1
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
2
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. Sci Rep 2024; 14:20664. [PMID: 39237639 PMCID: PMC11377839 DOI: 10.1038/s41598-024-71248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA
| | - Kelly Hallstrom
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Christopher DeMott
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA
- Regeneron Pharmaceuticals Inc, Albany, NY, USA
| | - Kathleen A McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany, Albany, USA.
- Wadsworth Center, New York Department of Health, 120 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
3
|
Li J, Dou Y. Mycobacterium tuberculosis protein Rv2652c enhances intracellular survival by inhibiting host immune responses. Immun Inflamm Dis 2024; 12:e70012. [PMID: 39240051 PMCID: PMC11378267 DOI: 10.1002/iid3.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUNDS Mycobacterium tuberculosis (Mtb), the pathogen responsible for tuberculosis, secretes a multitude of proteins that modulate the host's immune response to ensure its own persistence. The region of difference (RD) genes encoding proteins play key roles in TB immunity and pathogenesis. Nevertheless, the roles of the majority of RD-encoded proteins remain to be elucidated. OBJECTS To elucidate the role of Rv2652c located in RD13 in Mtb on bacterial growth, bacterial survival, and host immune response. METHODS We constructed the strain MS_Rv2652c which over-expresses Mtb RD-encoding protein Rv2652c in M. smegmatis (MS), and compared it with the wild strain in the bacterial growth, bacterial survival, virulence of Rv2652c, and determined the effect of MS_Rv2652c on host immune response in macrophages. RESULTS Rv2652c protein is located at cell wall of MS_Rv2652c strain and also an integral component of the Mtb H37Rv cell wall. Rv2652c can enhance the resistance of recombinant MS to various stressors. Moreover, Rv2652c inhibits host proinflammatory responses via modulation of the NF-κB pathway, thereby promoting Mtb survival in vitro and in vivo. CONCLUSION Our data suggest that cell wall protein Rv2652c plays an important role in creating a favorable environment for bacterial survival by modulating host signals and could be established as a potential TB drug target.
Collapse
Affiliation(s)
- Jihong Li
- Yichang Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Immunological DiseasesThe Second People's Hospital of China Three Gorges UniversityYichangChina
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyChina Three Gorges UniversityYichangChina
| | - Yafeng Dou
- Yichang Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Immunological DiseasesThe Second People's Hospital of China Three Gorges UniversityYichangChina
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyChina Three Gorges UniversityYichangChina
- Department of LaboratoryThe Second People's Hospital of China Three Gorges UniversityYichangChina
| |
Collapse
|
4
|
Shaik BB, Karpoormath R. Key challenges in TB drug discovery: A perspective. Bioorg Med Chem Lett 2024; 109:129846. [PMID: 38857850 DOI: 10.1016/j.bmcl.2024.129846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
Over the past 2000 years, tuberculosis (TB) has been responsible for more deaths than any other infectious disease. In recent years, there has been a recovery of research and development (R&D) efforts focused on TB drugs. This is driven by the pressing need to combat the global spread of the disease and develop improved therapies for both drug-sensitive and drug-resistant strains. Many new TB drug candidates have recently entered clinical trials, marking the beginning of a rebirth in this area after decades of neglect. The problem is that very few of the hundreds of compounds identified each year as potential anti-TB drugs really make it to the clinical development stage. This perspective focuses on the primary obstacles and approaches involved in the development of new medications for TB. This will help medicinal chemists better understand TB drug challenges and develop novel drug candidates.
Collapse
Affiliation(s)
- Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa.
| |
Collapse
|
5
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase Is Required for In Vitro and In Vivo Survival of Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:7862. [PMID: 39063103 PMCID: PMC11277061 DOI: 10.3390/ijms25147862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction, we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. A wildtype (WT) and a mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for the in vitro stress response and in vivo survival in macrophages and mice models of infection. The study demonstrates that the deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice; however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag-/- mice at 4 weeks post-infection. Moreover, Rag-/- mice infected with RvΔ0687 survived longer compared to those infected with the WT Mtb strain. Additionally, we observed a significant reduction in the bacterial burden in the spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to those infected with complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
7
|
Piccaro G, Aquino G, Gigantino V, Tirelli V, Sanchez M, Iorio E, Matarese G, Cassone A, Palma C. Mycobacterium tuberculosis antigen 85B modifies BCG-induced antituberculosis immunity and favors pathogen survival. J Leukoc Biol 2024; 115:1053-1069. [PMID: 38242866 DOI: 10.1093/jleuko/qiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Giovanni Piccaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriella Aquino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori, Fondazione G. Pascale, IRCCS, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Valentina Tirelli
- Core Facilities-Flow Cytometry Area, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Sanchez
- Core Facilities-Flow Cytometry Area, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Egidio Iorio
- Core Facilities-High Resolution NMR Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie mediche, Università di Napoli "Federico II," Via Sergio Pansini 5, 80131 Naples, Italy
| | - Antonio Cassone
- Polo d'innovazione della Genomica, Genetica e Biologia, Via Fiorentina 1, 53100 Siena, Italy
| | - Carla Palma
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Lin Z, Kaniraj JP, Holzheimer M, Nigou J, Gilleron M, Hekelaar J, Minnaard AJ. Asymmetric Total Synthesis and Structural Revision of DAT 2, an Antigenic Glycolipid from Mycobacterium tuberculosis. Angew Chem Int Ed Engl 2024; 63:e202318582. [PMID: 38456226 PMCID: PMC11482735 DOI: 10.1002/anie.202318582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
DAT2 is a member of the diacyl trehalose family (DAT) of antigenic glycolipids located in the mycomembrane of Mycobacterium tuberculosis (Mtb). Recently it was shown that the molecular structure of DAT2 had been incorrectly assigned, but the correct structure remained elusive. Herein, the correct molecular structure of DAT2 and its methyl-branched acyl substituent mycolipanolic acid is determined. For this, four different stereoisomers of mycolipanolic acid were prepared in a stereoselective and unified manner, and incorporated into DAT2. A rigorous comparison of the four isomers to the DAT isolated from Mtb H37Rv by NMR, HPLC, GC, and mass spectrometry allowed a structural revision of mycolipanolic acid and DAT2. Activation of the macrophage inducible Ca2+-dependent lectin receptor (Mincle) with all four stereoisomers shows that the natural stereochemistry of mycolipanolic acid / DAT2 provides the strongest activation, which indicates its high antigenicity and potential application in serodiagnostics and vaccine adjuvants.
