1
|
Singh P, Singh SM, Segawa T, Singh PK. Bacterial diversity and biopotentials of Hamtah glacier cryoconites, Himalaya. Front Microbiol 2024; 15:1362678. [PMID: 38751720 PMCID: PMC11094618 DOI: 10.3389/fmicb.2024.1362678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
Cryoconite is a granular structure present on the glaciers and ice sheets found in polar regions including the Himalayas. It is composed of organic and inorganic matter which absorb solar radiations and reduce ice surface albedo, therefore impacting the melting and retreat of glaciers. Though climate warming has a serious impact on Himalayan glaciers, the biodiversity of sub-glacier ecosystems is poorly understood. Moreover, cryoconite holes are unique habitats for psychrophile biodiversity hotspots in the NW Himalayas, but unfortunately, studies on the microbial diversity of such habitats remain elusive. Therefore, the current study was designed to explore the bacterial diversity of the Hamtah Glacier Himalaya using both culturable and non-culturable approaches. The culturable bacterial count ranged from 2.0 × 103 to 8.8 × 105 colony-forming units (CFUs)/g at the different locations of the glacier. A total of 88 bacterial isolates were isolated using the culturable approach. Based on the 16S ribosomal RNA gene (16S rRNA), the identified species belong to seven genera, namely, Cryobacterium, Duganella, Janthinobacterium, Pseudomonas, Peribacillus, Psychrobacter, and Sphingomonas. In the non-culturable approach, high-throughput sequencing of 16S rRNA genes (using MiSeq) showed unique bacterial community profiles and represented 440 genera belonging to 20 phyla, namely, Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Acidobacteria, Planctomycetes, Cyanobacteria, Verrucomicrobia, Spirochaetes, Elusimicrobia, Armatimonadetes, Gemmatimonadetes, Deinococcus-Thermus, Nitrospirae, Chlamydiae, Chlorobi, Deferribacteres, Fusobacteria, Lentisphaerae, and others. High relative abundances of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were observed in the samples. Phototrophic (Cyanobacteria and Chloroflexi) and nitrifier (Nitrospirae) in bacterial populations indicated sustenance of the micro-ecosystem in the oligotrophic glacier environment. The isolates varied in their phenotypic characteristics, enzyme activities, and antibiotic sensitivity. Furthermore, the fatty acid profiles of bacterial isolates indicate the predominance of branched fatty acids. Iso-, anteiso-, unsaturated and saturated fatty acids together constituted a major proportion of the total fatty acid composition. High cold-adapted enzyme activities such as lipase and cellulase expressed by Cryobacterium arcticum (KY783365) and protease and cellulase activities by Pseudomonas sp. strains (KY783373, KY783377-79, KY783382) provide evidence of the possible applications of these organisms. Additionally, antibiotic tests indicated that most isolates were sensitive to antibiotics. In conclusion, the present study contributed for the first time to bacterial diversity and biopotentials of cryoconites of Hamtah Glacier, Himalayas. Furthermore, the cold-adapted enzymes and polyunsaturated fatty acids (PUFAs) may provide an opportunity for biotechnology in the Himalayas. Inductively coupled plasma mass spectrometry (ICPMS) analyses showed the presence of several elements in cryoconites, providing a clue for the accelerating melting and retreating of the Hamtah glacier.
Collapse
Affiliation(s)
- Purnima Singh
- Indian Institute of Technology, Banaras Hindu University (IIT-BHU), Varanasi, India
| | | | - Takahiro Segawa
- National Institute of Polar Research, Tachikawa-shi, Tokyo, Japan
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College, Mizoram University (A Central University), Aizawl, India
| |
Collapse
|
2
|
Rassner SME, Cook JM, Mitchell AC, Stevens IT, Irvine-Fynn TDL, Hodson AJ, Edwards A. The distinctive weathering crust habitat of a High Arctic glacier comprises discrete microbial micro-habitats. Environ Microbiol 2024; 26:e16617. [PMID: 38558266 DOI: 10.1111/1462-2920.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.
