1
|
Bettin EB, Grassmann AA, Dellagostin OA, Gogarten JP, Caimano MJ. Leptospira interrogans encodes a canonical BamA and three novel noNterm Omp85 outer membrane protein paralogs. Sci Rep 2024; 14:19958. [PMID: 39198480 PMCID: PMC11358297 DOI: 10.1038/s41598-024-67772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.
Collapse
Affiliation(s)
- Everton B Bettin
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - André A Grassmann
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - Odir A Dellagostin
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Álvarez S, Leiva-Sabadini C, Schuh CMAP, Aguayo S. Bacterial adhesion to collagens: implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021; 48:83-95. [PMID: 34270375 DOI: 10.1080/1040841x.2021.1944054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is the most abundant structural protein in the body and the main component of the extracellular matrix of most tissues, including dentine and periodontal tissues. Despite the well-characterized role of collagen and specifically type-I collagen, as a ligand for host cells, its role as a substrate for bacterial adhesion and biofilm formation is less explored. Therefore, the purpose of this review is to discuss recent findings regarding the adhesion of oral bacteria to collagen surfaces and its role in the progression and severity of oral and systemic diseases. Initial oral colonizers such as streptococci have evolved collagen-binding proteins (cbp) that are important for the colonization of dentine and periodontal tissues. Also, periodontal pathogens such as Porphyromonas gingivalis and Tannerella forsythia utilise cbps for tissue sensing and subsequent invasion. The implications of bacteria-collagen coupling in the context of collagen biomaterials and regenerative dentistry approaches are also addressed. Furthermore, the importance of interdisciplinary techniques such as atomic force microscopy for the nanocharacterization of bacteria-collagen interactions is also considered. Overall, understanding the process of oral bacterial adhesion onto collagen is important for developing future therapeutic approaches against oral and systemic diseases, by modulating the early stages of biofilm formation.
Collapse
Affiliation(s)
- Simón Álvarez
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Leiva-Sabadini
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Neumann A, Happonen L, Karlsson C, Bahnan W, Frick IM, Björck L. Streptococcal protein SIC activates monocytes and induces inflammation. iScience 2021; 24:102339. [PMID: 33855284 PMCID: PMC8027542 DOI: 10.1016/j.isci.2021.102339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pyogenes is a major bacterial pathogen in the human population and isolates of the clinically important M1 serotype secrete protein Streptococcal inhibitor of complement (SIC) known to interfere with human innate immunity. Here we find that SIC from M1 bacteria interacts with TLR2 and CD14 on monocytes leading to the activation of the NF-κB and p38 MAPK pathways and the release of several pro-inflammatory cytokines (e.g. TNFα and INFγ). In human plasma, SIC binds clusterin and histidine-rich glycoprotein, and whole plasma, and these two purified plasma proteins enhanced the activation of monocytes by SIC. Isolates of the M55 serotype secrete an SIC homolog, but this protein did not activate monocytes. M1 isolates are common in cases of invasive S. pyogenes infections characterized by massive inflammation, and the results of this study indicate that the pro-inflammatory property of SIC contributes to the pathology of these severe clinical conditions.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Inga-Maria Frick
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, BMC, Lund University, 22184, Lund, Sweden
| |
Collapse
|
4
|
Järvå MA, Hirt H, Dunny GM, Berntsson RPA. Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Front Microbiol 2020; 11:599899. [PMID: 33324381 PMCID: PMC7726212 DOI: 10.3389/fmicb.2020.599899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.
Collapse
Affiliation(s)
- Michael A Järvå
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
6
|
Park OJ, Kwon Y, Park C, So YJ, Park TH, Jeong S, Im J, Yun CH, Han SH. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms 2020; 8:microorganisms8121852. [PMID: 33255499 PMCID: PMC7761167 DOI: 10.3390/microorganisms8121852] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Streptococcus gordonii, a Gram-positive bacterium, is a commensal bacterium that is commonly found in the skin, oral cavity, and intestine. It is also known as an opportunistic pathogen that can cause local or systemic diseases, such as apical periodontitis and infective endocarditis. S. gordonii, an early colonizer, easily attaches to host tissues, including tooth surfaces and heart valves, forming biofilms. S. gordonii penetrates into root canals and blood streams, subsequently interacting with various host immune and non-immune cells. The cell wall components of S. gordonii, which include lipoteichoic acids, lipoproteins, serine-rich repeat adhesins, peptidoglycans, and cell wall proteins, are recognizable by individual host receptors. They are involved in virulence and immunoregulatory processes causing host inflammatory responses. Therefore, S.gordonii cell wall components act as virulence factors that often progressively develop diseases through overwhelming host responses. This review provides an overview of S. gordonii, and how its cell wall components could contribute to the pathogenesis and development of therapeutic strategies.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Tae Hwan Park
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 08826, Korea; (O.-J.P.); (Y.K.); (C.P.); (Y.J.S.); (T.H.P.); (S.J.); (J.I.)
