1
|
Inflammation During Virus Infection: Swings and Roundabouts. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121364 DOI: 10.1007/978-981-15-1045-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammation constitutes a concerted series of cellular and molecular responses that follow disturbance of systemic homeostasis, by either toxins or infectious organisms. Leukocytes modulate inflammation through production of secretory mediators, like cytokines and chemokines, which work in an autocrine and/or paracrine manner. These mediators can either promote or attenuate the inflammatory response and depending on differential temporal and spatial expression play a crucial role in the outcome of infection. Even though the objective is clearance of the pathogen with minimum damage to host, the pathogenesis of multiple human pathogenic viruses has been suggested to emanate from a dysregulation of the inflammatory response, sometimes with fatal consequences. This review discusses the nature and the outcome of inflammatory response, which is triggered in the human host subsequent to infection by single-sense plus-strand RNA viruses. In view of such harmful effects of a dysregulated inflammatory response, an exogenous regulation of these reactions by either interference or supplementation of critical regulators has been suggested. Currently multiple such factors are being tested for their beneficial and adverse effects. A successful use of such an approach in diseases of viral etiology can potentially protect the affected individual without directly affecting the virus life cycle. Further, such approaches whenever applicable would be useful in mitigating death and/or debility that is caused by the infection of those viruses which have proven particularly difficult to control by either prophylactic vaccines and/or therapeutic strategies using specific antiviral drugs.
Collapse
|
2
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
3
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
4
|
Fernandez MV, Miller EA, Bhardwaj N. Activation and measurement of NLRP3 inflammasome activity using IL-1β in human monocyte-derived dendritic cells. J Vis Exp 2014. [PMID: 24894187 DOI: 10.3791/51284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes resulting from the secretion of Interleukin (IL)-1 family cytokines by immune cells lead to local or systemic inflammation, tissue remodeling and repair, and virologic control(1) (,) (2) . Interleukin-1β is an essential element of the innate immune response and contributes to eliminate invading pathogens while preventing the establishment of persistent infection(1-5). Inflammasomes are the key signaling platform for the activation of interleukin 1 converting enzyme (ICE or Caspase-1). The NLRP3 inflammasome requires at least two signals in DCs to cause IL-1β secretion(6). Pro-IL-1β protein expression is limited in resting cells; therefore a priming signal is required for IL-1β transcription and protein expression. A second signal sensed by NLRP3 results in the formation of the multi-protein NLRP3 inflammasome. The ability of dendritic cells to respond to the signals required for IL-1β secretion can be tested using a synthetic purine, R848, which is sensed by TLR8 in human monocyte derived dendritic cells (moDCs) to prime cells, followed by activation of the NLRP3 inflammasome with the bacterial toxin and potassium ionophore, nigericin. Monocyte derived DCs are easily produced in culture and provide significantly more cells than purified human myeloid DCs. The method presented here differs from other inflammasome assays in that it uses in vitro human, instead of mouse derived, DCs thus allowing for the study of the inflammasome in human disease and infection.
Collapse
Affiliation(s)
| | - Elizabeth A Miller
- Division of Infectious Diseases, Department of Medicine, Mount Sinai Medical Center
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Mount Sinai Medical Center;
| |
Collapse
|
5
|
Avota E, Koethe S, Schneider-Schaulies S. Membrane dynamics and interactions in measles virus dendritic cell infections. Cell Microbiol 2012; 15:161-9. [PMID: 22963539 DOI: 10.1111/cmi.12025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97878 Wuerzburg, Germany
| | | | | |
Collapse
|
6
|
Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. J Virol 2012; 86:9773-81. [PMID: 22761368 DOI: 10.1128/jvi.00458-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.
Collapse
|
7
|
Horton RE, Morrison NA, Beacham IR, Peak IR. Interaction of Burkholderia pseudomallei and Burkholderia thailandensis with human monocyte-derived dendritic cells. J Med Microbiol 2012; 61:607-614. [PMID: 22301613 DOI: 10.1099/jmm.0.038588-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in areas of South-East Asia and northern Australia, and is classed as a category B select agent by the Centers for Disease Control and Prevention (CDC). Factors that determine whether host infection is achieved or if disease is chronic or acute are unknown but the type of host immune response that is mounted is important. B. pseudomallei can replicate within macrophages, causing them to multinucleate. In light of the common lineage of macrophages with dendritic cells (DCs), and the role played by DCs in orchestration of the immune response, we investigated the interactions of a variety of B. pseudomallei and B. thailandensis strains with DCs. This study demonstrates that, in the majority of cases, infection of human monocyte-derived dendritic cells is dramatically decreased or cleared by 12 h post-infection, showing a lack of ability to replicate and survive within DCs. Additionally we have shown that B. pseudomallei activates DCs, as measured by cytokine secretion, and live bacteria are not required for activation.