Collapse
Affiliation(s)
| | - Joseph M Cook
- Department of Life Sciences, Aberystwyth University, Wales, UK
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Andrew C Mitchell
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | - Ian T Stevens
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | | | - Andrew J Hodson
- Department of Arctic Geology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
| | - Arwyn Edwards
- Department of Life Sciences, Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Norway
| |
Collapse
|
3
|
Hay MC, Mitchell AC, Soares AR, Debbonaire AR, Mogrovejo DC, Els N, Edwards A. Metagenome-assembled genomes from High Arctic glaciers highlight the vulnerability of glacier-associated microbiota and their activities to habitat loss. Microb Genom 2023; 9. [PMID: 37937832 DOI: 10.1099/mgen.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.
Collapse
Affiliation(s)
- Melanie C Hay
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hertfordshire, UK
| | - Andrew C Mitchell
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
| | - Andre R Soares
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Aliyah R Debbonaire
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Diana C Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nora Els
- Department of Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Arwyn Edwards
- Department of Life Sciences (DLS), Aberystwyth University, Wales, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
- Department of Arctic Biology, University Centre in Svalbard (UNIS), Longyearbyen, Svalbard and Jan Mayen
| |
Collapse
|
4
|
Wallace ML, Tallarida N, Schubert WW, Lambert J. Life Detection on Icy Moons Using Flow Cytometry and Exogenous Fluorescent Stains. ASTROBIOLOGY 2023; 23:1071-1082. [PMID: 37672625 DOI: 10.1089/ast.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Flow cytometry is a potential technology for in situ life detection on icy moons (such as Enceladus and Europa) and on the polar ice caps of Mars. We developed a method for using flow cytometry to positively identify four classes of biomarkers using exogenous fluorescent stains: nucleic acids, proteins, carbohydrates, and lipids. We demonstrated the effectiveness of exogenous stains with six known organisms and known abiotic material and showed that the cytometer is easily able to distinguish between the known organisms and the known abiotic material using the exogenous stains. To simulate a life-detection experiment on an icy world lander, we used six natural samples with unknown biotic and abiotic content. We showed that flow cytometry can identify all four biomarkers using the exogenous stains and can separate the biotic material from the known abiotic material on scatter plots. Exogenous staining techniques would likely be used in conjunction with intrinsic fluorescence, clustering, and sorting for a more complete and capable life-detection instrument on an icy moon lander.
Collapse
Affiliation(s)
- Matthew L Wallace
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Nicholas Tallarida
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Wayne W Schubert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - James Lambert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Strona G, Bradshaw CJA, Cardoso P, Gotelli NJ, Guillaume F, Manca F, Mustonen V, Zaman L. Time-travelling pathogens and their risk to ecological communities. PLoS Comput Biol 2023; 19:e1011268. [PMID: 37498846 PMCID: PMC10374110 DOI: 10.1371/journal.pcbi.1011268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Permafrost thawing and the potential 'lab leak' of ancient microorganisms generate risks of biological invasions for today's ecological communities, including threats to human health via exposure to emergent pathogens. Whether and how such 'time-travelling' invaders could establish in modern communities is unclear, and existing data are too scarce to test hypotheses. To quantify the risks of time-travelling invasions, we isolated digital virus-like pathogens from the past records of coevolved artificial life communities and studied their simulated invasion into future states of the community. We then investigated how invasions affected diversity of the free-living bacteria-like organisms (i.e., hosts) in recipient communities compared to controls where no invasion occurred (and control invasions of contemporary pathogens). Invading pathogens could often survive and continue evolving, and in a few cases (3.1%) became exceptionally dominant in the invaded community. Even so, invaders often had negligible effects on the invaded community composition; however, in a few, highly unpredictable cases (1.1%), invaders precipitated either substantial losses (up to -32%) or gains (up to +12%) in the total richness of free-living species compared to controls. Given the sheer abundance of ancient microorganisms regularly released into modern communities, such a low probability of outbreak events still presents substantial risks. Our findings therefore suggest that unpredictable threats so far confined to science fiction and conjecture could in fact be powerful drivers of ecological change.