Collapse
Affiliation(s)
- Zonghao Lin
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jeya Prathap Kaniraj
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077, Toulouse, France
| | - Johan Hekelaar
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Naik L, Patel S, Kumar A, Ghosh A, Mishra A, Das M, Nayak DK, Saha S, Mishra A, Singh R, Behura A, Dhiman R. 4-(Benzyloxy)phenol-induced p53 exhibits antimycobacterial response triggering phagosome-lysosome fusion through ROS-dependent intracellular Ca 2+ pathway in THP-1 cells. Microbiol Res 2024; 282:127664. [PMID: 38422860 DOI: 10.1016/j.micres.2024.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 μM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.
Collapse
Affiliation(s)
- Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abhirupa Ghosh
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudipto Saha
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurugram Expressway, 3rd Milestone, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
11
|
Schneider RF, Hallstrom K, DeMott C, McDonough KA. Conditional protein splicing of the Mycobacterium tuberculosis RecA intein in its native host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589443. [PMID: 38659745 PMCID: PMC11042385 DOI: 10.1101/2024.04.15.589443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The recA gene, encoding Recombinase A (RecA) is one of three Mycobacterium tuberculosis (Mtb) genes encoding an in-frame intervening protein sequence (intein) that must splice out of precursor host protein to produce functional protein. Ongoing debate about whether inteins function solely as selfish genetic elements or benefit their host cells requires understanding of interplay between inteins and their hosts. We measured environmental effects on native RecA intein splicing within Mtb using a combination of western blots and promoter reporter assays. RecA splicing was stimulated in bacteria exposed to DNA damaging agents or by treatment with copper in hypoxic, but not normoxic, conditions. Spliced RecA was processed by the Mtb proteasome, while free intein was degraded efficiently by other unknown mechanisms. Unspliced precursor protein was not observed within Mtb despite its accumulation during ectopic expression of Mtb recA within E. coli. Surprisingly, Mtb produced free N-extein in some conditions, and ectopic expression of Mtb N-extein activated LexA in E. coli. These results demonstrate that the bacterial environment greatly impacts RecA splicing in Mtb, underscoring the importance of studying intein splicing in native host environments and raising the exciting possibility of intein splicing as a novel regulatory mechanism in Mtb.
Collapse
Affiliation(s)
- Ryan F. Schneider
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
| | | | | | - Kathleen A. McDonough
- Biomedical Sciences Department, School of Public Health, State University of New York at Albany
- Wadsworth Center, New York Department of Health
| |
Collapse
|
12
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
13
|
Samuels V, Mulelu AE, Ndlovu H, Marakalala MJ. Mycobacterial FtsEX-RipC interaction is required for normal growth and cell morphology in rifampicin and low ionic strength conditions. Microbiol Spectr 2024; 12:e0251523. [PMID: 38289931 PMCID: PMC10913748 DOI: 10.1128/spectrum.02515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), remains a major global health problem ranking as the second leading cause of death from a single infectious agent. One of the major factors contributing toward Mtb's success as a pathogen is its unique cell wall and its ability to counteract various arms of the host's immune response. A recent genome-scale study profiled a list of candidate genes that are predicted to be essential for Mtb survival of host-mediated responses. One candidate was FtsEX, a protein complex composed of an ATP-binding domain, FtsE, and a transmembrane domain, FtsX. FtsEX functions through interaction with a periplasmic hydrolase, RipC. Homologs of FtsEX exist in other bacteria and have been linked with playing a key role in regulating peptidoglycan hydrolysis during cell elongation and division. Here, we report on Mycobacterium smegmatis, FtsE, FtsX, and RipC and their protective roles in stressful conditions. We demonstrate that the individual genes of FtsEX complex and RipC are not essential for survival in normal growth conditions but conditionally essential in low-salt media and antibiotic-treated media. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. Our results suggest that FtsE, FtsX, and RipC are required for both normal cell elongation and division and ultimately for survival in stressful conditions. IMPORTANCE Mycobacterial cell growth and division are coordinated with regulated peptidoglycan hydrolysis. Understanding cell wall gene complexes that govern normal cell division and elongation will aid in the development of tools to disarm the ability of mycobacteria to survive immune-like and antibiotic stresses. We combined genetic analyses and scanning electron microscopy to analyze morphological changes of mycobacterial FtsEX and RipC mutants in stressful conditions. We demonstrate that FtsE, FtsX, FtsEX, and RipC are conditionally required for the survival of Mycobacterium smegmatis during rifampicin treatment and in low-salt conditions. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. We also show that the FtsEX-RipC interaction is essential for the survival of M. smegmatis in rifampicin. Our results suggest that FtsE, FtsX, and RipC are required for normal cell wall regulation and ultimately for survival in stressful conditions.
Collapse
Affiliation(s)
- Veneshley Samuels
- Division of Medical Microbiology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andani E. Mulelu
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hlumani Ndlovu
- Division of Chemical Systems Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Africa Health Research Institute, Durban, KwaZulu-Natal, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
14
|
Smiejkowska N, Oorts L, Van Calster K, De Vooght L, Geens R, Mattelaer HP, Augustyns K, Strelkov SV, Lamprecht D, Temmerman K, Sterckx YGJ, Cappoen D, Cos P. A high-throughput target-based screening approach for the identification and assessment of Mycobacterium tuberculosis mycothione reductase inhibitors. Microbiol Spectr 2024; 12:e0372323. [PMID: 38315026 PMCID: PMC10913476 DOI: 10.1128/spectrum.03723-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.
