1
|
Ferrara KM, Gupta KR, Pi H. Bacterial Organelles in Iron Physiology. Mol Microbiol 2024; 122:914-928. [PMID: 39545931 DOI: 10.1111/mmi.15330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Bacteria were once thought to be simple organisms, lacking the membrane-bound organelles found in eukaryotic cells. However, recent advancements in microscopy have changed this view, revealing a diverse array of organelles within bacterial cells. These organelles, surrounded by lipid bilayers, protein-lipid monolayers, or proteinaceous shells, play crucial roles in facilitating biochemical reactions and protecting cells from harmful byproducts. Unlike eukaryotic organelles, which are universally present, bacterial organelles are species-specific and induced only under certain conditions. This review focuses on the bacterial organelles that contain iron, an essential micronutrient for all life forms but potentially toxic when present in excess. To date, three types of iron-related bacterial organelles have been identified: two membrane-bound organelles, magnetosomes and ferrosomes, and one protein-enclosed organelle, the encapsulated ferritin-like proteins. This article provides an updated overview of the genetics, biogenesis, and physiological functions of these organelles. Furthermore, we discuss how bacteria utilize these specialized structures to adapt, grow, and survive under various environmental conditions.
Collapse
Affiliation(s)
- Kristina M Ferrara
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kuldeepkumar R Gupta
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Liu Y, Zhang Y, Huang Y, Niu J, Huang J, Peng X, Peng F. Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4-2, a strain obtained from Antarctica. Front Microbiol 2023; 14:1040201. [PMID: 36876078 PMCID: PMC9975570 DOI: 10.3389/fmicb.2023.1040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4-2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4-2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4-2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4-2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4-2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics.
Collapse
Affiliation(s)
- Yixuan Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yudi Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Niu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoya Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Chen WT, Chien CC, Ho WS, Ou JH, Chen SC, Kao CM. Effects of treatment processes on AOC removal and changes of bacterial diversity in a water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114853. [PMID: 35276566 DOI: 10.1016/j.jenvman.2022.114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of different treatment processes on assimilable organic carbon (AOC) removal and bacterial diversity variations was evaluated in a water treatment plant. The van der Kooij technique was applied for AOC analysis and responses of bacterial communities were characterized by the metagenomics assay. Results show that the AOC concentrations were about 93, 148, 43, 51, 37, and 38 μg acetate-C/L in effluents of raw water basin, preozonation, rapid sand filtration (RSF), ozonation, biofiltration [biological activated carbon (BAC) filtration], and chlorination (clear water), respectively. Increased AOC concentrations were observed after preozonation, ozonation, and chlorination units due to the production of biodegradable organic matters after the oxidation processes. Results indicate that the oxidation processes were the main causes of AOC formation, which resulted in significant increases in AOC concentrations (18-59% increment). The AOC removal efficiencies were 47, 28, and 60% in the RSF, biofiltration, and the whole system, respectively. RSF and biofiltration were responsible for the AOC treatment and both processes played key roles in AOC removal. Thus, both RSF and biofiltration processes would contribute to AOC treatment after oxidation. Sediments from the raw water basin and filter samples from RSF and BAC units were collected and analyzed for bacterial communities. Results from scanning electron microscope analysis indicate that bacterial colonization was observed in filter materials. This indicates that the surfaces of the filter materials were beneficial to bacterial growth and AOC removal via the adsorption and biodegradation mechanisms. Next generation sequencing analyses demonstrate that water treatment processes resulted in the changes of bacterial diversity and community profiles in filters of RSF and BAC. According to the findings of bacterial composition and interactions, the dominant bacterial phyla were Proteobacteria (41% in RSF and 56% in BAC) followed by Planctomycetes and Acidobacteria in RSF and BAC systems, which might affect the AOC biodegradation efficiency. Results would be useful in developing AOC treatment and management processes in water treatment plants.
Collapse
Affiliation(s)
- W T Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C C Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - W S Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - J H Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Flood BE, Louw DC, Van der Plas AK, Bailey JV. Giant sulfur bacteria (Beggiatoaceae) from sediments underlying the Benguela upwelling system host diverse microbiomes. PLoS One 2021; 16:e0258124. [PMID: 34818329 PMCID: PMC8612568 DOI: 10.1371/journal.pone.0258124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.