Collapse
Affiliation(s)
- Giovanni Strona
- European Commission, Joint Research Centre, Directorate D-Sustainable Resources, Ispra, Italy
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, Australia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research-LIBRe, Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Nicholas J Gotelli
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Frédéric Guillaume
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Federica Manca
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Ville Mustonen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Varliero G, Lebre PH, Frey B, Fountain AG, Anesio AM, Cowan DA. Glacial Water: A Dynamic Microbial Medium. Microorganisms 2023; 11:1153. [PMID: 37317127 DOI: 10.3390/microorganisms11051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Microbial communities and nutrient dynamics in glaciers and ice sheets continuously change as the hydrological conditions within and on the ice change. Glaciers and ice sheets can be considered bioreactors as microbiomes transform nutrients that enter these icy systems and alter the meltwater chemistry. Global warming is increasing meltwater discharge, affecting nutrient and cell export, and altering proglacial systems. In this review, we integrate the current understanding of glacial hydrology, microbial activity, and nutrient and carbon dynamics to highlight their interdependence and variability on daily and seasonal time scales, as well as their impact on proglacial environments.
Collapse
Affiliation(s)
- Gilda Varliero
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Andrew G Fountain
- Departments of Geology and Geography, Portland State University, Portland, OR 97212, USA
| | - Alexandre M Anesio
- Department of Environmental Science, iClimate, Aarhus University, DK-4000 Roskilde, Denmark
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
7
|
Glaciers as microbial habitats: current knowledge and implication. J Microbiol 2022; 60:767-779. [DOI: 10.1007/s12275-022-2275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
|
8
|
Qi J, Ji M, Wang W, Zhang Z, Liu K, Huang Z, Liu Y. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154980. [PMID: 35378188 DOI: 10.1016/j.scitotenv.2022.154980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The glacier of the Tibetan Plateau (TP) is influenced by the Indian monsoon and continental westerlies. Wind flow can carry a variety of bacteria and disperse across the TP. Once these bacteria are colonized to the glacier surface, they could affect the biogeochemical cycle of the glacial ecosystems. However, very few studies have focused on the relationships between these airborne bacteria and atmospheric circulation over glaciers of the TP. Here we studied the diversity, taxonomic composition, and community structure of airborne bacteria on six TP glaciers using 16S rRNA gene sequencing. The results revealed an increase in the airborne bacterial diversity over the glaciers under the effect of the Indian monsoon. Airborne bacteria were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, while relative abundances of Bacteroidetes and Firmicutes were significantly higher under the influence of the Indian monsoon in the southern and central of the TP, respectively. Moreover, significantly different airborne bacterial community structures were observed over glaciers under the influence of the Indian monsoon, which could be explained by the increased community stochasticity. In addition, the Indian monsoon increases the diversity and relative abundance of potential pathogens, which includes the most notorious bacteria such as Pseudomonas fluorescens, Staphylococcus aureus, and Clostridium butyricum. Our results revealed for the first time that atmospheric circulation influences the composition of airborne bacteria over the glaciers on the TP, this may provide critical insights into the distinct microbial community structure and function in glaciers across the TP.
Collapse
Affiliation(s)
- Jing Qi
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Wenqiang Wang
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Han D, Son M, Eom KH, Park YT, Choi M, Kim J, Kim TH. Distribution of dissolved organic carbon linked to bacterial community composition during the summer melting season in Arctic fjords. Polar Biol 2022. [DOI: 10.1007/s00300-021-02995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Irvine-Fynn TDL, Edwards A, Stevens IT, Mitchell AC, Bunting P, Box JE, Cameron KA, Cook JM, Naegeli K, Rassner SME, Ryan JC, Stibal M, Williamson CJ, Hubbard A. Storage and export of microbial biomass across the western Greenland Ice Sheet. Nat Commun 2021; 12:3960. [PMID: 34172727 PMCID: PMC8233322 DOI: 10.1038/s41467-021-24040-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10−2 m d−1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m−2 d−1 to supraglacial streams, equivalent to a carbon flux up to 250 g km−2 d−1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km−2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed. Microbes that colonise ice sheet surfaces are important to the carbon cycle, but their biomass and transport remains unquantified. Here, the authors reveal substantial microbial carbon fluxes across Greenland’s ice surface, in quantities that may sustain subglacial heterotrophs and fuel methanogenesis.