Collapse
Affiliation(s)
- Natalia Smiejkowska
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Lauren Oorts
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Henri-Philippe Mattelaer
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Sergei V. Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
15
|
Xu T, Wang C, Li M, Wei J, He Z, Qian Z, Wang X, Wang H. Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis. J Microbiol 2024; 62:49-62. [PMID: 38337112 DOI: 10.1007/s12275-023-00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Chutong Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Minying Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Jing Wei
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zixuan He
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
16
|
Das M, Sreedharan S, Shee S, Malhotra N, Nandy M, Banerjee U, Kohli S, Rajmani RS, Chandra N, Seshasayee ASN, Laxman S, Singh A. Cysteine desulfurase (IscS)-mediated fine-tuning of bioenergetics and SUF expression prevents Mycobacterium tuberculosis hypervirulence. SCIENCE ADVANCES 2023; 9:eadh2858. [PMID: 38091389 PMCID: PMC10848736 DOI: 10.1126/sciadv.adh2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Iron-sulfur (Fe-S) biogenesis requires multiprotein assembly systems, SUF and ISC, in most prokaryotes. M. tuberculosis (Mtb) encodes a complete SUF system, the depletion of which was bactericidal. The ISC operon is truncated to a single gene iscS (cysteine desulfurase), whose function remains uncertain. Here, we show that MtbΔiscS is bioenergetically deficient and hypersensitive to oxidative stress, antibiotics, and hypoxia. MtbΔiscS resisted killing by nitric oxide (NO). RNA sequencing indicates that IscS is important for expressing regulons of DosR and Fe-S-containing transcription factors, WhiB3 and SufR. Unlike wild-type Mtb, MtbΔiscS could not enter a stable persistent state, continued replicating in mice, and showed hypervirulence. The suf operon was overexpressed in MtbΔiscS during infection in a NO-dependent manner. Suppressing suf expression in MtbΔiscS either by CRISPR interference or upon infection in inducible NO-deficient mice arrests hypervirulence. Together, Mtb redesigned the ISC system to "fine-tune" the expression of SUF machinery for establishing persistence without causing detrimental disease in the host.
Collapse
Affiliation(s)
- Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
- School of Chemical and Biotechnology, (SASTRA)-Deemed to be University, Thanjavur 613401, India
| | - Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nitish Malhotra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Meghna Nandy
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Kohli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Bhargavi G, Mallakuntla MK, Kale D, Tiwari S. Rv0687 a Putative Short-Chain Dehydrogenase is indispensable for pathogenesis of Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571312. [PMID: 38168250 PMCID: PMC10760034 DOI: 10.1101/2023.12.12.571312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mycobacterium tuberculosis (Mtb), a successful human pathogen, resides in host sentinel cells and combats the stressful intracellular environment induced by reactive oxygen and nitrogen species during infection. Mtb employs several evasion mechanisms in the face of the host as a survival strategy, including detoxifying enzymes as short-chain dehydrogenases/ reductases (SDRs) to withstand host-generated insults. In this study, using specialized transduction we have generated a Rv0687 deletion mutant and its complemented strain and investigated the functional role of Rv0687, a member of SDRs family genes in Mtb pathogenesis. Wildtype (WT) and mutant Mtb strain lacking Rv0687 (RvΔ0687) were tested for in-vitro stress response and in-vivo survival in macrophages and mice models of infection. The study demonstrates that Rv0687 is crucial for sustaining bacterial growth in nutrition-limited conditions. The deletion of Rv0687 elevated the sensitivity of Mtb to oxidative and nitrosative stress-inducing agents. Furthermore, the lack of Rv0687 compromised the survival of Mtb in primary bone marrow macrophages and led to an increase in the levels of the secreted proinflammatory cytokines TNF-α, and MIP-1α. Interestingly, the growth of WT and RvΔ0687 was similar in the lungs of infected immunocompromised mice however, a significant reduction in RvΔ0687 growth was observed in the spleen of immunocompromised Rag -/- mice at 4 weeks post-infection. Moreover Rag -/- mice infected with RvΔ0687 survived longer compared to WT Mtb strain. Additionally, we observed significant reduction in bacterial burden in spleens and lungs of immunocompetent C57BL/6 mice infected with RvΔ0687 compared to complemented and WT Mtb strains. Collectively, this study reveals that Rv0687 plays a role in Mtb pathogenesis.
Collapse
|
18
|
Shee S, Veetil RT, Mohanraj K, Das M, Malhotra N, Bandopadhyay D, Beig H, Birua S, Niphadkar S, Nagarajan SN, Sinha VK, Thakur C, Rajmani RS, Chandra N, Laxman S, Singh M, Samal A, Seshasayee AN, Singh A. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. eLife 2023; 12:e80218. [PMID: 37642294 PMCID: PMC10501769 DOI: 10.7554/elife.80218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.
Collapse
Affiliation(s)
- Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | | | - Hussain Beig
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shalini Birua
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sathya Narayanan Nagarajan
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Vikrant Kumar Sinha
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| |
Collapse
|
19
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
20
|
Grigorov AS, Skvortsova YV, Bychenko OS, Aseev LV, Koledinskaya LS, Boni IV, Azhikina TL. Dynamic Transcriptional Landscape of Mycobacterium smegmatis under Cold Stress. Int J Mol Sci 2023; 24:12706. [PMID: 37628885 PMCID: PMC10454040 DOI: 10.3390/ijms241612706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.