- Correspondence: ; Tel.: +82-2-880-2310
| |
Collapse
|
7
|
The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis. PLoS Pathog 2019; 15:e1007848. [PMID: 31181121 PMCID: PMC6586375 DOI: 10.1371/journal.ppat.1007848] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/20/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis. Group B Streptococcus (GBS) typically colonizes healthy adults but can cause severe disease in immune-compromised individuals, including newborns. Despite wide-spread intrapartum antibiotic prophylaxis given to pregnant women, GBS remains a leading cause of neonatal meningitis. To cause meningitis, GBS must interact with and penetrate the blood-brain barrier (BBB), which separates bacteria and immune cells in the blood from the brain. In order to develop targeted therapies to treat GBS meningitis, it is important to understand the mechanisms of BBB crossing. Here, we describe the role of the GBS surface factor, BspC, in promoting meningitis and discover the host ligand for BspC, vimentin, which is an intermediate filament protein that is constitutively expressed by endothelial cells. We determined that BspC interacts with the C-terminal domain of cell-surface vimentin to promote bacterial attachment to brain endothelial cells and that purified BspC protein can induce immune signaling pathways. In a mouse model of hematogenous meningitis, we observed that a GBS mutant lacking BspC was less virulent compared to WT GBS and resulted in less inflammatory disease. We also observed that mice lacking vimentin were protected from GBS infection. These results reveal the importance of the BspC-vimentin interaction in the progression of GBS meningitis disease.
Collapse
|
8
|
Huang L, Zeng J, Bosch-Tijhof C, Ling J, Wei X, van Loveren C, Crielaard W, Deng DM. Effects of bacterial physiological states and bacterial species on host-microbe interactions. BIOFOULING 2018; 34:870-879. [PMID: 30326724 DOI: 10.1080/08927014.2018.1514026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
This study investigated how the physiological states of Aggregatibacter actinomycetemcomitans (Aa) and Streptococcus mitis affect their intracellular invasion capabilities and the resulting host cell responses. The physiological states included two forms of planktonic states, floating or sedimented (by centrifugation) and the biofilm state (with centrifugation). Confluent epithelial Ca9-22 cells were challenged with floating or sedimented planktonic cultures, or with 24-h biofilms for 3 h. The results show that intracellular invasion efficiencies were clearly affected by the bacterial physiological states. For both bacterial species, the sedimented-cells displayed 2-10 times higher invasion efficiency than the floating-cells (p < 0.05). The invasion efficiency of Aa biofilms was three fold lower than sedimented cells, whereas those of S. mitis biofilms were similar to sedimented cells. Unlike invasion, the metabolic activities of Ca9-22 were unaffected by different bacterial physiological states. However, Aa biofilms induced higher IL-1β expression than planktonic cultures. In conclusion, different bacterial physiological states can affect the outcomes of (in vitro) host-microbe interaction in different ways.
Collapse
Affiliation(s)
- Lijia Huang
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Jinfeng Zeng
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Caroline Bosch-Tijhof
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Junqi Ling
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Xi Wei
- a Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Cor van Loveren
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
| | - Dong Mei Deng
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , the Netherlands
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|
9
|
Chuzeville S, Auger JP, Dumesnil A, Roy D, Lacouture S, Fittipaldi N, Grenier D, Gottschalk M. Serotype-specific role of antigen I/II in the initial steps of the pathogenesis of the infection caused by Streptococcus suis. Vet Res 2017; 48:39. [PMID: 28705175 PMCID: PMC5513104 DOI: 10.1186/s13567-017-0443-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is one of the most important post-weaning porcine bacterial pathogens worldwide. The serotypes 2 and 9 are often considered the most virulent and prevalent serotypes involved in swine infections, especially in Europe. However, knowledge of the bacterial factors involved in the first steps of the pathogenesis of the infection remains scarce. In several pathogenic streptococci, expression of multimodal adhesion proteins known as antigen I/II (AgI/II) have been linked with persistence in the upper respiratory tract and the oral cavity, as well as with bacterial dissemination. Herein, we report expression of these immunostimulatory factors by S. suis serotype 2 and 9 strains and that AgI/II-encoding genes are carried by integrative and conjugative elements. Using mutagenesis and different in vitro assays, we demonstrate that the contribution of AgI/II to the virulence of the serotype 2 strain used herein appears to be modest. In contrast, data demonstrate that the serotype 9 AgI/II participates in self-aggregation, induces salivary glycoprotein 340-related aggregation, contributes to biofilm formation and increased strain resistance to low pH, as well as in bacterial adhesion to extracellular matrix proteins and epithelial cells. Moreover, the use of a porcine infection model revealed that AgI/II contributes to colonization of the upper respiratory tract of pigs. Taken together, these findings suggest that surface exposed AgI/II likely play a key role in the first steps of the pathogenesis of the S. suis serotype 9 infection.
Collapse
Affiliation(s)
- Sarah Chuzeville
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Audrey Dumesnil
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - David Roy
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Sonia Lacouture
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory Toronto and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada.,Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Saint-Hyacinthe, QC, Canada. .,Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
10
|
Rego S, Heal TJ, Pidwill GR, Till M, Robson A, Lamont RJ, Sessions RB, Jenkinson HF, Race PR, Nobbs AH. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. J Biol Chem 2016; 291:15985-6000. [PMID: 27311712 DOI: 10.1074/jbc.m116.726562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.