Collapse
Affiliation(s)
- T D L Irvine-Fynn
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK.
| | - A Edwards
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - I T Stevens
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK.,School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Environmental Science, Aarhus University, Frederiksborgvej, Roskilde, Denmark
| | - A C Mitchell
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - P Bunting
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - J E Box
- Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - K A Cameron
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.,Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark.,School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - J M Cook
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.,Department of Environmental Science, Aarhus University, Frederiksborgvej, Roskilde, Denmark.,Department of Geography, University of Sheffield, Sheffield, UK
| | - K Naegeli
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK.,Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - S M E Rassner
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - J C Ryan
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - M Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - C J Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK
| | - A Hubbard
- Centre for Gas Hydrate, Environment and Climate, Department of Geosciences, UiT-The Arctic University of Norway, Tromsø, Norway.,Geography Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Mori F, Nishimura T, Wakamatsu T, Terada T, Morono Y. Simple In-liquid Staining of Microbial Cells for Flow Cytometry Quantification of the Microbial Population in Marine Subseafloor Sediments. Microbes Environ 2021; 36:ME21031. [PMID: 34433737 PMCID: PMC8446754 DOI: 10.1264/jsme2.me21031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial cell counting provides essential information for the study of cell abundance profiles and biogeochemical interactions with the surrounding environments. However, it often requires labor-intensive and time-consuming processes, particularly for subseafloor sediment samples, in which non-cell particles are abundant. We developed a rapid and straightforward method for staining microbial intracellular DNA by SYBR Green I (SYBR-I) to enumerate cells by flow cytometry (FCM). We initially examined the efficiency of microbial cell staining at various dye/sediment ratios (volume ratio of SYBR-I/sediment [vSYBR/vSed]). Non-cell particles in sediment strongly and preferentially adsorbed SYBR-I dye, resulting in the unsuccessful staining of microbial cells when an insufficient ratio (<1.63 vSYBR/vSed) of SYBR-I dye was present per volume of sediment. SYBR-I dye at an abundance of 10 vSYBR/vSed successfully and stably stained microbial cells in green fluorescence, while the fluorescent color of non-cell particles red-shifted to yellow-orange with the overaccumulation of SYBR-I dye. A low vSYBR/vSed ratio was quickly recognized by a colorless supernatant after centrifugation. At the appropriate vSYBR/vSed ratio, FCM-measured cell concentrations in subseafloor sediments were consistently similar to microscopy counts (>106 cells cm-3). Samples with low cell abundance (<105 cells cm-3) still require cell separation. This modified staining allows us to efficiently process and perform the microbial cell counting of sediment samples to a depth of a few hundred meters below the seafloor with a higher throughput and capability to scale up than procedures employing microscopy-based observations.
Collapse
Affiliation(s)
- Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Tomoya Nishimura
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Taisuke Wakamatsu
- Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Monobe B200, Nankoku, Kochi 783–8502, Japan
| | - Takeshi Terada
- Marine Works Japan Ltd., Oppama-higashi 3–54–1, Yokosuka 237–0063, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Earth-Marine Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783–8502, Japan
| |
Collapse
|
12
|
Cameron KA, Müller O, Stibal M, Edwards A, Jacobsen CS. Glacial microbiota are hydrologically connected and temporally variable. Environ Microbiol 2020; 22:3172-3187. [PMID: 32383292 DOI: 10.1111/1462-2920.15059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/15/2020] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow-covered to bare-ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream.
Collapse
Affiliation(s)
- Karen A Cameron
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK.,Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Marek Stibal
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK
| | - Carsten Suhr Jacobsen
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| |
Collapse
|
13
|
Edwards A, Cameron KA, Cook JM, Debbonaire AR, Furness E, Hay MC, Rassner SM. Microbial genomics amidst the Arctic crisis. Microb Genom 2020; 6:e000375. [PMID: 32392124 PMCID: PMC7371112 DOI: 10.1099/mgen.0.000375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.