Collapse
Affiliation(s)
- Artem S. Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | | | | | | - Tatyana L. Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
21
|
Fernandes GFS, Manieri KF, Bonjorno AF, Campos DL, Ribeiro CM, Demarqui FM, Ruiz DAG, Nascimento-Junior NM, Denny WA, Thompson AM, Pavan FR, Dos Santos JL. Synthesis and Anti-Mycobacterium tuberculosis Activity of Imidazo[2,1-b][1,3]oxazine Derivatives against Multidrug-Resistant Strains. ChemMedChem 2023; 18:e202300015. [PMID: 37002895 DOI: 10.1002/cmdc.202300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The emergence of multidrug-resistant strains of M. tuberculosis has raised concerns due to the greater difficulties in patient treatment and higher mortality rates. Herein, we revisited the 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine scaffold and identified potent new carbamate derivatives having MIC90 values of 0.18-1.63 μM against Mtb H37Rv. Compounds 47-49, 51-53, and 55 exhibited remarkable activity against a panel of clinical isolates, displaying MIC90 values below 0.5 μM. In Mtb-infected macrophages, several compounds demonstrated a 1-log greater reduction in mycobacterial burden than rifampicin and pretomanid. The compounds tested did not exhibit significant cytotoxicity against three cell lines or any toxicity to Galleria mellonella. Furthermore, the imidazo[2,1-b][1,3]oxazine derivatives did not show substantial activity against other bacteria or fungi. Finally, molecular docking studies revealed that the new compounds could interact with the deazaflavin-dependent nitroreductase (Ddn) in a similar manner to pretomanid. Collectively, our findings highlight the chemical universe of imidazo[2,1-b][1,3]oxazines and their promising potential against MDR-TB.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Present address: Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Karyn F Manieri
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Andressa F Bonjorno
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Debora L Campos
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Camila M Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Fernanda M Demarqui
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Daniel A G Ruiz
- Institute of Chemistry, São Paulo State University, Rua Professor Francisco Degni, 55, Araraquara, 14800060, Brazil
| | - Nailton M Nascimento-Junior
- Institute of Chemistry, São Paulo State University, Rua Professor Francisco Degni, 55, Araraquara, 14800060, Brazil
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| |
Collapse
|
22
|
Cleverley TL, Peddineni S, Guarner J, Cingolani F, Garcia PK, Koehler H, Mocarski ES, Kalman D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog 2023; 19:e1011387. [PMID: 37200402 PMCID: PMC10231790 DOI: 10.1371/journal.ppat.1011387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Infections caused by members of the mycobacterium tuberculosis complex [MTC] and nontuberculous mycobacteria [NTM] can induce widespread morbidity and mortality in people. Mycobacterial infections cause both a delayed immune response, which limits rate of bacterial clearance, and formation of granulomas, which contain bacterial spread, but also contribute to lung damage, fibrosis, and morbidity. Granulomas also limit access of antibiotics to bacteria, which may facilitate development of resistance. Bacteria resistant to some or all antibiotics cause significant morbidity and mortality, and newly developed antibiotics readily engender resistance, highlighting the need for new therapeutic approaches. Imatinib mesylate, a cancer drug used to treat chronic myelogenous leukemia [CML] that targets Abl and related tyrosine kinases, is a possible host-directed therapeutic [HDT] for mycobacterial infections, including those causing TB. Here, we use the murine Mycobacterium marinum [Mm] infection model, which induces granulomatous tail lesions. Based on histological measurements, imatinib reduces both lesion size and inflammation of surrounding tissue. Transcriptomic analysis of tail lesions indicates that imatinib induces gene signatures indicative of immune activation and regulation at early time points post infection that resemble those seen at later ones, suggesting that imatinib accelerates but does not substantially alter anti-mycobacterial immune responses. Imatinib likewise induces signatures associated with cell death and promotes survival of bone marrow-derived macrophages [BMDMs] in culture following infection with Mm. Notably, the capacity of imatinib to limit formation and growth of granulomas in vivo and to promote survival of BMDMs in vitro depends upon caspase 8, a key regulator of cell survival and death. These data provide evidence for the utility of imatinib as an HDT for mycobacterial infections in accelerating and regulating immune responses, and limiting pathology associated with granulomas, which may mitigate post-treatment morbidity.
Collapse
Affiliation(s)
- Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Siri Peddineni
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Pamela K. Garcia
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Heather Koehler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
23
|
Elchennawi I, Carpentier P, Caux C, Ponge M, Ollagnier de Choudens S. Structural and Biochemical Characterization of Mycobacterium tuberculosis Zinc SufU-SufS Complex. Biomolecules 2023; 13:biom13050732. [PMID: 37238602 DOI: 10.3390/biom13050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are inorganic prosthetic groups in proteins composed exclusively of iron and inorganic sulfide. These cofactors are required in a wide range of critical cellular pathways. Iron-sulfur clusters do not form spontaneously in vivo; several proteins are required to mobilize sulfur and iron, assemble and traffic-nascent clusters. Bacteria have developed several Fe-S assembly systems, such as the ISC, NIF, and SUF systems. Interestingly, in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), the SUF machinery is the primary Fe-S biogenesis system. This operon is essential for the viability of Mtb under normal growth conditions, and the genes it contains are known to be vulnerable, revealing the Mtb SUF system as an interesting target in the fight against tuberculosis. In the present study, two proteins of the Mtb SUF system were characterized for the first time: Rv1464(sufS) and Rv1465(sufU). The results presented reveal how these two proteins work together and thus provide insights into Fe-S biogenesis/metabolism by this pathogen. Combining biochemistry and structural approaches, we showed that Rv1464 is a type II cysteine-desulfurase enzyme and that Rv1465 is a zinc-dependent protein interacting with Rv1464. Endowed with a sulfurtransferase activity, Rv1465 significantly enhances the cysteine-desulfurase activity of Rv1464 by transferring the sulfur atom from persulfide on Rv1464 to its conserved Cys40 residue. The zinc ion is important for the sulfur transfer reaction between SufS and SufU, and His354 in SufS plays an essential role in this reaction. Finally, we showed that Mtb SufS-SufU is more resistant to oxidative stress than E. coli SufS-SufE and that the presence of zinc in SufU is likely responsible for this improved resistance. This study on Rv1464 and Rv1465 will help guide the design of future anti-tuberculosis agents.
Collapse
Affiliation(s)
- Ingie Elchennawi
- CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Carpentier
- CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 38000 Grenoble, France
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Christelle Caux
- CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 38000 Grenoble, France
| | - Marine Ponge
- CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, 38000 Grenoble, France
| | | |
Collapse
|
24
|
Qu Y, Jiang D, Liu M, Wang H, Xu T, Zhou H, Huang M, Shu W, Xu G. LncRNA DANCR restrained the survival of mycobacterium tuberculosis H37Ra by sponging miR-1301-3p/miR-5194. Front Microbiol 2023; 14:1119629. [PMID: 37125193 PMCID: PMC10133511 DOI: 10.3389/fmicb.2023.1119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Tuberculosis is a worldwide contagion caused by Mycobacterium tuberculosis (MTB). MTB is characterized by intracellular parasitism and is semi-dormant inside host cells. The persistent inflammation caused by MTB can form a granuloma in lesion regions and intensify the latency of bacteria. In recent years, several studies have proven that long non-coding RNAs (lncRNAs) play critical roles in modulating autophagy. In our study, the Gene Expression Omnibus (GEO) databases were searched for lncRNAs that are associated with tuberculosis. We found that lncRNA differentiation antagonizing non-protein coding RNA (DANCR) increased in the peripheral blood samples collected from 54 pulmonary tuberculosis patients compared to 23 healthy donors. By constructing DANCR overexpression cells, we analyzed the possible cellular function of DANCR. After analyzing our experiments, it was found that the data revealed that upregulation of DANCR facilitated the expression of signal transducer and activator of transcription 3, autophagy-related 4D cysteine peptides, autophagy-related 5, Ras homolog enriched in the brain, and microtubule-associated protein 1A/1B light chain 3 (STAT3, ATG4D, ATG5, RHEB, and LC3, respectively) by sponging miR-1301-3p and miR-5194. Immunofluorescence analysis indicated that DANCR played a positive role in both autophagosome formation and fusion of autolysosomes in macrophages. The colony-forming unit (CFU) assay data also showed that the cells overexpressing DANCR were more efficient in eliminating the intracellular H37Ra strain. Consequently, these data suggest that DANCR restrained intracellular survival of M. tuberculosis by promoting autophagy via miR-1301-3p and miR-5194.