Collapse
Affiliation(s)
- Beverly E. Flood
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
- * E-mail:
| | - Deon C. Louw
- National Marine Information and Research Centre, Swakopmund, Namibia
| | | | - Jake V. Bailey
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
5
|
Merz E, Dick GJ, de Beer D, Grim S, Hübener T, Littmann S, Olsen K, Stuart D, Lavik G, Marchant HK, Klatt JM. Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environ Microbiol 2020; 23:1422-1435. [PMID: 33264477 DOI: 10.1111/1462-2920.15345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Diatoms are among the few eukaryotes known to store nitrate (NO3 - ) and to use it as an electron acceptor for respiration in the absence of light and O2 . Using microscopy and 15 N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 - at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.
Collapse
Affiliation(s)
- Elisa Merz
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Gregory J Dick
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Sharon Grim
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas Hübener
- Department of Botany and Botanical Garden, University of Rostock, Institute of Biosciences, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Kirk Olsen
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dack Stuart
- University of Michigan, Cooperative Institute for Great Lakes Research, Ann Arbor, Michigan, USA
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Hannah K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Judith M Klatt
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany.,Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Abstract
The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.
Collapse
|
7
|
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions. Front Microbiol 2016; 7:964. [PMID: 27446006 PMCID: PMC4914600 DOI: 10.3389/fmicb.2016.00964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.
Collapse
Affiliation(s)
- Matthias Winkel
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Section Geomicrobiology, GFZ German Research Centre for Geoscience, Helmholtz Centre PotsdamPotsdam, Germany
| | - Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep-sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek CA, USA
| | - Michael Richter
- Microbial Genomics and Bioinformatics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Marc Mußmann
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
8
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
9
|
Mansor M, Hamilton TL, Fantle MS, Macalady JL. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol 2015; 6:822. [PMID: 26322031 PMCID: PMC4530308 DOI: 10.3389/fmicb.2015.00822] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces at sites throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs (WMS), FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity). The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V)-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.
Collapse
Affiliation(s)
- Muammar Mansor
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| | - Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Matthew S Fantle
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| | - Jennifer L Macalady
- Geosciences Department, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
10
|
Kojima H, Ogura Y, Yamamoto N, Togashi T, Mori H, Watanabe T, Nemoto F, Kurokawa K, Hayashi T, Fukui M. Ecophysiology of Thioploca ingrica as revealed by the complete genome sequence supplemented with proteomic evidence. THE ISME JOURNAL 2015; 9:1166-76. [PMID: 25343513 PMCID: PMC4409161 DOI: 10.1038/ismej.2014.209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/15/2023]
Abstract
Large sulfur-oxidizing bacteria, which accumulate a high concentration of nitrate, are important constituents of aquatic sediment ecosystems. No representative of this group has been isolated in pure culture, and only fragmented draft genome sequences are available for these microorganisms. In this study, we successfully reconstituted the genome of Thioploca ingrica from metagenomic sequences, thereby generating the first complete genome sequence from this group. The Thioploca samples for the metagenomic analysis were obtained from a freshwater lake in Japan. A PCR-free paired-end library was constructed from the DNA extracted from the samples and was sequenced on the Illumina MiSeq platform. By closing gaps within and between the scaffolds, we obtained a circular chromosome and a plasmid-like element. The reconstituted chromosome was 4.8 Mbp in length with a 41.2% GC content. A sulfur oxidation pathway identical to that suggested for the closest relatives of Thioploca was deduced from the reconstituted genome. A full set of genes required for respiratory nitrate reduction to dinitrogen gas was also identified. We further performed a proteomic analysis of the Thioploca sample and detected many enzymes/proteins involved in sulfur oxidation, nitrate respiration and inorganic carbon fixation as major components of the protein extracts from the sample, suggesting that these metabolic activities are strongly associated with the physiology of T. ingrica in lake sediment.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Nozomi Yamamoto
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomoaki Togashi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroshi Mori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Fumiko Nemoto
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Metatranscriptomic analysis of diminutive Thiomargarita-like bacteria ("Candidatus Thiopilula" spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 2015; 81:3142-56. [PMID: 25724961 DOI: 10.1128/aem.00039-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including "Candidatus Thiopilula" spp. and "Ca. Thiophysa" spp. We discovered a population of "Ca. Thiopilula" spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 μm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados "Ca. Thiopilula" organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for "Ca. Thiopilula" and other sulfur-oxidizing microorganisms in the community. The novel observations of "Ca. Thiopilula" and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities.