Collapse
Affiliation(s)
- Sara Rego
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom, the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Timothy J Heal
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Grace R Pidwill
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Marisa Till
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Alice Robson
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Richard J Lamont
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202
| | - Richard B Sessions
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Paul R Race
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Angela H Nobbs
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom,
| |
Collapse
|
11
|
Chuzeville S, Dramsi S, Madec JY, Haenni M, Payot S. Antigen I/II encoded by integrative and conjugative elements of Streptococcus agalactiae and role in biofilm formation. Microb Pathog 2015; 88:1-9. [PMID: 26232503 DOI: 10.1016/j.micpath.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Streptococcus agalactiae (i.e. Group B streptococcus, GBS) is a major human and animal pathogen. Genes encoding putative surface proteins and in particular an antigen I/II have been identified on Integrative and Conjugative Elements (ICEs) found in GBS. Antigens I/II are multimodal adhesins promoting colonization of the oral cavity by streptococci such as Streptococcus gordonii and Streptococcus mutans. The prevalence and diversity of antigens I/II in GBS were studied by a bioinformatic analysis. It revealed that antigens I/II, which are acquired by horizontal transfer via ICEs, exhibit diversity and are widespread in GBS, in particular in the serotype Ia/ST23 invasive strains. This study aimed at characterizing the impact on GBS biology of proteins encoded by a previously characterized ICE of S. agalactiae (ICE_515_tRNA(Lys)). The production and surface exposition of the antigen I/II encoded by this ICE was examined using RT-PCR and immunoblotting experiments. Surface proteins of ICE_515_tRNA(Lys) were found to contribute to GBS biofilm formation and to fibrinogen binding. Contribution of antigen I/II encoded by SAL_2056 to biofilm formation was also demonstrated. These results highlight the potential for ICEs to spread microbial adhesins between species.
Collapse
Affiliation(s)
- Sarah Chuzeville
- INRA, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Paris, France; CNRS ERL3526, Paris, France
| | - Jean-Yves Madec
- ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES Site de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Sophie Payot
- INRA, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR1128 DynAMic, F-54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
12
|
Back C, Douglas S, Emerson J, Nobbs A, Jenkinson H. Streptococcus gordoniiDL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide ofActinomyces orisT14V. Mol Oral Microbiol 2015; 30:411-24. [DOI: 10.1111/omi.12106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Affiliation(s)
- C.R. Back
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - S.K. Douglas
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - J.E. Emerson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
13
|
Brittan JL, Nobbs AH. Group B Streptococcus pili mediate adherence to salivary glycoproteins. Microbes Infect 2015; 17:360-8. [PMID: 25576026 DOI: 10.1016/j.micinf.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 12/23/2022]
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia and meningitis, and is responsible for a rising number of severe invasive infections in adults. For all disease manifestations, colonisation is a critical first step. GBS has frequently been isolated from the oropharynx of neonates and adults. However, little is understood about the mechanisms of GBS colonisation at this site. In this study it is shown that three GBS strains (COH1, NEM316, 515) have capacity to adhere to human salivary pellicle. Heterologous expression of GBS pilus island (PI) genes in Lactococcus lactis to form surface-expressed pili demonstrated that GBS PI-2a and PI-1 pili bound glycoprotein-340 (gp340), a component of salivary pellicle. By contrast, PI-2b pili did not interact with gp340. The variation was attributable to differences in capacities for backbone and ancillary protein subunits of each pilus to bind gp340. Furthermore, while GBS strains were aggregated by fluid-phase gp340, this mechanism was not mediated by pili, which displayed specificity for immobilised gp340. Thus pili may enable GBS to colonise the soft and hard tissues of the oropharynx, while evading an innate mucosal defence, with implications for risk of progression to severe diseases such as meningitis and sepsis.
Collapse
Affiliation(s)
- Jane L Brittan
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral & Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|
14
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
15
|
Franklin L, Nobbs AH, Bricio-Moreno L, Wright CJ, Maddocks SE, Sahota JS, Ralph J, O’Connor M, Jenkinson HF, Kadioglu A. The AgI/II family adhesin AspA is required for respiratory infection by Streptococcus pyogenes. PLoS One 2013; 8:e62433. [PMID: 23638083 PMCID: PMC3640068 DOI: 10.1371/journal.pone.0062433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.
Collapse
Affiliation(s)
- Linda Franklin
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Jaspreet Singh Sahota
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Joe Ralph
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Matthew O’Connor
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 2013; 28:250-66. [PMID: 23413785 DOI: 10.1111/omi.12022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
Abstract
The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.