Collapse
Affiliation(s)
- Yuliang Qu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Minjuan Liu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hongxia Wang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Haijin Zhou
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Minlan Huang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
25
|
Dallmann-Sauer M, Xu YZ, da Costa ALF, Tao S, Gomes TA, Prata RBDS, Correa-Macedo W, Manry J, Alcaïs A, Abel L, Cobat A, Fava VM, Pinheiro RO, Lara FA, Probst CM, Mira MT, Schurr E. Allele-dependent interaction of LRRK2 and NOD2 in leprosy. PLoS Pathog 2023; 19:e1011260. [PMID: 36972292 PMCID: PMC10079233 DOI: 10.1371/journal.ppat.1011260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/06/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn’s disease and Parkinson’s disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University; Montreal, Canada
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná; Curitiba, Brazil
| | - Yong Zhong Xu
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
| | - Ana Lúcia França da Costa
- Department of Specialized Medicine, Health Sciences Center, Federal University of Piauí; Teresina, Brazil
| | - Shao Tao
- Division of Experimental Medicine, Faculty of Medicine, McGill University; Montreal, Canada
- The Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre; Montreal, Canada
| | - Tiago Araujo Gomes
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation; Rio de Janeiro, Brazil
| | | | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
- Department of Biochemistry, Faculty of Medicine and Health Science, McGill University; Montreal, Canada
| | - Jérémy Manry
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U.1163, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation; Rio de Janeiro, Brazil
| | - Flavio Alves Lara
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation; Rio de Janeiro, Brazil
| | - Christian M. Probst
- Laboratory of Systems and Molecular Biology of Trypanosomatids, Instituto Carlos Chagas; FIOCRUZ, Curitiba, Brazil
| | - Marcelo T. Mira
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná; Curitiba, Brazil
- * E-mail: (M.T.M); (E.S.)
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre; Montreal, Canada
- McGill International TB Centre, McGill University; Montreal, Canada
- Departments of Human Genetics and Medicine, Faculty of Medicine and Health Science, McGill University; Montreal, Canada
- Department of Biochemistry, Faculty of Medicine and Health Science, McGill University; Montreal, Canada
- * E-mail: (M.T.M); (E.S.)
| |
Collapse
|
26
|
Sharma S, Jayasinghe YP, Mishra NK, Orimoloye MO, Wong TY, Dalluge JJ, Ronning DR, Aldrich CC. Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase. ACS Infect Dis 2023; 9:540-553. [PMID: 36753622 DOI: 10.1021/acsinfecdis.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Neeraj Kumar Mishra
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Chauhan NK, Anand A, Sharma A, Dhiman K, Gosain TP, Singh P, Singh P, Khan E, Chattopadhyay G, Kumar A, Sharma D, Ashish, Sharma TK, Singh R. Structural and Functional Characterization of Rv0792c from Mycobacterium tuberculosis: Identifying Small Molecule Inhibitor against HutC Protein. Microbiol Spectr 2023; 11:e0197322. [PMID: 36507689 PMCID: PMC9927256 DOI: 10.1128/spectrum.01973-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. IMPORTANCE Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.
Collapse
Affiliation(s)
- Neeraj Kumar Chauhan
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Anjali Anand
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Arun Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Kanika Dhiman
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Prashant Singh
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Padam Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Eshan Khan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | - Deepak Sharma
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashish
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| |
Collapse
|
28
|
Garg T, Das S, Singh S, Imran M, Mukhopadhyay A, Gupta UD, Chopra S, Dasgupta A. EphH, a unique epoxide hydrolase encoded by Rv3338 is involved in the survival of Mycobacterium tuberculosis under in vitro stress and vacuolar pH-induced changes. Front Microbiol 2023; 13:1092131. [PMID: 36777032 PMCID: PMC9908614 DOI: 10.3389/fmicb.2022.1092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), one of the deadliest human pathogen, has evolved with different strategies of survival inside the host, leading to a chronic state of infection. Phagosomally residing Mtb encounters a variety of stresses, including increasing acidic pH. To better understand the host-pathogen interaction, it is imperative to identify the role of various genes involved in the survivability of Mtb during acidic pH environment. Methods Bio-informatic and enzymatic analysis were used to identify Mtb gene, Rv3338, as epoxide hydrolase. Subsequently, CRISPRi knockdown strategy was used to decipher its role for Mtb survival during acidic stress, nutrient starvation and inside macrophages. Confocal microscopy was used to analyse its role in subverting phagosomal acidification within macrophage. Results The present work describes the characterization of Rv3338 which was previously known to be associated with the aprABC locus induced while encountering acidic stress within the macrophage. Bio-informatic analysis demonstrated its similarity to epoxide hydrolase, which was confirmed by enzymatic assays, thus, renamed EphH. Subsequently, we have deciphered its indispensable role for Mtb in protection from acidic stress by using the CRISPRi knockdown strategy. Our data demonstrated the pH dependent role of EphH for the survival of Mtb during nutrient starvation and in conferring resistance against elevated endogenous ROS levels during stress environment. Conclusion To the best of our knowledge, this is the first report of an EH of Mtb as a crucial protein for bacterial fitness inside the host, a phenomenon central to its pathogenesis.