Collapse
Affiliation(s)
- Arwyn Edwards
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Karen A. Cameron
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Joseph M. Cook
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Aliyah R. Debbonaire
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Eleanor Furness
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Melanie C. Hay
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| | - Sara M.E. Rassner
- Interdisciplinary Centre for Environmental Microbiology, Institute of Biological, Environmental and Rural Sciences, Cledwyn Building, Aberystwyth University, Cymru SY23 3DD, UK
| |
Collapse
|
14
|
Deng L, Fiskal A, Han X, Dubois N, Bernasconi SM, Lever MA. Improving the Accuracy of Flow Cytometric Quantification of Microbial Populations in Sediments: Importance of Cell Staining Procedures. Front Microbiol 2019; 10:720. [PMID: 31024498 PMCID: PMC6465615 DOI: 10.3389/fmicb.2019.00720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
The accuracy of flow cytometric (FCM) quantifications of microbial populations in sediments varies with FCM settings, cell extraction and staining protocols, as well as sample types. In the present study, we improve the accuracy of FCM for enumerating microorganisms inhabiting diverse lake and marine sediment types based on extensive tests with FCM settings, extraction buffer chemical compositions, cell separation methods, and staining procedures. Tests on the FCM settings, (e.g., acquisition time, rates of events) and salinity of extraction solutions show minor impacts on FCM enumerations and yields of cell extraction, respectively. Existing methods involving hydrofluoric acid (HF) treatment to release sediment-attached cells into solution prove effective on both marine and freshwater samples. Yet, different staining techniques (direct staining of cell extracts, staining of membrane-filtered cell extracts) produce clear differences in cell number estimates. We demonstrate that, while labor-intensive membrane-staining generates high cell staining efficiency and accurate cell counts that are consistent across FCM and epifluorescence microscopy-based (EFM) quantification methods, accurate cell counts determined by more time- and labor-efficient direct staining require consideration of dye concentration, sample dilution, and lithology. Yet, good agreement between the two staining methods can be achieved through sample-specific adjustments of dye concentrations and sample dilutions during direct staining. We thus present a complete protocol for FCM-based cell quantification, that includes all steps from the initial sample fixation to the final enumeration, with recommendations for buffer compositions, direct and membrane-based staining procedures, and the final FCM assay. This protocol is versatile, accurate, and reliable, as is evident from good agreement with cell quantifications by EFM and quantitative polymerase chain reaction (qPCR) of 16S rRNA genes across a wide range of sedimentary sample types.
Collapse
Affiliation(s)
- Longhui Deng
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Annika Fiskal
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Xingguo Han
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| | - Nathalie Dubois
- Surface Waters Research-Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Earth Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Łokas E, Zawierucha K, Cwanek A, Szufa K, Gaca P, Mietelski JW, Tomankiewicz E. The sources of high airborne radioactivity in cryoconite holes from the Caucasus (Georgia). Sci Rep 2018; 8:10802. [PMID: 30018384 PMCID: PMC6050279 DOI: 10.1038/s41598-018-29076-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 11/12/2022] Open
Abstract
Cryoconite granules are mixtures of mineral particles, organic substances and organisms on the surface of glaciers where they decrease the ice albedo and are responsible for formation of water-filled holes. The contaminants are effectively trapped in the cryoconite granules and stay there for many years. This study evaluates the contamination level of artificial and natural radionuclides in cryoconite holes from Adishi glacier (Georgia) and identifies the sources of contamination based on activity or mass ratios among artificial radionuclides. Results revealed high activity concentrations of fallout radionuclides reaching 4900 Bq/kg, 2.5 Bq/kg, 107 Bq/kg and 68 Bq/kg for 137Cs, 238Pu, 239+240Pu and 241Am, respectively. The main source of Pu is global fallout, but the low 240Pu/239Pu atomic ratios also indicated local tropospheric source of 239Pu, probably from the Kapustin Yar nuclear test site. Also, high activity ratios of 241Am/239+240Pu could originate from Kapustin Yar. The natural radionuclides originate from the surrounding rocks and were measured to control the environmental processes. 210Pb in cryoconite granules comes predominantly from the atmospheric deposition, and its activity concentrations reach high values up to 12000 Bq/kg.
Collapse
Affiliation(s)
- Edyta Łokas
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland.
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Cwanek
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Katarzyna Szufa
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Paweł Gaca
- GAU-Radioanalytical Laboratories, Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton, United Kingdom
| | - Jerzy W Mietelski
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| | - Ewa Tomankiewicz
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Radzikowskiego 152, 31-342, Poland
| |
Collapse
|
16
|
Cameron KA, Stibal M, Hawkings JR, Mikkelsen AB, Telling J, Kohler TJ, Gözdereliler E, Zarsky JD, Wadham JL, Jacobsen CS. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ Microbiol 2016; 19:524-534. [PMID: 27489963 DOI: 10.1111/1462-2920.13483] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/31/2016] [Indexed: 11/26/2022]
Abstract
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 104 cells mL-1 and we estimate that ∼1.02 × 1021 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world.