Collapse
Affiliation(s)
- C E Jauregui
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
17
|
Andrian E, Qi G, Wang J, Halperin SA, Lee SF. Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (Reading) 2012; 158:2099-2106. [DOI: 10.1099/mic.0.058073-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elisoa Andrian
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - Gaofu Qi
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Scott A. Halperin
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Song F. Lee
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
18
|
Maddocks SE, Wright CJ, Nobbs AH, Brittan JL, Franklin L, Strömberg N, Kadioglu A, Jepson MA, Jenkinson HF. Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol 2011; 81:1034-49. [PMID: 21736640 PMCID: PMC3178794 DOI: 10.1111/j.1365-2958.2011.07749.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 12/19/2022]
Abstract
The streptococcal antigen I/II (AgI/II)-family polypeptides are cell wall-anchored adhesins expressed by most indigenous oral streptococci. Proteins sharing 30-40% overall amino acid sequence similarities with AgI/II-family proteins are also expressed by Streptococcus pyogenes. The S. pyogenes M28_Spy1325 polypeptide (designated AspA) displays an AgI/II primary structure, with alanine-rich (A) and proline-rich (P) repeats flanking a V region that is projected distal from the cell. In this study it is shown that AspA from serotype M28 S. pyogenes, when expressed on surrogate host Lactococcus lactis, confers binding to immobilized salivary agglutinin gp-340. This binding was blocked by antibodies to the AspA-VP region. In contrast, the N-terminal region of AspA was deficient in binding fluid-phase gp-340, and L. lactis cells expressing AspA were not agglutinated by gp-340. Deletion of the aspA gene from two different M28 strains of S. pyogenes abrogated their abilities to form biofilms on saliva-coated surfaces. In each mutant strain, biofilm formation was restored by trans complementation of the aspA deletion. In addition, expression of AspA protein on the surface of L. lactis conferred biofilm-forming ability. Taken collectively, the results provide evidence that AspA is a biofilm-associated adhesin that may function in host colonization by S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Angela H Nobbs
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Jane L Brittan
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Linda Franklin
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester LE1 9HN, UK.
| | - Mark A Jepson
- Wolfson Bioimaging Facility, and School of Biochemistry, University of BristolBristol BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| |
Collapse
|
19
|
Dickinson BC, Moffatt CE, Hagerty D, Whitmore SE, Brown TA, Graves DT, Lamont RJ. Interaction of oral bacteria with gingival epithelial cell multilayers. Mol Oral Microbiol 2011; 26:210-20. [PMID: 21545698 DOI: 10.1111/j.2041-1014.2011.00609.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low-calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. Porphyromonas gingivalis invaded intracellularly and spread from cell to cell; A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer; whereas S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. Aggregatibacter actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, whereas the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.
Collapse
Affiliation(s)
- B C Dickinson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Engels-Deutsch M, Rizk S, Haïkel Y. Streptococcus mutans antigen I/II binds to α5β1 integrins via its A-domain and increases β1 integrins expression on periodontal ligament fibroblast cells. Arch Oral Biol 2011; 56:22-8. [DOI: 10.1016/j.archoralbio.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
21
|
Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLoS Comput Biol 2010; 6. [PMID: 20862303 PMCID: PMC2940729 DOI: 10.1371/journal.pcbi.1000933] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function. About one million African children die from malaria every year. The severity of malaria infections in part depends on which type of the parasitic protein PfEMP1 is expressed on the surface of the infected red blood cells. Natural immunity to malaria is mediated through antibodies to PfEMP1. Therefore hopes for a malaria vaccine based on PfEMP1 proteins have been raised. However, the large sequence variation among PfEMP1 molecules has caused great difficulties in executing and interpreting studies on PfEMP1. Here, we present an extensive sequence analysis of all currently available PfEMP1 sequences and show that PfEMP1 variation is ordered and can be categorized at different levels. In this way, PfEMP1 belong to group A–E and are composed of up to four components, each component containing specific DBL or CIDR domain subclasses, which in some cases form entire conserved domain combinations. Finally, each PfEMP1 can be described in high detail as a combination of 628 homology blocks. This dissection of PfEMP1 diversity also enables predictions of several functional sequence motifs relevant to the fold of PfEMP1 proteins and their ability to bind human receptors. We therefore believe that this description of PfEMP1 diversity is necessary and helpful for the design and interpretation of future PfEMP1 studies.
Collapse
Affiliation(s)
- Thomas S. Rask
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| | - Daniel A. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
| | - Anders Gorm Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| |
Collapse
|
22
|
Kadioglu A, Brewin H, Härtel T, Brittan JL, Klein M, Hammerschmidt S, Jenkinson HF. Pneumococcal protein PavA is important for nasopharyngeal carriage and development of sepsis. Mol Oral Microbiol 2010; 25:50-60. [PMID: 20331793 DOI: 10.1111/j.2041-1014.2009.00561.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Summary The pneumococcal cell surface protein PavA is a virulence factor associated with adherence and invasion in vitro. In this study we show in vivo that PavA is necessary for Streptococcus pneumoniae D39 colonization of the murine upper respiratory tract in a long-term carriage model, with PavA-deficient pneumococci being quickly cleared from nasopharyngeal tissue. In a pneumonia model, pavA mutants were not cleared from the lungs of infected mice and persisted to cause chronic infection, whereas wild-type pneumococci caused systemic infection. Hence, under the experimental conditions, PavA-deficient pneumococci appeared to be unable to seed from lung tissue into blood, although they survived in blood when administered intravenously. In a meningitis model of infection, levels of PavA-deficient pneumococci in blood and brain following intercisternal injection were significantly lower than wild type. Taken collectively these results suggest that PavA is involved in successful colonization of mucosal surfaces and in translocation of pneumococci across host barriers. Pneumococcal sepsis is a major cause of mortality worldwide so identification of factors such as PavA that are necessary for carriage and for translocation from tissue to blood is of clinical and therapeutic importance.