Collapse
Affiliation(s)
- Tanu Garg
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swetarka Das
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohmmad Imran
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atri Mukhopadhyay
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Umesh D. Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Arunava Dasgupta, ✉
| |
Collapse
|
29
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
30
|
M.tb-Rv2462c of Mycobacterium tuberculosis Shows Chaperone-like Activity and Plays a Role in Stress Adaptation and Immunomodulation. BIOLOGY 2022; 12:biology12010069. [PMID: 36671761 PMCID: PMC9855790 DOI: 10.3390/biology12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycobacterium tuberculosis (M.tb)-encoded factors protect it against host-generated stresses and support its survival in the hostile host environment. M.tb possesses two peptidyl-prolyl cis-trans isomerases and a probable trigger factor encoded by Rv2462c which has an FKBP-like PPIase domain. PPIases are known to assist the folding of peptidyl-prolyl bonds and are involved in various cellular processes important for bacterial survival in host-generated stresses. In this study, we aim to functionally characterize Rv2462c of M.tb. Our data suggest that the trigger factor of M.tb exhibits chaperone activity both in vitro and in vivo. Heterologous expression of M.tb-Rv2462c locus into Mycobacterium smegmatis enhanced its survival within macrophages, adaptation to oxidative stress and biofilm formation. M.tb-trigger factor has strong immunomodulatory potential and modifies the cytokine profile of the host towards the proinflammatory axis.
Collapse
|
31
|
Roe K. Concurrent infections of cells by two pathogens can enable a reactivation of the first pathogen and the second pathogen's accelerated T-cell exhaustion. Heliyon 2022; 8:e11371. [PMCID: PMC9718926 DOI: 10.1016/j.heliyon.2022.e11371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
When multiple intracellular pathogens, such as viruses, bacteria, fungi and protozoan parasites, infect the same host cell, they can help each other. A pathogen can substantially help another pathogen by disabling cellular immune defenses, using non-coding ribonucleic acids and/or pathogen proteins that target interferon-stimulated genes and other genes that express immune defense proteins. This can enable reactivation of a latent first pathogen and accelerate T-cell exhaustion and/or T-cell suppression regarding a second pathogen. In a worst-case scenario, accelerated T-cell exhaustion and/or T-cell suppression regarding the second pathogen can impair T-cell functionality and allow a first-time, immunologically novel second pathogen infection to escape all adaptive immune system defenses, including antibodies. The interactions of herpesviruses with concurrent intracellular pathogens in epithelial cells and B-cells, the interactions of the human immunodeficiency virus with Mycobacterium tuberculosis in macrophages and the interactions of Toxoplasma gondii with other pathogens in almost any type of animal cell are considered. The reactivation of latent pathogens and the acceleration of T-cell exhaustion for the second pathogen can explain several puzzling aspects of viral epidemics, such as COVID-19 and their unusual comorbidity mortality rates and post-infection symptoms.
Collapse
|
32
|
Qu W, Guo Y, Xu Y, Zhang J, Wang Z, Ding C, Pan Y. Advance in strategies to build efficient vaccines against tuberculosis. Front Vet Sci 2022; 9:955204. [PMID: 36504851 PMCID: PMC9731747 DOI: 10.3389/fvets.2022.955204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis is a chronic consumptive infectious disease, which can cause great damage to human and animal health all over the world. The emergence of multi-drug resistant strains, the unstable protective effect of Bacillus Calmette-Guérin (BCG) vaccine on adults, and the mixed infection with HIV all warn people to exploit new approaches for conquering tuberculosis. At present, there has been significant progress in developing tuberculosis vaccines, such as improved BCG vaccine, subunit vaccine, DNA vaccine, live attenuated vaccine and inactivated vaccine. Among these candidate vaccines, there are some promising vaccines to improve or replace BCG vaccine effect. Meanwhile, the application of adjuvants, prime-boost strategy, immunoinformatic tools and targeting components have been studied concentratedly, and verified as valid means of raising the efficiency of tuberculosis vaccines as well. In this paper, the latest advance in tuberculosis vaccines in recent years is reviewed to provide reliable information for future tuberculosis prevention and treatment.
Collapse
Affiliation(s)
- Wei Qu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yinhui Guo
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yan Xu
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jie Zhang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zongchao Wang
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Chaoyue Ding
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues, MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China,*Correspondence: Yuanhu Pan
| |
Collapse
|
33
|
Exopolyphosphatases PPX1 and PPX2 from Mycobacterium tuberculosis regulate dormancy response and pathogenesis. Microb Pathog 2022; 173:105885. [DOI: 10.1016/j.micpath.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
34
|
Gosain TP, Singh M, Singh C, Thakur KG, Singh R. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342835 DOI: 10.1099/mic.0.001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toxin-antitoxin (TA) systems are abundantly present in the genomes of various bacterial pathogens. TA systems have been implicated in either plasmid maintenance or protection against phage infection, stress adaptation or disease pathogenesis. The genome of Mycobacterium tuberculosis encodes for more than 90 TA systems and 4 of these belong to the type IV subfamily (MenAT family). The toxins and antitoxins belonging to type IV TA systems share sequence homology with the AbiEii family of nucleotidyl transferases and the AbiEi family of putative transcriptional regulators, respectively. Here, we have performed experiments to understand the role of MenT2, a toxin from the type IV TA system, in mycobacterial physiology and disease pathogenesis. The ectopic expression of MenT2 using inducible vectors does not inhibit bacterial growth in liquid cultures. Bioinformatic and molecular modelling analysis suggested that the M. tuberculosis genome has an alternative start site upstream of the annotated menT2 gene. The overexpression of the reannotated MenT2 resulted in moderate growth inhibition of Mycobacterium smegmatis. We show that both menT2 and menA2 transcript levels are increased when M. tuberculosis is exposed to nitrosative stress, in vitro. When compared to the survival of the wild-type and the complemented strain, the ΔmenT2 mutant strain of M. tuberculosis was more resistant to being killed by nitrosative stress. However, the survival of both the ΔmenT2 mutant and the wild-type strain was similar in macrophages and when exposed to other stress conditions. Here, we show that MenT2 is required for the establishment of disease in guinea pigs. Gross pathology and histopathology analysis of lung tissues from guinea pigs infected with the ∆menT2 strain revealed significantly reduced tissue damage and inflammation. In summary, these results provide new insights into the role of MenT2 in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Tannu Priya Gosain
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Manisha Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| | - Charandeep Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh-160036, India
| | - Ramandeep Singh
- Infection and Immunology Group, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurugram Expressway, Faridabad-121001, India
| |
Collapse
|
35
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
36
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Campos PC, Cunha DT, Souza-Costa LP, Shiloh MU, Franco LH. Bag it, tag it: ubiquitin ligases and host resistance to Mycobacterium tuberculosis. Trends Microbiol 2022; 30:973-985. [PMID: 35491351 PMCID: PMC9474620 DOI: 10.1016/j.tim.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), remains a significant global epidemic. Host resistance to Mtb depends on both adaptive and innate immunity mechanisms, including development of antigen-specific CD4 and CD8 T cells, production of inflammatory cytokines, bacterial phagocytosis and destruction within phagolysosomes, host cell apoptosis, and autophagy. A key regulatory mechanism in innate immunity is the attachment of the small protein ubiquitin to protein and lipid targets by the enzymatic activity of ubiquitin ligases. Here, we summarize the latest advances on the role of ubiquitination and ubiquitin ligases in host immunity against Mtb, with a focus on innate immunity signaling, inflammation, and antimicrobial autophagy. Understanding how ubiquitin ligases mediate immunity to Mtb, and the specific substrates of distinct ubiquitin ligases in the context of Mtb infection, could facilitate development of new host-directed antimicrobials.
