1
|
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021; 13:v13061146. [PMID: 34203773 PMCID: PMC8232671 DOI: 10.3390/v13061146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.
Collapse
Affiliation(s)
- Carla Mavian
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany;
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
- Correspondence:
| |
Collapse
|
2
|
Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses 2019; 11:v11060493. [PMID: 31146446 PMCID: PMC6631127 DOI: 10.3390/v11060493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5–200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A–D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
Collapse
|
3
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
4
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Martínez O, Miranda E, Ramírez M, Santos S, Rivera C, Vázquez L, Sánchez T, Tremblay RL, Ríos-Olivares E, Otero M. Immunomodulator-based enhancement of anti smallpox immune responses. PLoS One 2015; 10:e0123113. [PMID: 25875833 PMCID: PMC4395221 DOI: 10.1371/journal.pone.0123113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.
Collapse
Affiliation(s)
- Osmarie Martínez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Eric Miranda
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Microbiology Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Maite Ramírez
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Saritza Santos
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos Rivera
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Luis Vázquez
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Tomás Sánchez
- Department Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Raymond L. Tremblay
- Department of Biology, University of Puerto Rico, Humacao, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras campus, San Juan, Puerto Rico
| | - Eddy Ríos-Olivares
- Department of Microbiology Universidad Central del Caribe School of Medicine, Bayamón, Puerto Rico
| | - Miguel Otero
- Department of Microbiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
6
|
Liechtenstein T, Perez-Janices N, Blanco-Luquin I, Goyvaerts C, Schwarze J, Dufait I, Lanna A, Ridder MD, Guerrero-Setas D, Breckpot K, Escors D. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 2014; 3:e945378. [PMID: 25954597 DOI: 10.4161/21624011.2014.945378] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023] Open
Abstract
Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.
Collapse
Key Words
- 142 3p, target sequence for the microRNA 142 3p
- DC, dendritic cell
- G-MDSC, granulocytic MDSC
- IL, interleukin
- IiOVA, MHC II invariant chain-ovalbumin
- M-MDS, monocytic MDSC
- MDSC
- MDSC, myeloid-derived suppressor cell
- MLR, mixed lymphocyte reaction
- OVA, chicken ovalbumin
- PD-1, programmed cell death 1
- PD-L1
- PD-L1, programmed cell death 1 ligand 1
- T cell
- TAA, tumor associated antigen
- TCR, T cell receptor
- TRP1, tyrosinase related protein 1;
- TRP2, tyrosinase related protein 2
- Th, T helper lymphocyte
- immunotherapy
- melanoma
- p1, PD-L1-targeted microRNA
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Noemi Perez-Janices
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Julia Schwarze
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Ines Dufait
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium ; Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - Alessio Lanna
- Division of infection and immunity; Rayne Institute; University College London ; London, UK
| | - Mark De Ridder
- Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Guerrero-Setas
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Escors
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| |
Collapse
|
7
|
Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SSF, Chen W, Chang W, Tzou DLM. Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. J Biol Chem 2014; 289:6639-6655. [PMID: 24451374 DOI: 10.1074/jbc.m114.547372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.
Collapse
Affiliation(s)
- Da-Rong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Jye-Chian Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Chien-Hsuan Wong
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Guo-Chian Li
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Su-Ching Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Wenlung Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529.
| |
Collapse
|
8
|
Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 2013; 9:e1003563. [PMID: 23990784 PMCID: PMC3749956 DOI: 10.1371/journal.ppat.1003563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 07/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21-84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus infection.
Collapse
|
9
|
Julien P, Thielens NM, Crouch E, Spehner D, Crance JM, Favier AL. Protective effect of surfactant protein d in pulmonary vaccinia virus infection: implication of A27 viral protein. Viruses 2013; 5:928-53. [PMID: 23518578 PMCID: PMC3705305 DOI: 10.3390/v5030928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/12/2022] Open
Abstract
Vaccinia virus (VACV) was used as a surrogate of variola virus (VARV) (genus Orthopoxvirus), the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D), constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/-) resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.
