabolites (including terpenes) important for interactions with other organisms and revealed genomic plasticity, which reflect the behaviour, antimicrobial activity and lifestylesof Collimonas spp.
Collapse
Affiliation(s)
- Chunxu Song
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Ruth Schmidt
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Victor de Jager
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Dorota Krzyzanowska
- Laboratory of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG&MUG, Kladki 24, Gdansk, 80-822, Poland.
| | - Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| | - Katarina Cankar
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Jules Beekwilder
- Business Unit Bioscience, Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | - Anouk van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Wietse de Boer
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Johannes A van Veen
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
45
|
Ballhausen MB, van Veen JA, Hundscheid MPJ, de Boer W. Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria. Front Microbiol 2015; 6:1416. [PMID: 26733962 PMCID: PMC4687392 DOI: 10.3389/fmicb.2015.01416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 01/01/2023] Open
Abstract
Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires targeted isolation methods. In this study, we compared two different approaches to obtain mycophagous bacteria from rhizospheric soil. A short-term method based on baiting for bacteria that can rapidly adhere to fungal hyphae and a long-term method based on the enrichment of bacteria on fungal hyphae via repeated transfer. Hyphae-adhering bacteria were isolated, identified by 16S rDNA sequencing and tested for antifungal activity and the ability to feed on fungi as the sole source of carbon. Both methods yielded a range of potentially mycophagous bacterial isolates with little phylogenetic overlap. We also found indications for feeding preferences among the potentially mycophagous bacteria. Our results indicate that mycophagy could be an important growth strategy for rhizosphere bacteria. To our surprise, we found several potential plant pathogenic bacteria among the mycophagous isolates. We discuss the possible benefits that these bacteria might gain from colonizing fungal hyphae.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Plant Health, Institute for Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Department of Soil Quality, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
46
|
Rudnick MB, van Veen JA, de Boer W. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas? ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:709-14. [PMID: 25858310 DOI: 10.1111/1758-2229.12290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/31/2015] [Indexed: 05/21/2023]
Abstract
Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil matrix. Oxalic acid is ubiquitously secreted by soil fungi, serving different purposes. In this study, we investigated the possibility that collimonads might use oxalic acid secretion to localize a fungal host and move towards it. We first confirmed earlier indications that collimonads have a very limited ability to use oxalic acid as growth substrate. In a second step, with using different assays, we show that oxalic acid triggers bacterial movement in such a way that accumulation of cells can be expected at micro-sites with high free oxalic acid concentrations. Based on these observations we propose that oxalic acid functions as a signal molecule to guide collimonads to hyphal tips, the mycelial zones that are most sensitive for mycophagous bacterial attack.
Collapse
Affiliation(s)
- M B Rudnick
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
- Department of Plant Health, Institute for Vegetable and Ornamental Crops, Großbeeren/Erfurt e.V., Theodor Echtermeyer Weg 1, D-14979, Großbeeren, Germany
| | - J A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - W de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, The Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
47
|
de Boer W, Hundscheid MPJ, Klein Gunnewiek PJA, de Ridder-Duine AS, Thion C, van Veen JA, van der Wal A. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi. PLoS One 2015; 10:e0137988. [PMID: 26393509 PMCID: PMC4578881 DOI: 10.1371/journal.pone.0137988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/24/2015] [Indexed: 01/26/2023] Open
Abstract
Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum) on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge) in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2), whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro) antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, 6708 PB, the Netherlands
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | | | - Annelies S. de Ridder-Duine
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Cecile Thion
- School of Biological Science, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Insititute of Biology, Leiden University, Leiden, 2333 BE, the Netherlands
| | - Annemieke van der Wal
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- * E-mail:
| |
Collapse
|
48
|
Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM. Fungal invasion of the rhizosphere microbiome. ISME JOURNAL 2015; 10:265-8. [PMID: 26023875 DOI: 10.1038/ismej.2015.82] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 11/09/2022]
Abstract
The rhizosphere is the infection court where soil-borne pathogens establish a parasitic relationship with the plant. To infect root tissue, pathogens have to compete with members of the rhizosphere microbiome for available nutrients and microsites. In disease-suppressive soils, pathogens are strongly restricted in growth by the activities of specific rhizosphere microorganisms. Here, we sequenced metagenomic DNA and RNA of the rhizosphere microbiome of sugar beet seedlings grown in a soil suppressive to the fungal pathogen Rhizoctonia solani. rRNA-based analyses showed that Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae and Sphingomonadaceae were significantly more abundant in the rhizosphere upon fungal invasion. Metatranscriptomics revealed that stress-related genes (ppGpp metabolism and oxidative stress) were upregulated in these bacterial families. We postulate that the invading pathogenic fungus induces, directly or via the plant, stress responses in the rhizobacterial community that lead to shifts in microbiome composition and to activation of antagonistic traits that restrict pathogen infection.
Collapse
Affiliation(s)
- Emilie Chapelle
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Rodrigo Mendes
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.,Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariuna, Brazil
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
49
|
Wolf AB, Rudnick MB, de Boer W, Kowalchuk GA. Early colonizers of unoccupied habitats represent a minority of the soil bacterial community. FEMS Microbiol Ecol 2015; 91:fiv024. [PMID: 25778508 DOI: 10.1093/femsec/fiv024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/14/2022] Open
Abstract
In order to understand (re-)colonization of microhabitats and bacterial succession in soil, it is important to understand which members of soil bacterial communities are most motile in the porous soil matrix. To address this issue, we carried out a series of experiments in sterilized soil microcosms. Using two different model strains, Pseudomonas fluorescens strain Pf0-1 and Collimonas fungivorans strain Ter331, we first determined the influence of nutrient availability on bacterial expansion rates. Based on these results, we then conducted similar microcosm experiments to examine microbial mobility within natural soil bacterial communities under a single nutrient regime. The expansion of bacterial populations within the community was assayed by quantitative PCR and pyrosequencing of 16S rRNA gene fragments. We observed that only a relatively small subset of the total community was able to expand to an appreciable distance (more than 2 cm) within 48 h, with the genera Undibacterium, Pseudomonas and Massilia and especially the family Enterobacteriaceae dominating the communities more distant from the point of inoculation. These results suggest that (re-)colonization of open habitats in soil may be dominated by a few rapidly moving species, which may have important consequences for microbial succession.
Collapse
Affiliation(s)
- Alexandra B Wolf
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, U.S.A
| | - Max-Bernhard Rudnick
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Plant Health, Institute for Vegetable and Ornamental Crops, Großbeeren/Erfurt e.V., Theodor Echtermeyer Weg 1, D-14979 Großbeeren, Germany
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Soil Quality, Wageningen University, 6700AA Wageningen, the Netherlands
| | - George A Kowalchuk
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, the Netherlands Department of Ecological Science, Free University of Amsterdam, 1081 HV Amsterdam, the Netherlands Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
50
|
Abstract
We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads.
Collapse
|