Collapse
Affiliation(s)
- Priscila C Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA
| | - Danielle T Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Luiz P Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | - Luis H Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
38
|
Panda S, Seelan DM, Faisal S, Arora A, Luthra K, Palanichamy JK, Mohan A, Vikram NK, Gupta NK, Ramakrishnan L, Singh A. Chronic hyperglycemia drives alterations in macrophage effector function in pulmonary tuberculosis. Eur J Immunol 2022; 52:1595-1609. [PMID: 36066992 DOI: 10.1002/eji.202249839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) alters immune responses and given the rising prevalence of DM in tuberculosis (TB) endemic countries; hyperglycemia can be a potential risk factor for active TB development. However, the impact of hyperglycemia on TB-specific innate immune response in terms of macrophage functions remains poorly addressed. We assessed macrophage effector functions in uncontrolled DM patients with or without TB infection (PTB+DM and DM), non-diabetic TB patients (PTB), and non-diabetic-uninfected controls. Phagocytic capacity against BCG and surface expression of different pattern recognition receptors (PRRs) (CD11b, CD14, CD206, MARCO, and TLR-2) were measured via flow cytometry. Effector molecules (ROS and NO) required for bacterial killing were assessed via DCFDA and Griess reaction respectively. A systematic dysregulation in phagocytic capacity with concurrent alterations in the expression pattern of key PRRs (CD11b, MARCO, and CD206) was observed in PTB+DM. These altered PRR expressions were associated with decreased phagocytic capacity of macrophages. Similarly, ROS was aberrantly higher while NO was lower in PTB+DM. These altered macrophage functions were positively correlated with increasing disease severity. Our results highlight several key patterns of immune dysregulation against TB infection under hyperglycemic conditions and highlight a negative impact of hyperglycemia with etiology and progression of TB.
Collapse
Affiliation(s)
- Sudhasini Panda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Diravya M Seelan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shah Faisal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alisha Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Anant Mohan
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Naval K Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neeraj Kumar Gupta
- Department of Pulmonary Medicine, VMMC and Safdarjung Hospital, New Delhi, 110029, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
39
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
40
|
Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species. Antimicrob Agents Chemother 2022; 66:e0059222. [PMID: 35975988 PMCID: PMC9487606 DOI: 10.1128/aac.00592-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.
Collapse
|
41
|
You L, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. HIF-1α inhibits T-2 toxin-mediated "immune evasion" process by negatively regulating PD-1/PD-L1. Toxicology 2022; 480:153324. [PMID: 36115646 DOI: 10.1016/j.tox.2022.153324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Trichothecene mycotoxins have a strong immunosuppressive effect, which may even escape host immune surveillance and damage the immune repair to show an "immune evasion" effect. Increasing lines of evidence have shown that hypoxia and hypoxia-inducible factors (HIFs) are key mediators of trichothecenes, and these toxins appear to be closely related to the "immune evasion" mechanisms. Therefore, we used RAW264.7 cell model to explore the association of T-2 toxins with "immune evasion" process and hypoxia, as well as their cross-linking effects induced by T-2 toxin. Our results showed that HIF-1α is an important toxicity target of T-2 toxin, which could induce intracellular hypoxia. T-2 toxin induced an "immune evasion" process by activating the PD-1/PD-L1 signaling pathway. Interestingly, when HIF-1α activation was blocked, the "immune evasion" process regulated by PD-1/PD-L1 signaling was activated, resulting in the cells damage, suggesting that hypoxia induced by T-2 toxin plays a protective role for RAW264.7 cell damage. Thus, our work shows that HIF-1α inhibits T-2 toxin-mediated "immune evasion" process by negatively regulating PD-1/PD-L1signaling. This study contributes to a better understanding of the immunotoxicity mechanism of trichothecenes.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou 434025, China; College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain.