Collapse
Affiliation(s)
- Rachel E Horton
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nigel A Morrison
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
8
|
Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 2011; 7:e1001290. [PMID: 21379338 PMCID: PMC3040670 DOI: 10.1371/journal.ppat.1001290] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/12/2011] [Indexed: 11/23/2022] Open
Abstract
As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses. Dendritic cells (DCs) bear receptors specialized on recognition of patterns specific to pathogens (such as carbohydrates), which can either promote functional activation of these cells (such as TLRs), which renders them capable of efficiently presenting antigens to T cells, or, as DC-SIGN, endocytic uptake as essential for loading MHC molecules. Viruses such as HIV and measles virus (MV) exploit DC-SIGN for both their uptake into DCs and modulation of TLR signaling, yet how this is mechanistically exerted is poorly understood. We now show that DC-SIGN activates sphingomyelinases (SMases) which convert their sphingomyelin substrate into ceramides, thereby catalysing the formation of membrane platforms able to recruit and concentrate receptors and associated signaling components. We found DC-SIGN-dependent SMase activation as essential for DC-SIGN and thereby modulation of TLR signaling, but also for enhancement of MV uptake. This is mediated by a fast, transient recruitment of its entry receptor, CD150, from an intracellular storage compartment to the cell surface where it co-clusters in ceramide enriched platforms with DC-SIGN. The ability to segregate viral receptors into (or exclude them from) membrane microdomains, which, based on their biophysical properties, facilitate membrane fusion, proposes DC-SIGN-mediated SMAse activation as a central regulator of pathogen uptake into DCs.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Blotting, Western
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Ceramides/metabolism
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Flow Cytometry
- Humans
- Immunoprecipitation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Measles
- Measles virus/genetics
- Measles virus/growth & development
- Measles virus/immunology
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Virus/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signaling Lymphocytic Activation Molecule Family Member 1
- Sphingomyelin Phosphodiesterase/metabolism
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Wuerzburg, Germany
| | - Erich Gulbins
- Department of Molecular Medicine, University of Essen, Essen, Germany
| | | |
Collapse
|
9
|
The HTLV-1 Virological Synapse. Viruses 2010; 2:1427-1447. [PMID: 21994688 PMCID: PMC3185711 DOI: 10.3390/v2071427] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/04/2010] [Accepted: 06/29/2010] [Indexed: 01/05/2023] Open
Abstract
Human T-lymphotropic virus-1 (HTLV-1) spreads efficiently between T-cells via a tight and highly organized cell-cell contact known as the virological synapse. It is now thought that many retroviruses and other viruses spread via a virological synapse, which may be defined as a virus-induced, specialized area of cell-to-cell contact that promotes the directed transmission of the virus between cells. We summarize here the mechanisms leading to the formation of the HTLV-1 virological synapse and the role played by HTLV-1 Tax protein. We propose a model of HTLV-1 transmission between T-cells based on the three-dimensional ultrastructure of the virological synapse. Finally, in the light of recent advances, we discuss the possible routes of HTLV-1 spread across the virological synapse.