Collapse
Affiliation(s)
- Karen A Cameron
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Marek Stibal
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| | - Jon R Hawkings
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, BS8 1SS, Bristol, UK
| | - Andreas B Mikkelsen
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Jon Telling
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, BS8 1SS, Bristol, UK
| | - Tyler J Kohler
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| | - Erkin Gözdereliler
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Jakub D Zarsky
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 43, Prague, Czech Republic
| | - Jemma L Wadham
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, University Road, BS8 1SS, Bristol, UK
| | - Carsten S Jacobsen
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark.,Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| |
Collapse
|
17
|
Rassner SME, Anesio AM, Girdwood SE, Hell K, Gokul JK, Whitworth DE, Edwards A. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control? Front Microbiol 2016; 7:956. [PMID: 27446002 PMCID: PMC4914498 DOI: 10.3389/fmicb.2016.00956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023] Open
Abstract
Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems.
Collapse
Affiliation(s)
- Sara M E Rassner
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth UniversityAberystwyth, UK; Department of Geography and Earth Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexandre M Anesio
- School of Geographical Sciences, Bristol Glaciology Centre, University of Bristol Bristol, UK
| | - Susan E Girdwood
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - Katherina Hell
- Institute of Ecology, University of Innsbruck Innsbruck, Austria
| | - Jarishma K Gokul
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - David E Whitworth
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University Aberystwyth, UK
| |
Collapse
|
18
|
Analysis of Low-Biomass Microbial Communities in the Deep Biosphere. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:149-78. [PMID: 27261783 DOI: 10.1016/bs.aambs.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed.
Collapse
|
19
|
Singh P, Singh SM, Roy U. Taxonomic characterization and the bio-potential of bacteria isolated from glacier ice cores in the High Arctic. J Basic Microbiol 2015; 56:275-85. [PMID: 26567474 DOI: 10.1002/jobm.201500298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/18/2015] [Indexed: 11/05/2022]
Abstract
Glacier ice and firn cores have ecological and biotechnological importance. The present study is aimed at characterizing bacteria in crustal ice cores from Svalbard, the Arctic. Counts of viable isolates ranged from 10 to 7000 CFU/ml (mean 803 CFU/ml) while the total bacterial numbers ranged from 7.20 × 10(4) to 2.59 × 10(7) cells ml(-1) (mean 3.12 × 10(6) cells ml(-1) ). Based on 16S rDNA sequence data, the identified species belonged to seven species, namely Bacillus barbaricus, Pseudomonas orientalis, Pseudomonas oryzihabitans, Pseudomonas fluorescens, Pseudomonas syncyanea, Sphingomonas dokdonensis, and Sphingomonas phyllosphaerae, with a sequence similarity ranging between 93.5 and 99.9% with taxa present in the database. The isolates exhibited unique phenotypic properties, and three isolates (MLB-2, MLB-5, and MLB-9) are novel species, yet to be described. To the best of our knowledge, this is the first report on characterization of cultured bacterial communities from Svalbard ice cores. We conclude that high lipase, protease, cellulase, amylase, and urease activities expressed by most of the isolates provide a clue to the potential industrial applications of these organisms. These microbes, producing cold-adapted enzymes may provide an opportunity for biotechnological research.
Collapse
Affiliation(s)
- Purnima Singh
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Shiv Mohan Singh
- National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa-403804, India
| | - Utpal Roy
- Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
20
|
Maccario L, Sanguino L, Vogel TM, Larose C. Snow and ice ecosystems: not so extreme. Res Microbiol 2015; 166:782-95. [PMID: 26408452 DOI: 10.1016/j.resmic.2015.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.