| |
Collapse
|
42
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
43
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
44
|
Dupuy P, Ghosh S, Adefisayo O, Buglino J, Shuman S, Glickman MS. Distinctive roles of translesion polymerases DinB1 and DnaE2 in diversification of the mycobacterial genome through substitution and frameshift mutagenesis. Nat Commun 2022; 13:4493. [PMID: 35918328 PMCID: PMC9346131 DOI: 10.1038/s41467-022-32022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance of Mycobacterium tuberculosis is exclusively a consequence of chromosomal mutations. Translesion synthesis (TLS) is a widely conserved mechanism of DNA damage tolerance and mutagenesis, executed by translesion polymerases such as DinBs. In mycobacteria, DnaE2 is the only known agent of TLS and the role of DinB polymerases is unknown. Here we demonstrate that, when overexpressed, DinB1 promotes missense mutations conferring resistance to rifampicin, with a mutational signature distinct from that of DnaE2, and abets insertion and deletion frameshift mutagenesis in homo-oligonucleotide runs. DinB1 is the primary mediator of spontaneous −1 frameshift mutations in homo-oligonucleotide runs whereas DnaE2 and DinBs are redundant in DNA damage-induced −1 frameshift mutagenesis. These results highlight DinB1 and DnaE2 as drivers of mycobacterial genome diversification with relevance to antimicrobial resistance and host adaptation. This manuscript elucidates new mechanisms of mutagenesis in mycobacteria by implicating two translesion DNA polymerases in genome diversification, including creating the mutations that underlie all antibiotic resistance in these global pathogens.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Shreya Ghosh
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Oyindamola Adefisayo
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA.,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA
| | - John Buglino
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, 10065, USA. .,Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
45
|
Choudhary E, Sharma R, Pal P, Agarwal N. Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses. ACS OMEGA 2022; 7:26749-26766. [PMID: 35936415 PMCID: PMC9352160 DOI: 10.1021/acsomega.2c03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Symbiosis
School of Biomedical Sciences, Symbiosis
International (Deemed University), Pune412115, Maharashtra, India
| | - Rishabh Sharma
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| | - Pramila Pal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Jawaharlal
Nehru University, New
Mehrauli Road, New Delhi110067, India
| | - Nisheeth Agarwal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| |
Collapse
|
46
|
Yuan J, Zhang Q, Chen S, Yan M, Yue L. LC3-Associated Phagocytosis in Bacterial Infection. Pathogens 2022; 11:pathogens11080863. [PMID: 36014984 PMCID: PMC9415076 DOI: 10.3390/pathogens11080863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
LC3-associated phagocytosis (LAP) is a noncanonical autophagy process reported in recent years and is one of the effective mechanisms of host defense against bacterial infection. During LAP, bacteria are recognized by pattern recognition receptors (PRRs), enter the body, and then recruit LC3 onto a single-membrane phagosome to form a LAPosome. LC3 conjugation can promote the fusion of the LAPosomes with lysosomes, resulting in their maturation into phagolysosomes, which can effectively kill the identified pathogens. However, to survive in host cells, bacteria have also evolved strategies to evade killing by LAP. In this review, we summarized the mechanism of LAP in resistance to bacterial infection and the ways in which bacteria escape LAP. We aim to provide new clues for developing novel therapeutic strategies for bacterial infectious diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Qiuyu Zhang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Shihua Chen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
- Correspondence: (M.Y.); (L.Y.)
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (M.Y.); (L.Y.)
| |
Collapse
|
47
|
Bandyopadhyay P, Pramanick I, Biswas R, PS S, Sreedharan S, Singh S, Rajmani RS, Laxman S, Dutta S, Singh A. S-Adenosylmethionine-responsive cystathionine β-synthase modulates sulfur metabolism and redox balance in Mycobacterium tuberculosis. SCIENCE ADVANCES 2022; 8:eabo0097. [PMID: 35749503 PMCID: PMC9232105 DOI: 10.1126/sciadv.abo0097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 05/10/2023]
Abstract
Methionine and cysteine metabolisms are important for the survival and pathogenesis of Mycobacterium tuberculosis (Mtb). The transsulfuration pathway converts methionine to cysteine and represents an important link between antioxidant and methylation metabolism in diverse organisms. Using a combination of biochemistry and cryo-electron microscopy, we characterized the first enzyme of the transsulfuration pathway, cystathionine β-synthase (MtbCbs) in Mtb. We demonstrated that MtbCbs is a heme-less, pyridoxal-5'-phosphate-containing enzyme, allosterically activated by S-adenosylmethionine (SAM). The atomic model of MtbCbs in its native and SAM-bound conformations revealed a unique mode of SAM-dependent allosteric activation. Further, SAM stabilized MtbCbs by sterically occluding proteasomal degradation, which was crucial for supporting methionine and redox metabolism in Mtb. Genetic deficiency of MtbCbs reduced Mtb survival upon homocysteine overload in vitro, inside macrophages, and in mice coinfected with HIV. Thus, the MtbCbs-SAM axis constitutes an important mechanism of coordinating sulfur metabolism in Mtb.
Collapse
Affiliation(s)
- Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ishika Pramanick
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sabarinath PS
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Shalini Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
48
|
Rani A, Alam A, Ahmad F, P. M, Saurabh A, Zarin S, Mitra DK, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Methyltransferase Rv1515c Can Suppress Host Defense Mechanisms by Modulating Immune Functions Utilizing a Multipronged Mechanism. Front Mol Biosci 2022; 9:906387. [PMID: 35813825 PMCID: PMC9263924 DOI: 10.3389/fmolb.2022.906387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) gene Rv1515c encodes a conserved hypothetical protein exclusively present within organisms of MTB complex and absent in non-pathogenic mycobacteria. In silico analysis revealed that Rv1515c contain S-adenosylmethionine binding site and methyltransferase domain. The DNA binding and DNA methyltransferase activity of Rv1515c was confirmed in vitro. Knock-in of Rv1515c in a model mycobacteria M. smegmatis (M. s_Rv1515c) resulted in remarkable physiological and morphological changes and conferred the recombinant strain with an ability to adapt to various stress conditions, including resistance to TB drugs. M. s_Rv1515c was phagocytosed at a greater rate and displayed extended intra-macrophage survival in vitro. Recombinant M. s_Rv1515c contributed to enhanced virulence by suppressing the host defense mechanisms including RNS and ROS production, and apoptotic clearance. M. s_Rv1515c, while suppressing the phagolysosomal maturation, modulated pro-inflammatory cytokine production and also inhibited antigen presentation by downregulating the expression of MHC-I/MHC-II and co-stimulatory signals CD80 and CD86. Mice infected with M. s_Rv1515c produced more Treg cells than vector control (M. s_Vc) and exhibited reduced effector T cell responses, along-with reduced expression of macrophage activation markers in the chronic phase of infection. M. s_Rv1515c was able to survive in the major organs of mice up to 7 weeks post-infection. These results indicate a crucial role of Rv1515c in M. tb pathogenesis.
Collapse
Affiliation(s)
- Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Faraz Ahmad
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Manjunath P.
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Abhinav Saurabh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheeba Zarin
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
- *Correspondence: Seyed E. Hasnain, , , , Nasreen Z. Ehtesham, ,
| |
Collapse
|
49
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
50
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|