1
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Abstract
Pathogen-host interactions (PHIs) underlie the process of infection. The systems biology view of the whole PHI system is superior to the investigation of the pathogen or host separately in understanding the infection mechanisms. Especially, the identification of host-oriented drug targets for the next-generation anti-infection therapeutics requires the properties of the host factors targeted by pathogens. Here, we provide an outline of computational analysis of PHI networks, focusing on the properties of the pathogen-targeted host proteins. We also provide information about the available PHI data and the related Web-based resources.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Semin Cell Dev Biol 2016; 58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
5
|
Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Also Exhibit Chaperone like Activity In-Vitro and In-Vivo. PLoS One 2016; 11:e0150288. [PMID: 26981873 PMCID: PMC4794191 DOI: 10.1371/journal.pone.0150288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Peptidyl-prolyl cis-trans isomerases (Ppiases), also known as cyclophilins, are ubiquitously expressed enzymes that assist in protein folding by isomerization of peptide bonds preceding prolyl residues. Mycobacterium tuberculosis (M.tb) is known to possess two Ppiases, PpiA and PpiB. However, our understanding about the biological significance of mycobacterial Ppiases with respect to their pleiotropic roles in responding to stress conditions inside the macrophages is restricted. This study describes chaperone-like activity of mycobacterial Ppiases. We show that recombinant rPpiA and rPpiB can bind to non-native proteins in vitro and can prevent their aggregation. Purified rPpiA and rPpiB exist in oligomeric form as evident from gel filtration chromatography.E. coli cells overexpressing PpiA and PpiB of M.tb could survive thermal stress as compared to plasmid vector control. HEK293T cells transiently expressing M.tb PpiA and PpiB proteins show increased survival as compared to control cells in response to oxidative stress and hypoxic conditions generated after treatment with H2O2 and CoCl2 thereby pointing to their likely role in adaption under host generated oxidative stress and conditions of hypoxia. The chaperone-like function of these M.tuberculosis cyclophilins may possibly function as a stress responder and consequently contribute to virulence.
Collapse
|
6
|
Durmuş S, Çakır T, Özgür A, Guthke R. A review on computational systems biology of pathogen-host interactions. Front Microbiol 2015; 6:235. [PMID: 25914674 PMCID: PMC4391036 DOI: 10.3389/fmicb.2015.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022] Open
Abstract
Pathogens manipulate the cellular mechanisms of host organisms via pathogen-host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein-protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, KocaeliTurkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boǧaziçi University, IstanbulTurkey
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knoell-Institute, JenaGermany
| |
Collapse
|
7
|
Ramakrishnan G, Chandra NR, Srinivasan N. From workstations to workbenches: Towards predicting physicochemically viable protein-protein interactions across a host and a pathogen. IUBMB Life 2014; 66:759-74. [DOI: 10.1002/iub.1331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/16/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative; Indian Institute of Science; Bangalore Karnataka India
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore Karnataka India
| | - Nagasuma R. Chandra
- Department of Biochemistry; Indian Institute of Science; Bangalore Karnataka India
| | | |
Collapse
|
8
|
Vujanac M, Stebbins CE. Context-dependent protein folding of a virulence peptide in the bacterial and host environments: structure of an SycH-YopH chaperone-effector complex. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:546-54. [PMID: 23519663 DOI: 10.1107/s0907444912051086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
Yersinia pestis injects numerous bacterial proteins into host cells through an organic nanomachine called the type 3 secretion system. One such substrate is the tyrosine phosphatase YopH, which requires an interaction with a cognate chaperone in order to be effectively injected. Here, the first crystal structure of a SycH-YopH complex is reported, determined to 1.9 Å resolution. The structure reveals the presence of (i) a nonglobular polypeptide in YopH, (ii) a so-called β-motif in YopH and (iii) a conserved hydrophobic patch in SycH that recognizes the β-motif. Biochemical studies establish that the β-motif is critical to the stability of this complex. Finally, since previous work has shown that the N-terminal portion of YopH adopts a globular fold that is functional in the host cell, aspects of how this polypeptide adopts radically different folds in the host and in the bacterial environments are analysed.