Collapse
Affiliation(s)
- Perino Julien
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
| | - Nicole M. Thielens
- Institut de Biologie Structurale, CNRS, CEA, Université Joseph Fourier, Grenoble, France; E-Mail: (N-M.T.)
| | - Erika Crouch
- Dept of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA; E-Mail: (E.C.)
| | - Danièle Spehner
- IGBMC; CNRS, UMR 7104; Inserm U 596; Illkirch, F-67400 France; Université Louis Pasteur, Strasbourg, F-67000 France; E-Mail: (D.S.)
| | - Jean-Marc Crance
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
| | - Anne-Laure Favier
- Laboratoire de Virologie, Institut de Recherche Biomédicale des Armées- Antenne du Centre de Recherches du Service de Santé des Armées, 38702 La Tronche cedex, France; E-Mails: (J.P.); (J-M.C.); (A-L.F.)
- Author to whom correspondence should be addressed; E-Mail: (A-L.F.); Tel.: +33-4-76-63-97-72; Fax: +33-4-76-63-69-06
| |
Collapse
|
10
|
Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins. J Virol 2012; 87:1083-97. [PMID: 23135725 DOI: 10.1128/jvi.02529-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus membrane biogenesis requires the A14 and A17 proteins. We show here that both proteins can associate with membranes co- but not posttranslationally, and we perform a structure function analysis of A14 and A17 using inducible recombinants. In the absence of A14, electron-dense virosomes and distinct clusters of small vesicles accumulate; in the absence of A17, small vesicles form a corona around the virosomes. When the proteins are induced at 12 h postinfection (hpi), crescents appear at the periphery of the electron-dense virosomes, with the accumulated vesicles likely contributing to their formation. A variety of mutant alleles of A14 and A17 were tested for their ability to support virion assembly. For A14, biologically important motifs within the N-terminal or central loop region affected crescent maturation and the immature virion (IV)→mature virion (MV) transition. For A17, truncation or mutation of the N terminus of A17 engendered a phenotype consistent with the N terminus of A17 recruiting the D13 scaffold protein to nascent membranes. When N-terminal processing was abrogated, virions attempted to undergo the IV-to-MV transition without removing the D13 scaffold and were therefore noninfectious and structurally aberrant. Finally, we show that A17 is phosphorylated exclusively within the C-terminal tail and that this region is a direct substrate of the viral F10 kinase. In vivo, the biological competency of A17 was reduced by mutations that prevented its serine-threonine phosphorylation and restored by phosphomimetic substitutions. Precleavage of the C terminus or abrogation of its phosphorylation diminished the IV→MV maturation; a block to cleavage spared virion maturation but compromised the yield of infectious virus.
Collapse
|
11
|
Poxvirus cell entry: how many proteins does it take? Viruses 2012; 4:688-707. [PMID: 22754644 PMCID: PMC3386626 DOI: 10.3390/v4050688] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.
Collapse
|
12
|
The myristate moiety and amino terminus of vaccinia virus l1 constitute a bipartite functional region needed for entry. J Virol 2012; 86:5437-51. [PMID: 22398293 DOI: 10.1128/jvi.06703-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368-382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions.
Collapse
|
13
|
Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 2011; 3:581-92. [PMID: 21739608 PMCID: PMC3191120 DOI: 10.1002/emmm.201100165] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022] Open
Abstract
T cell receptor (TCR) down-modulation after antigen presentation is a fundamental process that regulates TCR signal transduction. Current understanding of this process is that intrinsic TCR/CD28 signal transduction leads to TCR down-modulation. Here, we show that the interaction between programmed cell death 1 ligand 1 (PD-L1) on dendritic cells (DCs) and programmed death 1 (PD-1) on CD8 T cells contributes to ligand-induced TCR down-modulation. We provide evidence that this occurs via Casitas B-lymphoma (Cbl)-b E3 ubiquitin ligase up-regulation in CD8 T cells. Interference with PD-L1/PD-1 signalling markedly inhibits TCR down-modulation leading to hyper-activated, proliferative CD8 T cells as assessed in vitro and in vivo in an arthritis model. PD-L1 silencing accelerates anti-tumour immune responses and strongly potentiates DC anti-tumour capacities, when combined with mitogen-activated kinase (MAPK) modulators that promote DC activation.