Collapse
Affiliation(s)
- Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Laura Sanguino
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS UMR 5005, Université de Lyon, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France.
| |
Collapse
|
21
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
22
|
Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS. Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:293-300. [PMID: 25405749 DOI: 10.1111/1758-2229.12246] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
Biological processes in the supraglacial ecosystem, including cryoconite, contribute to nutrient cycling within the cryosphere and may affect surface melting, yet little is known of the diversity of the active microbes in these environments. We examined the bacterial abundance and community composition of cryoconite over a melt season at two contrasting sites at the margin and in the interior of the Greenland ice sheet, using sequence analysis and quantitative polymerase chain reaction of coextracted 16S rDNA and rRNA. Significant differences were found between bulk (rDNA) and potentially active (rRNA) communities, and between communities sampled from the two sites. Higher concentrations of rRNA than rDNA were detected at the interior site, whereas at the margin several orders of magnitude less rRNA was found compared with rDNA, which may be explained by a lower proportion of active bacteria at the margin site. The rRNA communities at both sites were dominated by a few taxa of Cyanobacteria and Alpha- and/or Betaproteobacteria. The bulk alpha diversity was higher in the margin site community, suggesting that local sources may be contributing towards the gene pool in addition to long distance transport.
Collapse
Affiliation(s)
- Marek Stibal
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-Fynn TDL, Jacobsen CS. Microbial abundance in surface ice on the Greenland Ice Sheet. Front Microbiol 2015; 6:225. [PMID: 25852678 PMCID: PMC4371753 DOI: 10.3389/fmicb.2015.00225] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/06/2015] [Indexed: 12/03/2022] Open
Abstract
Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS.
Collapse
Affiliation(s)
- Marek Stibal
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Ecology, Charles University in Prague Prague, Czech Republic
| | - Erkin Gözdereliler
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Karen A Cameron
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Jason E Box
- Geological Survey of Denmark and Greenland Copenhagen, Denmark
| | - Ian T Stevens
- Centre for Glaciology, Aberystwyth University Aberystwyth, UK
| | | | - Morten Schostag
- Center for Permafrost, University of Copenhagen Copenhagen, Denmark
| | - Jakub D Zarsky
- Department of Ecology, Charles University in Prague Prague, Czech Republic ; Centre for Polar Ecology, University of South Bohemia České Budějovice, Czech Republic
| | - Arwyn Edwards
- Centre for Glaciology, Aberystwyth University Aberystwyth, UK
| | | | - Carsten S Jacobsen
- Geological Survey of Denmark and Greenland Copenhagen, Denmark ; Center for Permafrost, University of Copenhagen Copenhagen, Denmark ; Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
24
|
Zawierucha K, Kolicka M, Takeuchi N, Kaczmarek Ł. What animals can live in cryoconite holes? A faunal review. J Zool (1987) 2014. [DOI: 10.1111/jzo.12195] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - M. Kolicka
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
| | - N. Takeuchi
- Department of Earth Sciences; Graduate School of Science; Chiba University; Chiba Japan
| | - Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology; Faculty of Biology; Adam Mickiewicz University in Poznań; Poznań Poland
- Laboratorio de Ecología Natural y Aplicada de Invertebrados; Universidad Estatal Amazónica; Puyo Ecuador
| |
Collapse
|
25
|
Lokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Srodoń J. Sources and pathways of artificial radionuclides to soils at a High Arctic site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12479-12493. [PMID: 24946703 PMCID: PMC4200352 DOI: 10.1007/s11356-014-3163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.
Collapse
Affiliation(s)
- E Lokas
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland,
| | | | | | | | | | | |
Collapse
|
26
|
Dieser M, Broemsen ELJE, Cameron KA, King GM, Achberger A, Choquette K, Hagedorn B, Sletten R, Junge K, Christner BC. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. THE ISME JOURNAL 2014; 8:2305-16. [PMID: 24739624 PMCID: PMC4992074 DOI: 10.1038/ismej.2014.59] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/08/2014] [Accepted: 03/14/2014] [Indexed: 11/08/2022]
Abstract
Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59-100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ(13)C-CH4 values between -64‰ and -62‰ together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ∼30 days incubation at ∼4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks.