Collapse
Affiliation(s)
- A Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 2010; 77:276-86. [PMID: 20497507 PMCID: PMC2909373 DOI: 10.1111/j.1365-2958.2010.07212.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal alpha-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by alpha-helical and proline-rich regions.
Collapse
Affiliation(s)
- L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville FL 32610, USA
| | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| | - Matthew R. Larson
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Champion C. Deivanayagam
- Center for Biophysical Sciences and Engineering, and Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| |
Collapse
|
24
|
Intracellular invasion by Orientia tsutsugamushi is mediated by integrin signaling and actin cytoskeleton rearrangements. Infect Immun 2010; 78:1915-23. [PMID: 20160019 DOI: 10.1128/iai.01316-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. Previously, we reported that the 56-kDa type-specific antigen (TSA56), a major outer membrane protein of O. tsutsugamushi, binds to fibronectin and facilitates bacterial entry into the host cell, potentially via an interaction with integrins. Here, we demonstrated that O. tsutsugamushi colocalizes with integrin alpha 5 beta 1 and activates integrin signaling effectors, including focal adhesion kinase, Src kinase, and RhoA GTPase, and also recruits signaling adaptors, such as talin and paxillin, to the site of infection. Inhibition of protein tyrosine kinases or RhoA reduced intracellular invasion. We also observed substantial actin reorganization and membrane protrusions at the sites of infection of nonphagocytic host cells. Finally, we identified a region in the extracellular domain of TSA56 that binds to fibronectin. A peptide containing this region was able to significantly reduce bacterial invasion. Taken together, these results clearly indicate that O. tsutsugamushi exploits integrin-mediated signaling and the actin cytoskeleton for invasion of eukaryotic host cells.
Collapse
|
25
|
Forsgren N, Lamont RJ, Persson K. Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain. J Mol Biol 2010; 397:740-51. [PMID: 20138058 DOI: 10.1016/j.jmb.2010.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 11/26/2022]
Abstract
Streptococcus gordonii is a primary colonizer and is involved in the formation of dental plaque. This bacterium expresses several surface proteins. One of them is the adhesin SspB, which is a member of the Antigen I/II family of proteins. SspB is a large multi-domain protein that has interactions with surface molecules on other bacteria and on host cells, and is thus a key factor in the formation of biofilms. Here, we report the crystal structure of a truncated form of the SspB C-terminal domain, solved by single-wavelength anomalous dispersion to 1.5 A resolution. The structure represents the first of a C-terminal domain from a streptococcal Antigen I/II protein and is comprised of two structurally related beta-sandwich domains, C2 and C3, both with a Ca(2+) bound in equivalent positions. In each of the domains, a covalent isopeptide bond is observed between a lysine and an asparagine, a feature that is believed to be a common stabilization mechanism in Gram-positive surface proteins. S. gordonii biofilms contain attachment sites for the periodontal pathogen Porphyromonas gingivalis and the SspB C-terminal domain has been shown to have one such recognition motif, the SspB adherence region. The motif protrudes from the protein, and serves as a handle for attachment. The structure suggests several additional putative binding surfaces, and other binding clefts may be created when the full-length protein is folded.
Collapse
Affiliation(s)
- Nina Forsgren
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
26
|
Abstract
Many bacteria are capable of interacting with platelets and inducing platelet aggregation. This interaction may be a direct interaction between a bacterial surface protein and a platelet receptor or may be an indirect interaction where plasma proteins bind to the bacterial surface and subsequently bind to a platelet receptor. However, these interactions usually do not trigger platelet activation as a secondary co-signal is also required. This is usually due to specific antibody bound to the bacteria interacting with FcgammaRIIa on the platelet surface. Secreted bacterial products such as gingipains and lipopolysaccharide may also be capable of triggering platelet activation.