Collapse
|
10
|
Fialová A, Cimburek Z, Iezzi G, Kopecký J. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microbes Infect 2010; 12:580-5. [DOI: 10.1016/j.micinf.2010.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/11/2010] [Accepted: 03/30/2010] [Indexed: 11/15/2022]
|
11
|
Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol 2010; 199:227-37. [DOI: 10.1007/s00430-010-0152-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 12/11/2022]
|
12
|
Herpes simplex virus type 1 (HSV-1)-induced apoptosis in human dendritic cells as a result of downregulation of cellular FLICE-inhibitory protein and reduced expression of HSV-1 antiapoptotic latency-associated transcript sequences. J Virol 2009; 84:1034-46. [PMID: 19906927 DOI: 10.1128/jvi.01409-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the most frequent and successful human pathogens. It targets immature dendritic cells (iDCs) to interfere with the antiviral immune response. The mechanisms underlying apoptosis of HSV-1-infected iDCs are not fully understood. Previously, we have shown that HSV-1-induced apoptosis of iDCs is associated with downregulation of the cellular FLICE-inhibitory protein (c-FLIP), a potent inhibitor of caspase-8-mediated apoptosis. In this study, we prove that HSV-1 induces degradation of c-FLIP in a proteasome-independent manner. In addition, by using c-FLIP-specific small interfering RNA (siRNA) we show for the first time that downregulation of c-FLIP expression is sufficient to drive uninfected iDCs into apoptosis, underlining the importance of this molecule for iDC survival. Surprisingly, we also observed virus-induced c-FLIP downregulation in epithelial cells and many other cell types that do not undergo apoptosis after HSV-1 infection. Microarray analyses revealed that HSV-1-encoded latency-associated transcript (LAT) sequences, which can substitute for c-FLIP as an inhibitor of caspase-8-mediated apoptosis, are much less abundant in iDCs as compared to epithelial cells. Finally, iDCs infected with an HSV-1 LAT knockout mutant showed increased apoptosis when compared to iDCs infected with the corresponding wild-type HSV-1. Taken together, our results demonstrate that apoptosis of HSV-1-infected iDCs requires both c-FLIP downregulation and diminished expression of viral LAT.
Collapse
|
13
|
Guerrero-Plata A, Kolli D, Hong C, Casola A, Garofalo RP. Subversion of pulmonary dendritic cell function by paramyxovirus infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:3072-83. [PMID: 19234204 PMCID: PMC2865244 DOI: 10.4049/jimmunol.0802262] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lower respiratory tract infections caused by the paramyxoviruses human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) are characterized by short-lasting virus-specific immunity and often long-term airway morbidity, both of which may be the result of alterations in the Ag-presenting function of the lung which follow these infections. In this study, we investigated whether hMPV and RSV experimental infections alter the phenotype and function of dendritic cell (DC) subsets that are recruited to the lung. Characterization of lung DC trafficking demonstrated a differential recruitment of plasmacytoid DC (pDC), conventional DC (cDC), and IFN-producing killer DC to the lung and draining lymph nodes after hMPV and RSV infection. In vitro infection of lung DC indicated that in pDC, production of IFN-alpha, TNF-alpha, and CCL5 was induced only by hMPV, whereas CCL3 and CCL4 were induced by both viruses. In cDC, a similar repertoire of cytokines was induced by hMPV and RSV, except for IFN-beta, which was not induced by RSV. The function of lung pDC was altered following hMPV or RSV infection in vivo, as we demonstrated a reduced capacity of lung pDC to produce IFN-alpha as well as other cytokines including IL-6, TNF-alpha, CCL2, CCL3, and CCL4 in response to TLR9 stimulation. Moreover, we observed an impaired capacity of cDC from infected mice to present Ag to CD4(+) T cells, an effect that lasted beyond the acute phase of infection. Our findings suggest that acute paramyxovirus infections can alter the long-term immune function of pulmonary DC.
Collapse
Affiliation(s)
| | - Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chao Hong
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
14
|
Best I, López G, Verdonck K, González E, Tipismana M, Gotuzzo E, Vanham G, Clark D. IFN-gamma production in response to Tax 161-233, and frequency of CD4+ Foxp3+ and Lin HLA-DRhigh CD123+ cells, discriminate HAM/TSP patients from asymptomatic HTLV-1-carriers in a Peruvian population. Immunology 2009; 128:e777-86. [PMID: 19740339 DOI: 10.1111/j.1365-2567.2009.03082.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) can cause HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The objective of this study was to gain insight into the pathogenesis of HAM/TSP by focusing on the CD8(+) T-cell response. Twenty-three HTLV-1-seronegative controls (SC), 29 asymptomatic HTLV-1 carriers (AC) and 48 patients with HAM/TSP were enrolled in the study. We evaluated the production of interferon-gamma (IFN-gamma) in peripheral blood mononuclear cells stimulated with Tax overlapping peptides, the expression of genes related to the CD8(+) cytotoxic T-cell response, the frequency of CD4(+) Foxp3(+) cells and of dendritic cells, and the HTLV-1 provirus load (PVL). The frequency of cells producing IFN-gamma in response to Tax 161-233, but not to Tax 11-19, discriminated patients with HAM/TSP from AC. The increased pro-inflammatory response observed in patients with HAM/TSP was shared by AC with a high PVL, who also exhibited lower levels of granzyme H mRNA in unstimulated CD8(+) T cells than AC with a low PVL. Patients with HAM/TSP showed higher frequencies of CD4(+) Foxp3(+) cells and lower frequencies of plasmacytoid dendritic cells (pDC) than AC. Our findings are consistent with a model in which HTLV-1, along with the host genetic background, drives quantitative and qualitative changes in pDC and CD4(+) Foxp3(+) cells that lead to a predominance of inflammatory responses over lytic responses in the CD8(+) T-cell response of individuals predisposed to develop HAM/TSP.