Collapse
Affiliation(s)
- Katarzyna Karwacz
- Division of Infection and Immunity, Windeyer Institute of Medical Sciences, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu C, Meng X, Yan B, Crotty S, Deng J, Xiang Y. An epitope conserved in orthopoxvirus A13 envelope protein is the target of neutralizing and protective antibodies. Virology 2011; 418:67-73. [PMID: 21810533 PMCID: PMC3163717 DOI: 10.1016/j.virol.2011.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/01/2011] [Accepted: 06/17/2011] [Indexed: 11/27/2022]
Abstract
Primary immunization of humans with smallpox vaccine (live vaccinia virus (VACV)) consistently elicits antibody responses to six VACV virion membrane proteins, including A13. However, whether anti-A13 antibody contributes to immune protection against orthopoxviruses was unknown. Here, we isolated a murine monoclonal antibody (mAb) against A13 from a mouse that had been infected with VACV. The anti-A13 mAb bound to recombinant A13 protein with an affinity of 3.4 nM and neutralized VACV mature virions. Passive immunization of mice with the anti-A13 mAb protected against intranasal VACV infection. The epitope of the anti-A13 mAb was mapped to a 10-amino acid sequence conserved in all orthopoxviruses, including viriola virus and monkeypox virus, suggesting that anti-A13 antibodies elicited by smallpox vaccine might contribute to immune protection against orthopoxviruses. In addition, our data demonstrates that anti-A13 mAbs are effective for treating orthopoxvirus infection.
Collapse
Affiliation(s)
- Chungui Xu
- Department of Microbiology and Immunology, Univ. of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
16
|
Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 2009; 83:12822-32. [PMID: 19812151 DOI: 10.1128/jvi.01744-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The original annotation of the vaccinia virus (VACV) genome was limited to open reading frames (ORFs) of at least 65 amino acids. Here, we characterized a 35-amino-acid ORF (O3L) located between ORFs O2L and I1L. ORFs similar in length to O3L were found at the same genetic locus in all vertebrate poxviruses. Although amino acid identities were low, the presence of a characteristic N-terminal hydrophobic domain strongly suggested that the other poxvirus genes were orthologs. Further studies demonstrated that the O3 protein was expressed at late times after infection and incorporated into the membrane of the mature virion. An O3L deletion mutant was barely viable, producing tiny plaques and a 3-log reduction in infectious progeny. A mutant VACV with a regulated O3L gene had a similar phenotype in the absence of inducer. There was no apparent defect in virus morphogenesis, though O3-deficient virus had low infectivity. The impairment was shown to be at the stage of virus entry, as cores were not detected in the cytoplasm after virus adsorption. Furthermore, O3-deficient virus did not induce fusion of infected cells when triggered by low pH. These characteristics are hallmarks of a group of proteins that form the entry/fusion complex (EFC). Affinity purification experiments demonstrated an association of O3 with EFC proteins. In addition, the assembly or stability of the EFC was impaired when expression of O3 was repressed. Thus, O3 is the newest recognized component of the EFC and the smallest VACV protein shown to have a function.
Collapse
|
17
|
Altmann SE, Jones JC, Schultz-Cherry S, Brandt CR. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide. Virology 2009; 388:248-59. [PMID: 19395056 DOI: 10.1016/j.virol.2009.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/20/2008] [Accepted: 03/16/2009] [Indexed: 11/18/2022]
Abstract
Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC(50) of 15 microM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC50>200 microM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of beta-galactosidase expression from an early viral promoter with an EC(50) of 45 microM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p<0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.
Collapse
Affiliation(s)
- S E Altmann
- Microbiology Doctoral Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
18
|
Disulfide bond formation at the C termini of vaccinia virus A26 and A27 proteins does not require viral redox enzymes and suppresses glycosaminoglycan-mediated cell fusion. J Virol 2009; 83:6464-76. [PMID: 19369327 DOI: 10.1128/jvi.02295-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.
Collapse
|
19
|
Foo CH, Lou H, Whitbeck JC, Ponce-de-León M, Atanasiu D, Eisenberg RJ, Cohen GH. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology 2009; 385:368-82. [PMID: 19162289 DOI: 10.1016/j.virol.2008.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/18/2008] [Accepted: 12/12/2008] [Indexed: 10/21/2022]
Abstract
L1 and A28 are vaccinia virus (VACV) envelope proteins which are essential for cellular entry. However, their specific roles during entry are unknown. We tested whether one or both of these proteins might serve as receptor binding proteins (RBP). We found that a soluble, truncated form of L1, but not A28, bound to cell surfaces independently of glycosaminoglycans (GAGs). Hence, VACV A28 is not likely to be a RBP and functions after attachment during entry. Importantly, soluble L1 inhibited both binding and entry of VACV in GAG-deficient cells, suggesting that soluble L1 blocks entry at the binding step by competing with the virions for non-GAG receptors on cells. In contrast, soluble A27, a VACV protein which attaches to GAGs but is non-essential for virus entry, inhibited binding and entry of VACV in a GAG-dependent manner. To our knowledge, this is the first report of a VACV envelope protein that blocks virus binding and entry independently of GAGs.