Collapse
Affiliation(s)
- Steven W. Kerrigan
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
27
|
Petersen HJ, Keane C, Jenkinson HF, Vickerman MM, Jesionowski A, Waterhouse JC, Cox D, Kerrigan SW. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 2010; 78:413-22. [PMID: 19884334 PMCID: PMC2798181 DOI: 10.1128/iai.00664-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/28/2009] [Accepted: 10/17/2009] [Indexed: 11/20/2022] Open
Abstract
The concept of an infectious agent playing a role in cardiovascular disease is slowly gaining attention. Among several pathogens identified, the oral bacterium Streptococcus gordonii has been implicated as a plausible agent. Platelet adhesion and subsequent aggregation are critical events in the pathogenesis and dissemination of the infective process. Here we describe the identification and characterization of a novel cell wall-anchored surface protein, PadA (397 kDa), of S. gordonii DL1 that binds to the platelet fibrinogen receptor GPIIbIIIa. Wild-type S. gordonii cells induced platelet aggregation and supported platelet adhesion in a GPIIbIIIa-dependent manner. Deletion of the padA gene had no effect on platelet aggregation by S. gordonii but significantly reduced (>75%) platelet adhesion to S. gordonii. Purified N-terminal PadA recombinant polypeptide adhered to platelets. The padA mutant was unaffected in production of other platelet-interactive surface proteins (Hsa, SspA, and SspB), and levels of adherence of the mutant to fetuin or platelet receptor GPIb were unaffected. Wild-type S. gordonii, but not the padA mutant, bound to Chinese hamster ovary cells stably transfected with GPIIbIIIa, and this interaction was ablated by addition of GPIIbIIIa inhibitor Abciximab. These results highlight the growing complexity of interactions between S. gordonii and platelets and demonstrate a new mechanism by which the bacterium could contribute to unwanted thrombosis.
Collapse
Affiliation(s)
- Helen J. Petersen
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Ciara Keane
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Howard F. Jenkinson
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - M. Margaret Vickerman
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Amy Jesionowski
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Janet C. Waterhouse
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Dermot Cox
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| | - Steven W. Kerrigan
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom, Molecular and Cellular Therapeutics, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland, Department of Oral Biology, State University of New York, Foster Hall, Buffalo, New York 14214-3092
| |
Collapse
|
28
|
Forsgren N, Lamont RJ, Persson K. Crystal structure of the variable domain of the Streptococcus gordonii surface protein SspB. Protein Sci 2009; 18:1896-905. [PMID: 19609934 DOI: 10.1002/pro.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V-) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V-domain from S. gordonii SspB at 2.3 A resolution. The domain comprises a beta-supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V-domain is similar to the previously reported V-domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V-domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V-domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.
Collapse
Affiliation(s)
- Nina Forsgren
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
29
|
Sillanpää J, Nallapareddy SR, Qin X, Singh KV, Muzny DM, Kovar CL, Nazareth LV, Gibbs RA, Ferraro MJ, Steckelberg JM, Weinstock GM, Murray BE. A collagen-binding adhesin, Acb, and ten other putative MSCRAMM and pilus family proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, biotype I). J Bacteriol 2009; 191:6643-53. [PMID: 19717590 PMCID: PMC2795296 DOI: 10.1128/jb.00909-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/24/2009] [Indexed: 11/20/2022] Open
Abstract
Members of the Streptococcus bovis group are important causes of endocarditis. However, factors associated with their pathogenicity, such as adhesins, remain uncharacterized. We recently demonstrated that endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates frequently adhere to extracellular matrix (ECM) proteins. Here, we generated a draft genome sequence of an ECM protein-adherent S. gallolyticus subsp. gallolyticus strain and found, by genome-wide analyses, 11 predicted LPXTG-type cell wall-anchored proteins with characteristics of MSCRAMMs, including a modular architecture of domains predicted to adopt immunoglobulin (Ig)-like folding. A recombinant segment of one of these, Acb, showed high-affinity binding to immobilized collagen, and cell surface expression of Acb correlated with the presence of acb and collagen adherence of isolates. Three of the 11 proteins have similarities to major pilus subunits and are organized in separate clusters, each including a second Ig-fold-containing MSCRAMM and a class C sortase, suggesting that the sequenced strain encodes three distinct types of pili. Reverse transcription-PCR demonstrated that all three genes of one cluster, acb-sbs7-srtC1, are cotranscribed, consistent with pilus operons of other gram-positive bacteria. Further analysis detected expression of all 11 genes in cells grown to mid to late exponential growth phases. Wide distribution of 9 of the 11 genes was observed among S. gallolyticus subsp. gallolyticus isolates with fewer genes present in other S. bovis group species/subspecies. The high prevalence of genes encoding putative MSCRAMMs and pili, including a collagen-binding MSCRAMM, among S. gallolyticus subsp. gallolyticus isolates may play an important role in the predominance of this subspecies in S. bovis endocarditis.