Collapse
Affiliation(s)
- Ivan Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 2008; 106:286-91. [PMID: 19116267 DOI: 10.1073/pnas.0811052106] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HA of influenza virus is a receptor-binding and fusion protein that is required to initiate infection. The HA receptor-binding domain determines the species of sialyl receptors recognized by influenza viruses. Here, we demonstrate that changes in the HA receptor-binding domain alter the ability of the H5N1 virus to spread systemically in mice. The A/Vietnam/1203/04 (VN1203) and A/Hong Kong/213/03 (HK213) viruses are consistently lethal to domestic chickens but differ in their pathogenicity to mammals. Insertion of the VN1203 HA and neuraminidase (NA) genes into recombinant HK213 virus expanded its tissue tropism and increased its lethality in mice; conversely, insertion of HK213 HA and NA genes into recombinant VN1203 virus decreased its systemic spread and lethality. The VN1203 and HK213 HAs differ by 10 aa, and HK213 HA has shown greater binding affinity for synthetic alpha2,6-linked sialyl receptor. Introduction of an S227N change and removal of N-linked glycosylation at residue 158 increased the alpha2,6-binding affinity of VN1203 HA. Recombinant VN1203 virus carrying the S227N change alone or with the residue-158 glycosylation site removed showed reduced lethality and systemic spread in mice but not in domestic chickens. Wild-type VN1203 virus exhibited the greatest efficiency in systemic spread after intramuscular inoculation and in infection of mouse bone marrow-derived dendritic cells and conventional pulmonary dendritic cells. These results show that VN1203 HA glycoprotein confers pathogenicity by facilitating systemic spread in mice; they also suggest that a minor change in receptor binding domain may modulate the virulence of H5N1 viruses.
Collapse
|
16
|
Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008; 14:429-36. [PMID: 18376405 DOI: 10.1038/nm1745] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/29/2008] [Indexed: 11/09/2022]
Abstract
Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, Science Applications International Corporation-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
17
|
Tam MA, Sundquist M, Wick MJ. MyD88 and IFN-alphabeta differentially control maturation of bystander but not Salmonella-associated dendritic cells or CD11cintCD11b+ cells during infection. Cell Microbiol 2008; 10:1517-29. [PMID: 18363877 DOI: 10.1111/j.1462-5822.2008.01144.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interface between dendritic cells (DCs) and T cells is critical to elicit effective immunity against pathogens. The maturation state of DCs determines the quality of the interaction and governs the type of response. DCs can be matured directly through activating Toll-like receptors (TLRs) or indirectly by cytokines. We explore the role of the TLR adaptor MyD88 on DC maturation during Salmonella infection. Using Salmonella expressing GFP, we also examine the phenotype and function of bacteria-associated DCs matured in the absence of bacteria-mediated TLR signalling. MyD88 was required for upregulation of CD80 on DCs during infection, whereas CD86 and CD40 were upregulated independently of MyD88, although requiring a higher bacterial burden in the MLN. MyD88-independent upregulation was mediated by IFN-alphabeta produced during infection. In infected MyD88(-/-)IFN-alphabetaR(-/-) mice, which lack most bacteria-driven TLR signalling, indirect DC maturation was abolished. In contrast, DCs containing Salmonella upregulated co-stimulatory molecules independently of MyD88 and IFN-alphabeta, revealing a pathway of phenotypic maturation active in infected DCs. However, despite high co-stimulatory molecule expression, Salmonella-containing DCs from MyD88(-/-) or MyD88(-/-)IFN-alphabetaR(-/-) mice had a compromised capacity to activate T cells. Thus, bacterial stimulation of TLRs influences DC function at multiple levels that modulates their capacity to direct antibacterial immunity.
Collapse
Affiliation(s)
- Miguel A Tam
- Department of Microbiology and Immunology, Göteborg University, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|