Collapse
|
12
|
Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar CS, Houbraken J, Boekhout T, de Beer D, Stoeck T. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol 2014; 14:35. [PMID: 24517718 PMCID: PMC3928326 DOI: 10.1186/1471-2180-14-35] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A wealth of microbial eukaryotes is adapted to life in oxygen-deficient marine environments. Evidence is accumulating that some of these eukaryotes survive anoxia by employing dissimilatory nitrate reduction, a strategy that otherwise is widespread in prokaryotes. Here, we report on the anaerobic nitrate metabolism of the fungus Aspergillus terreus (isolate An-4) that was obtained from sediment in the seasonal oxygen minimum zone in the Arabian Sea, a globally important site of oceanic nitrogen loss and nitrous oxide emission. RESULTS Axenic incubations of An-4 in the presence and absence of oxygen and nitrate revealed that this fungal isolate is capable of dissimilatory nitrate reduction to ammonium under anoxic conditions. A ¹⁵N-labeling experiment proved that An-4 produced and excreted ammonium through nitrate reduction at a rate of up to 175 nmol ¹⁵NH₄⁺ g⁻¹ protein h⁻¹. The products of dissimilatory nitrate reduction were ammonium (83%), nitrous oxide (15.5%), and nitrite (1.5%), while dinitrogen production was not observed. The process led to substantial cellular ATP production and biomass growth and also occurred when ammonium was added to suppress nitrate assimilation, stressing the dissimilatory nature of nitrate reduction. Interestingly, An-4 used intracellular nitrate stores (up to 6-8 μmol NO₃⁻ g⁻¹ protein) for dissimilatory nitrate reduction. CONCLUSIONS Our findings expand the short list of microbial eukaryotes that store nitrate intracellularly and carry out dissimilatory nitrate reduction when oxygen is absent. In the currently spreading oxygen-deficient zones in the ocean, an as yet unexplored diversity of fungi may recycle nitrate to ammonium and nitrite, the substrates of the major nitrogen loss process anaerobic ammonium oxidation, and the potent greenhouse gas nitrous oxide.
Collapse
Affiliation(s)
- Peter Stief
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
- Department of Biology, University of Southern Denmark, NordCEE, Campusvej 55, 5230 Odense M, Denmark
| | - Silvia Fuchs-Ocklenburg
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anja Kamp
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
- Jacobs University Bremen, Molecular Life Science Research Center, Bremen, Germany
| | | | - Jos Houbraken
- CBS-KNAW Fungal Diversity Centre, Utrecht, The Netherlands
| | - Teun Boekhout
- CBS-KNAW Fungal Diversity Centre, Utrecht, The Netherlands
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
13
|
Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 2013; 104:169-86. [PMID: 23793621 DOI: 10.1007/s10482-013-9952-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery. In some taxa, it has been demonstrated that the vacuole can also serve for the storage of high millimolar concentrations of nitrate. Over the course of the past two centuries, a wide range of morphological variation within the family Beggiatoaceae has been found. However, representatives of this clade are frequently recalcitrant to current standard microbiological techniques, including 16S rRNA gene sequencing and culturing, and a reliable classification of these bacteria is often complicated. Here we present a summary of the efforts made and achievements accomplished in the past years, and give perspectives for investigating the heterogeneity and possible evolutionary developments in this extraordinary group of bacteria.
Collapse
Affiliation(s)
- Verena Salman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA.
| | | | | |
Collapse
|