Collapse
Affiliation(s)
- Jouko Sillanpää
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sreedhar R. Nallapareddy
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Xiang Qin
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Donna M. Muzny
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Christie L. Kovar
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Lynne V. Nazareth
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Richard A. Gibbs
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Mary J. Ferraro
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - James M. Steckelberg
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - George M. Weinstock
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Re-emerging Pathogens, Department of Microbiology and Molecular Genetics, University of Texas Medical School, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, Massachusetts General Hospital, Boston, Massachusetts 02114, Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
30
|
Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral streptococci. DNA Cell Biol 2009; 28:397-403. [PMID: 19435424 DOI: 10.1089/dna.2009.0868] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The oral microbial flora comprises one of the most diverse human-associated biofilms. Its development is heavily influenced by oral streptococci, which are considered the main group of early colonizers. Their initial attachment determines the composition of later colonizers in the oral biofilm and impacts the health or disease status of the host. Thus, the role of streptococci in the development of oral diseases is best described in the context of bacterial ecology, which itself is further influenced by interactions with host epithelial cells, the immune system, and salivary components. The tractability of the oral biofilm makes it an excellent model system for studies of complex, biofilm-associated polymicrobial diseases. Using this system, numerous cooperative and antagonistic bacterial interactions have been demonstrated to occur within the community and with the host. In this review, several recent identified interactions are presented.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | | | |
Collapse
|
31
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
32
|
Kerrigan SW, Cox D. The thrombotic potential of oral pathogens. J Oral Microbiol 2009; 1. [PMID: 21523210 PMCID: PMC3077004 DOI: 10.3402/jom.v1i0.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/26/2009] [Accepted: 07/30/2009] [Indexed: 11/14/2022] Open
Abstract
In recent times the concept of infectious agents playing a role in cardiovascular disease has attracted much attention. Chronic oral disease such as periodontitis, provides a plausible route for entry of bacteria to the circulation. Upon entry to the circulation, the oral bacteria interact with platelets. It has been proposed that their ability to induce platelet aggregation and support platelet adhesion is a critical step in the pathogenesis of the infection process. Many published studies have demonstrated multiple mechanisms through which oral bacteria are able to bind to and activate platelets. This paper will review the various mechanisms oral bacteria use to interact with platelets.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Group, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
33
|
Jakubovics NS, Brittan JL, Dutton LC, Jenkinson HF. Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin. MICROBIOLOGY-SGM 2009; 155:3572-3580. [PMID: 19661180 PMCID: PMC2885655 DOI: 10.1099/mic.0.032078-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adhesion of bacterial cells to fibronectin (FN) is thought to be a pivotal step in the pathogenesis of invasive infectious diseases. Viridans group streptococci such as Streptococcus gordonii are considered commensal members of the oral microflora, but are important pathogens in infective endocarditis. S. gordonii expresses a battery of cell-surface adhesins that act alone or in concert to bind host receptors. Here, we employed molecular genetic approaches to determine the relative contributions of five known S. gordonii surface proteins to adherence to human FN. Binding levels to FN by isogenic mutants lacking Hsa glycoprotein were reduced by 70 %, while mutants lacking CshA and CshB fibrillar proteins showed approximately 30 % reduced binding. By contrast, disruption of antigen I/II adhesin genes sspA and sspB in a wild-type background did not result in reduced FN binding. Enzymic removal of sialic acids from FN led to reduced S. gordonii DL1 adhesion (>50 %), but did not affect binding by the hsa mutant, indicating that Hsa interacts with sialic acid moieties on FN. Conversely, desialylation of FN did not affect adherence levels of Lactococcus lactis cells expressing SspA or SspB polypeptides. Complementation of the hsa mutant partially restored adhesion to FN. A model is proposed for FN binding by S. gordonii in which Hsa and CshA/CshB are primary adhesins, and SspA or SspB play secondary roles. Understanding the basis of oral streptococcal interactions with FN will provide a foundation for development of new strategies to control infective endocarditis.
Collapse
Affiliation(s)
- Nicholas S. Jakubovics
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK
| | - Jane L. Brittan
- Department of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Lindsay C. Dutton
- Department of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Howard F. Jenkinson
- Department of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
34
|
Abstract
Streptococci are clinically important Gram-positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to host tissues is the initial critical event in the pathogenesis of most infections. Streptococci use multiple adhesins to attach to the epithelium, and their expression is regulated in response to environmental and growth conditions. Bacterial adhesins recognize and bind cell surface molecules and extracellular matrix components through specific domains that for certain adhesin families have been well defined and found conserved across the streptococcal species. In this review, we present the different streptococcal adhesin families categorized on the basis of their adhesive properties and structural characteristics, and, when available, we focus the attention on conserved functional domains.
Collapse
Affiliation(s)
- Monica Moschioni
- Novartis Vaccines and Diagnostics, Via Fiorentina 1, Siena, Italy
| | | | | |
Collapse
|
35
|
Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 2009; 77:3696-704. [PMID: 19528215 DOI: 10.1128/iai.00438-09] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungus Candida albicans colonizes human oral cavity surfaces in conjunction with a complex microflora. C. albicans SC5314 formed biofilms on saliva-coated surfaces that in early stages of development consisted of approximately 30% hyphal forms. In mixed biofilms with the oral bacterium Streptococcus gordonii DL1, hyphal development by C. albicans was enhanced so that biofilms consisted of approximately 60% hyphal forms. Cell-cell contact between S. gordonii and C. albicans involved Streptococcus cell wall-anchored proteins SspA and SspB (antigen I/II family polypeptides). Repression of C. albicans hyphal filament and biofilm production by the quorum-sensing molecule farnesol was relieved by S. gordonii. The ability of a luxS mutant of S. gordonii deficient in production of autoinducer 2 to induce C. albicans hyphal formation was reduced, and this mutant suppressed farnesol inhibition of hyphal formation less effectively. Coincubation of the two microbial species led to activation of C. albicans mitogen-activated protein kinase Cek1p, inhibition of Mkc1p activation by H(2)O(2), and enhanced activation of Hog1p by farnesol, which were direct effects of streptococci on morphogenetic signaling. These results suggest that interactions between C. albicans and S. gordonii involve physical (adherence) and chemical (diffusible) signals that influence the development of biofilm communities. Thus, bacteria may play a significant role in modulating Candida carriage and infection processes in the oral cavity.