Collapse
Affiliation(s)
- Markus Dieser
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Erik L J E Broemsen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Karen A Cameron
- Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, WA, USA
| | - Gary M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Amanda Achberger
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kyla Choquette
- Applied Science Engineering and Technology Laboratory, Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, USA
| | - Birgit Hagedorn
- Applied Science Engineering and Technology Laboratory, Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, USA
| | - Ron Sletten
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Karen Junge
- Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, WA, USA
| | - Brent C Christner
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
27
|
Lutz S, Anesio AM, Jorge Villar SE, Benning LG. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 2014; 89:402-14. [PMID: 24920320 DOI: 10.1111/1574-6941.12351] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022] Open
Abstract
We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.
Collapse
Affiliation(s)
- Stefanie Lutz
- School of Earth & Environment, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
28
|
Cameron KA, Hagedorn B, Dieser M, Christner BC, Choquette K, Sletten R, Crump B, Kellogg C, Junge K. Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet. Environ Microbiol 2014; 17:594-609. [DOI: 10.1111/1462-2920.12446] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/10/2014] [Accepted: 03/01/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Karen A. Cameron
- Applied Physics Laboratory; University of Washington; Seattle WA USA
| | - Birgit Hagedorn
- Environment and Natural Resources Institute; University of Alaska Anchorage; Anchorage AK USA
| | - Markus Dieser
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
| | - Brent C. Christner
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
| | - Kyla Choquette
- Environment and Natural Resources Institute; University of Alaska Anchorage; Anchorage AK USA
| | - Ronald Sletten
- Earth and Space Sciences; University of Washington; Seattle WA USA
| | - Byron Crump
- Earth Ocean and Atmospheric Sciences; Oregon State University; Corvallis OR USA
| | - Colleen Kellogg
- Earth Ocean and Atmospheric Sciences; Oregon State University; Corvallis OR USA
| | - Karen Junge
- Applied Physics Laboratory; University of Washington; Seattle WA USA
| |
Collapse
|
29
|
Irvine-Fynn TDL, Edwards A. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A 2013; 85:3-7. [PMID: 24273193 DOI: 10.1002/cyto.a.22411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/13/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tristram D L Irvine-Fynn
- Centre for Glaciology (CfG) and Interdisciplinary Centre for Environmental Microbiology (ICEM); Department of Geography and Earth Sciences (DGES), Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom
| | | |
Collapse
|
30
|
Morono Y, Terada T, Kallmeyer J, Inagaki F. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol 2013; 15:2841-9. [PMID: 23731283 PMCID: PMC3910163 DOI: 10.1111/1462-2920.12153] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 11/30/2022]
Abstract
Development of an improved technique for separating microbial cells from marine sediments and standardization of a high-throughput and discriminative cell enumeration method were conducted. We separated microbial cells from various types of marine sediment and then recovered the cells using multilayer density gradients of sodium polytungstate and/or Nycodenz, resulting in a notably higher percent recovery of cells than previous methods. The efficiency of cell extraction generally depends on the sediment depth; using the new technique we developed, more than 80% of the total cells were recovered from shallow sediment samples (down to 100 meters in depth), whereas ~50% of cells were recovered from deep samples (100-365 m in depth). The separated cells could be rapidly enumerated using flow cytometry (FCM). The data were in good agreement with those obtained from manual microscopic direct counts over the range 10(4)-10(8) cells cm(-3). We also demonstrated that sedimentary microbial cells can be efficiently collected using a cell sorter. The combined use of our new cell separation and FCM/cell sorting techniques facilitates high-throughput and precise enumeration of microbial cells in sediments and is amenable to various types of single-cell analyses, thereby enhancing our understanding of microbial life in the largely uncharacterized deep subseafloor biosphere.
Collapse
Affiliation(s)
- Yuki Morono
- Geomicrobiology Group Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | - Takeshi Terada
- Marine Works Japan LtdOppamahigashi 3-54-1, Yokosuka, 237-0063, Japan
| | - Jens Kallmeyer
- Deutsches GeoForschungsZentrum GFZSection 4.5 Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany
| | - Fumio Inagaki
- Geomicrobiology Group Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Monobe B200, Nankoku, Kochi, 783-8502, Japan
| |
Collapse
|
31
|
Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B. The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME JOURNAL 2013; 7:1814-26. [PMID: 23552623 DOI: 10.1038/ismej.2013.51] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 11/09/2022]
Abstract
Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation.
Collapse
Affiliation(s)
- Katherina Hell
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|