Collapse
Affiliation(s)
- Milos Vujanac
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
9
|
Durmuş Tekir SD, Ülgen KÖ. Systems biology of pathogen-host interaction: networks of protein-protein interaction within pathogens and pathogen-human interactions in the post-genomic era. Biotechnol J 2013; 8:85-96. [PMID: 23193100 PMCID: PMC7161785 DOI: 10.1002/biot.201200110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/17/2012] [Accepted: 10/11/2012] [Indexed: 12/13/2022]
Abstract
Infectious diseases comprise some of the leading causes of death and disability worldwide. Interactions between pathogen and host proteins underlie the process of infection. Improved understanding of pathogen-host molecular interactions will increase our knowledge of the mechanisms involved in infection, and allow novel therapeutic solutions to be devised. Complete genome sequences for a number of pathogenic microorganisms, as well as the human host, has led to the revelation of their protein-protein interaction (PPI) networks. In this post-genomic era, pathogen-host interactions (PHIs) operating during infection can also be mapped. Detailed systematic analyses of PPI and PHI data together are required for a complete understanding of pathogenesis of infections. Here we review the striking results recently obtained during the construction and investigation of these networks. Emphasis is placed on studies producing large-scale interaction data by high-throughput experimental techniques.
Collapse
Affiliation(s)
| | - Kutlu Ö. Ülgen
- Department of Chemical Engineering, Boǧaziçi University, Istanbul, Turkey
| |
Collapse
|
10
|
Abstract
The decoding of the Tritryp reference genomes nearly 7 years ago provided a first peek into the biology of pathogenic trypanosomatids and a blueprint that has paved the way for genome-wide studies. Although 60-70% of the predicted protein coding genes in Trypanosoma brucei, Trypanosoma cruzi and Leishmania major remain unannotated, the functional genomics landscape is rapidly changing. Facilitated by the advent of next-generation sequencing technologies, improved structural and functional annotation and genes and their products are emerging. Information is also growing for the interactions between cellular components as transcriptomes, regulatory networks and metabolomes are characterized, ushering in a new era of systems biology. Simultaneously, the launch of comparative sequencing of multiple strains of kinetoplastids will finally lead to the investigation of a vast, yet to be explored, evolutionary and pathogenomic space.
Collapse
Affiliation(s)
- J Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
11
|
Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol 2010; 37:565-79. [PMID: 20813271 PMCID: PMC2933426 DOI: 10.1016/j.clp.2010.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial translocation from the gastrointestinal tract is an important pathway initiating late-onset sepsis and necrotizing enterocolitis in very low-birth-weight infants. The emerging intestinal microbiota, nascent intestinal epithelia, naive immunity, and suboptimal nutrition (lack of breast milk) have roles in facilitating bacterial translocation. Feeding lactoferrin, probiotics, or prebiotics has presented exciting possibilities to prevent bacterial translocation in preterm infants, and clinical trials will identify the most safe and efficacious prevention and treatment strategies.
Collapse
|
12
|
Oh CS, Carpenter SCD, Hayes ML, Beer SV. Secretion and translocation signals and DspB/F-binding domains in the type III effector DspA/E of Erwinia amylovora. MICROBIOLOGY (READING, ENGLAND) 2010; 156:1211-1220. [PMID: 20110301 DOI: 10.1099/mic.0.027144-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
DspA/E is a type III effector of Erwinia amylovora, the bacterial pathogen that causes fire blight disease in roseaceous plants. This effector is indispensable for disease development, and it is translocated into plant cells. A DspA/E-specific chaperone, DspB/F, is necessary for DspA/E secretion and possibly for its translocation. In this work, DspB/F-binding sites and secretion and translocation signals in the DspA/E protein were determined. Based on yeast two-hybrid assays, DspB/F was found to bind DspA/E within the first 210 amino acids of the protein. Surprisingly, both DspB/F and OrfA, the putative chaperone of Eop1, also interacted with the C-terminal 1059 amino acids of DspA/E; this suggests another chaperone-binding site. Secretion and translocation assays using serial N-terminal lengths of DspA/E fused with the active form of AvrRpt2 revealed that at least the first 109 amino acids, including the first N-terminal chaperone-binding motif and DspB/F, were required for efficient translocation of DspA/E, although the first 35 amino acids were sufficient for its secretion and the presence of DspB/F was not required. These results indicate that secretion and translocation signals are present in the N terminus of DspA/E, and that at least one DspB/F-binding motif is required for efficient translocation into plant cells.