Collapse
|
36
|
Zinkernagel AS, Timmer AM, Pence MA, Locke JB, Buchanan JT, Turner CE, Mishalian I, Sriskandan S, Hanski E, Nizet V. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host Microbe 2008; 4:170-8. [PMID: 18692776 DOI: 10.1016/j.chom.2008.07.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 05/24/2008] [Accepted: 07/01/2008] [Indexed: 12/20/2022]
Abstract
Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (CepI) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection.
Collapse
Affiliation(s)
- Annelies S Zinkernagel
- Department of Pediatrics, Division of Pharmacology & Drug Discovery, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Edwards AM, Manetti AGO, Falugi F, Zingaretti C, Capo S, Buccato S, Bensi G, Telford JL, Margarit I, Grandi G. Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol 2008; 68:1378-94. [PMID: 18452511 DOI: 10.1111/j.1365-2958.2008.06220.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.
Collapse
|
38
|
Kerrigan SW, Jakubovics NS, Keane C, Maguire P, Wynne K, Jenkinson HF, Cox D. Role of Streptococcus gordonii surface proteins SspA/SspB and Hsa in platelet function. Infect Immun 2007; 75:5740-7. [PMID: 17893126 PMCID: PMC2168320 DOI: 10.1128/iai.00909-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii colonization of damaged heart surfaces in infective endocarditis is dependent upon the recognition of host receptors by specific bacterial surface proteins. However, despite several attempts to identify the mechanisms involved in this interaction, the nature of the bacterial proteins required remains poorly understood. This study provides clear evidence that several S. gordonii surface proteins participate in the interaction with platelets to support platelet adhesion and induce platelet aggregation. S. gordonii strains were found to support strong (DL1-Challis, SK12, SK184, and Blackburn) or moderate (UB1545 delta hsa and CH1-Challis) adhesion or failed to support platelet adhesion (M5, M99, and Channon). In addition, under flow conditions, platelets rolled and subsequently adhered to immobilized S. gordonii at low shear (50 s(-1)) in an Hsa-dependent manner but did not interact with S. gordonii DL1 at any shear rate of >50 s(-1). S. gordonii strains either induced (DL1-Challis, SK12, SK184, UB1545 delta hsa, and M99) or failed to induce (M5, CH1-Challis, Channon, and Blackburn) platelet aggregation. Using a proteomic approach to identify differential cell wall protein expression between aggregating (DL1) and nonaggregating (Blackburn) strains, we identified antigen I/antigen II family proteins SspA and SspB. The overexpression of SspA or SspB in platelet-nonreactive Lactococcus lactis induced GPIIb/GPIIIa-dependent platelet aggregation similar to that seen with S. gordonii DL1. However, they failed to support platelet adhesion. Thus, S. gordonii has distinct mechanisms for supporting platelet adhesion and inducing platelet aggregation. Differential protein expression between strains may be important for the pathogenesis of invasive diseases such as infective endocarditis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abbot EL, Smith WD, Siou GPS, Chiriboga C, Smith RJ, Wilson JA, Hirst BH, Kehoe MA. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 2007; 9:1822-33. [PMID: 17359232 DOI: 10.1111/j.1462-5822.2007.00918.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very little is known about the biological functions of pili that have recently been found to be expressed by important Gram-positive pathogens such as Corynebacterium diphtheriae, Streptococcus agalacticae, S. pneumoniae and S. pyogenes. Using various ex vivo tissue and cellular models, here we show that pili mediate adhesion of serotype M1 S. pyogenes strain SF370 to both human tonsil epithelium and primary human keratinocytes, which represent the two main sites of infection by this human-specific pathogen. Mutants lacking minor pilus subunits retained the ability to express cell-surface pili, but these were functionally defective. In contrast to above, pili were not required for S. pyogenes adhesion to either immortalized HEp-2 or A549 cells, highlighting an important limitation of these extensively used adhesion/invasion models. Adhering bacteria were internalized very effectively by both HEp-2 and A549 cells, but not by tonsil epithelium or primary keratinocytes. While pili acted as the primary adhesin, the surface M1 protein clearly enhanced adhesion to tonsil, but surprisingly, had the opposite effect on adhesion to keratinocytes. These studies provide clear evidence that S. pyogenes pili display an adhesive specificity for clinically relevant human tissues and are likely to play a critical role in the initial stages of infection.
Collapse
Affiliation(s)
- Emily L Abbot
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|