Collapse
Affiliation(s)
- Chwan Hong Foo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Levy Rm 233, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
The vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 2008; 82:10247-61. [PMID: 18701587 DOI: 10.1128/jvi.01035-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The previously unstudied vaccinia virus gene I2L is conserved in all orthopoxviruses. We show here that the 8-kDa I2 protein is expressed at late times of infection, is tightly associated with membranes, and is encapsidated in mature virions. We have generated a recombinant virus in which I2 expression is dependent upon the inclusion of tetracycline in the culture medium. In the absence of I2, the biochemical events of the viral life cycle progress normally, and virion morphogenesis culminates in the production of mature virions. However, these virions show an approximately 400-fold reduction in specific infectivity due to an inability to enter target cells. Several proteins that have been previously identified as components of an essential entry/fusion complex are present at reduced levels in I2-deficient virions, although other membrane proteins, core proteins, and DNA are encapsidated at normal levels. A preliminary structure/function analysis of I2 has been performed using a transient complementation assay: the C-terminal hydrophobic domain is essential for protein stability, and several regions within the N-terminal hydrophilic domain are essential for biological competency. I2 is thus yet another component of the poxvirus virion that is essential for the complex process of entry into target cells.
Collapse
|
21
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.
Collapse
|
23
|
Disparity between levels of in vitro neutralization of vaccinia virus by antibody to the A27 protein and protection of mice against intranasal challenge. J Virol 2008; 82:8022-9. [PMID: 18524827 DOI: 10.1128/jvi.00568-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with recombinant proteins may provide a safer alternative to live vaccinia virus for prophylaxis of poxvirus infections. Although antibody protects against vaccinia virus infection, the mechanism is not understood and the selection of immunogens is daunting as there are dozens of surface proteins and two infectious forms known as the mature virion (MV) and the enveloped virion (EV). Our previous studies showed that mice immunized with soluble forms of EV membrane proteins A33 and B5 and MV membrane protein L1 or passively immunized with antibodies to these proteins survived an intranasal challenge with vaccinia virus. The present study compared MV protein A27, which has a role in virus attachment to glycosaminoglycans on the cell surface, to L1 with respect to immunogenicity and protection. Although mice developed similar levels of neutralizing antibody after immunizations with A27 or L1, A27-immunized mice exhibited more severe disease upon an intranasal challenge with vaccinia virus. In addition, mice immunized with A27 and A33 were not as well protected as mice receiving L1 and A33. Polyclonal rabbit anti-A27 and anti-L1 IgG had equivalent MV-neutralizing activities when measured by the prevention of infection of human or mouse cells or cells deficient in glycosaminoglycans or by adding antibody prior to or after virus adsorption. Nevertheless, the passive administration of antibody to A27 was poorly protective compared to the antibody to L1. These studies raise questions regarding the basis for antibody protection against poxvirus disease and highlight the importance of animal models for the early evaluation of vaccine candidates.
Collapse
|
24
|
A conserved sequence within the H2 subunit of the vaccinia virus entry/fusion complex is important for interaction with the A28 subunit and infectivity. J Virol 2008; 82:6244-50. [PMID: 18417576 DOI: 10.1128/jvi.00434-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently described vaccinia virus entry/fusion complex (EFC) comprises at least eight polypeptides that are conserved in all poxviruses. Neither the structure of the complex nor the roles of individual subunits are known. Here we provide evidence for an interaction between the H2 and A28 subunits in the context of a virus infection as well as in uninfected cells transfected with plasmids expressing the corresponding genes. We focused on a highly conserved 21-amino acid-segment in H2 that is flanked by cysteine residues. The effect of amino acid substitutions within the 21-amino-acid segment was determined by an infectivity complementation assay using a conditional H2-null mutant of vaccinia virus. Mutations that had no, moderate, or large negative effects on complementation were found. The latter group included glutamic acid substitutions of leucine and individual glycines and alanine substitution of both glycines within a LGYSG sequence. Mutations with the most pronounced effect on infectivity disrupted the interaction of H2 with A28 to the greatest extent in both infected and uninfected cells. These data indicate that the LGYSG sequence is important for the interaction of H2 with A28 and suggest that this sequence is buried within the EFC complex.
Collapse
|