Collapse
Affiliation(s)
- Chang-Sik Oh
- Department of Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sara C D Carpenter
- Department of Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marshall L Hayes
- Department of Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY 14853, USA
| | - Steven V Beer
- Department of Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 2009; 5:e1000579. [PMID: 19750218 PMCID: PMC2734247 DOI: 10.1371/journal.ppat.1000579] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/17/2009] [Indexed: 12/24/2022] Open
Abstract
In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone). Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole (“inclusion”). The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection. The obligate intracellular bacteria Chlamydia trachomatis is a common sexually transmitted pathogen and the leading cause of preventable blindness worldwide. Chlamydia co-opts host cells by secreting virulence factors directly into target cells through a multi-protein complex termed a type III secretion system or “injectisome”. The lack of a system for molecular genetic manipulation in these pathogens has hindered our understanding of how the Chlamydia injectisome is assembled and how secreted factors are recognized and translocated. In this study, a yeast two-hybrid approach was used to identify networks of Chlamydia proteins that interact with components of the secretion apparatus. CdsQ, a conserved structural component predicted to be at the base of the injectisome, interacted with multiple proteins, including a new chaperone that binds to and stabilizes secretory cargo destined for the membrane of the pathogenic vacuole. These results suggest that the base of the secretion apparatus serves as a docking site for a chaperone and a subset of chaperone-cargo complexes. Because the chlamydial injectisome represents a unique and ancestral lineage of these virulence-associated secretion systems, findings made in Chlamydia should provide unique insights as to how effector proteins are recognized and stabilized, and how a hierarchy of virulence protein secretion may be established by Gram-negative bacterial pathogens.
Collapse
|
14
|
Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei. PLoS One 2009; 4:e5582. [PMID: 19440549 PMCID: PMC2679143 DOI: 10.1371/journal.pone.0005582] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif) family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a gamma-proteobacterium) and human pathogen Burkholderia pseudomallei (a beta-proteobacterium) are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC), despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the 'tail-domain' (absent in the EPEC Cif structure), suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins.
Collapse
|
15
|
Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M. Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications. Cell Microbiol 2009; 11:719-29. [PMID: 19215225 DOI: 10.1111/j.1462-5822.2009.01297.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent structural studies and analyses of microbial genomes have consolidated the understanding of the structural and functional versatility of coiled-coil domains in proteins from bacterial type III secretion systems (T3SS). Such domains consist of two or more α-helices forming a bundle structure. The occurrence of coiled-coils in T3SS is considerably higher than the average predicted occurrence in prokaryotic proteomes. T3SS proteins comprising coiled-coil domains are frequently characterized by an increased structural flexibility, which may vary from localized structural disorder to the establishment of molten globule-like state. The propensity for coiled-coil formation and structural disorder are frequently essential requirements for various T3SS functions, including the establishment of protein-protein interaction networks and the polymerization of extracellular components of T3SS appendages. Possible correlations between the frequently observed N-terminal structural disorder of effectors and the T3SS secretion signal are discussed. The results for T3SS are also compared with other Gram-negative secretory systems.
Collapse
Affiliation(s)
- Anastasia D Gazi
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology and Department of Biology, University of Crete, Vasilika Vouton, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
16
|
Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A. Host pathogen protein interactions predicted by comparative modeling. Protein Sci 2007; 16:2585-96. [PMID: 17965183 DOI: 10.1110/ps.073228407] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage-specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for "neglected" human diseases. The method was assessed by (1) comparison to a set of known host-pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host-pathogen interactions. We present several specific predictions that warrant experimental follow-up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is complementary to experimental efforts in elucidating networks of host-pathogen protein interactions.
Collapse
Affiliation(s)
- Fred P Davis
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | |
Collapse
|