1
|
Yin YB, Ji W, Liu YL, Gao QH, He DD, Xu SL, Fan JX, Zhang LH. cNPAS2 induced β cell dysfunction by regulating KANK1 expression in type 2 diabetes. World J Diabetes 2024; 15:1932-1941. [PMID: 39280178 PMCID: PMC11372636 DOI: 10.4239/wjd.v15.i9.1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action. It has been affecting over 400 million people all over the world. AIM To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM. METHODS Receiver operating characteristic (ROC) curve analysis was used to conduct diagnostic markers. The expression level of genes was determined by reverse transcription-PCR as well as Western blot. Cell proliferation assays were performed by cell counting kit-8 (CCK-8) tests. At last, T2DM mice underwent Roux-en-Y gastric bypass surgery. RESULTS We found that NPAS2 was significantly up-regulated in islet β cell apoptosis of T2DM. The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM. NPAS2 overexpression did increase the level of KANK1. In addition, the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells. At last, we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1. CONCLUSION This study demonstrated that NPAS2 induced β cell dysfunction by regulating KANK1 expression in type 2 diabetes, and it may be an underlying therapy target of T2DM.
Collapse
Affiliation(s)
- Yan-Bin Yin
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| | - Wei Ji
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264199, Shandong Province, China
| | - Ying-Lan Liu
- Operating Room, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| | - Qian-Hao Gao
- Department of Anesthesiology, Huazhong University of Science and Technology Union Jiangbei Hospital, Wuhan 430100, Hubei Province, China
| | - Dong-Dong He
- Department of Endocrinology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| | - Shi-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| | - Jing-Xin Fan
- Department of Endocrinology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| | - Li-Hai Zhang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, Heilongjiang Province, China
| |
Collapse
|
2
|
Blandino-Rosano M, Louzada RA, Werneck-De-Castro JP, Lubaczeuski C, Almaça J, Rüegg MA, Hall MN, Leibowitz G, Bernal-Mizrachi E. Raptor levels are critical for β-cell adaptation to a high-fat diet in male mice. Mol Metab 2023; 75:101769. [PMID: 37423392 PMCID: PMC10391668 DOI: 10.1016/j.molmet.2023.101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The essential role of raptor/mTORC1 signaling in β-cell survival and insulin processing has been recently demonstrated using raptor knock-out models. Our aim was to evaluate the role of mTORC1 function in adaptation of β-cells to insulin resistant state. METHOD Here, we use mice with heterozygous deletion of raptor in β-cells (βraHet) to assess whether reduced mTORC1 function is critical for β-cell function in normal conditions or during β-cell adaptation to high-fat diet (HFD). RESULTS Deletion of a raptor allele in β-cells showed no differences at the metabolic level, islets morphology, or β-cell function in mice fed regular chow. Surprisingly, deletion of only one allele of raptor increases apoptosis without altering proliferation rate and is sufficient to impair insulin secretion when fed a HFD. This is accompanied by reduced levels of critical β-cell genes like Ins1, MafA, Ucn3, Glut2, Glp1r, and specially PDX1 suggesting an improper β-cell adaptation to HFD. CONCLUSION This study identifies that raptor levels play a key role in maintaining PDX1 levels and β-cell function during the adaptation of β-cell to HFD. Finally, we identified that Raptor levels regulate PDX1 levels and β-cell function during β-cell adaptation to HFD by reduction of the mTORC1-mediated negative feedback and activation of the AKT/FOXA2/PDX1 axis. We suggest that Raptor levels are critical to maintaining PDX1 levels and β-cell function in conditions of insulin resistance in male mice.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| | - Ruy Andrade Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joao Pedro Werneck-De-Castro
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA
| | - Camila Lubaczeuski
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joana Almaça
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Markus A Rüegg
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| |
Collapse
|
3
|
Wan T, Wang Y, Wang C, Wang H, Li X, Li Y. Overexpression of TRIM32 promotes pancreatic β-cell autophagic cell death through Akt/mTOR pathway under high glucose conditions. Cell Biol Int 2022; 46:2095-2106. [PMID: 36040726 DOI: 10.1002/cbin.11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a growing worldwide epidemic and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Tripartite motif protein 32 (TRIM32) belongs to the TRIM family protein and has been shown to be involve in insulin resistance in skeletal muscle and the liver. However, the effect of TRIM32 on pancreatic β-cell dysfunction and its mechanism remains unknown. In the current study, we found that serum TRIM32 concentrations of T2DM in patients were significantly elevated compared to those in healthy controls, which indicated that TRIM32 might be used as a diagnostic biomarker in T2DM patients. In INS-1 cells, exposure to high glucose (HG) conditions caused a significant elevation in TRIM32 expression and TRIM32 was located in the nucleus. Overexpression of TRIM32 in INS-1 cells exacerbated the effects of HG-induced autophagy and impaired insulin secretion. In contrast, the silencing of TRIM32 produced the opposite effect. Furthermore, TRIM32 overexpression decreased the phosphorylation levels of Akt and mTOR under HG conditions. However, the activation of Akt/mTOR by MHY1485 reversed the effects of TRIM32 on HG-treated INS-1 cells. Collectively, the present results suggested that TRIM32 participates in the development of T2DM by modulating autophagic cell death and insulin secretion, which might occur through the Akt/mTOR pathway. Thus, TRIM32 might be a promising target in T2DM therapy.
Collapse
Affiliation(s)
- Tingting Wan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yidan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Chunxu Wang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China.,Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiudan Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, Heilongjiang, China
| | - Yanbo Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Chung YW, Lee JH, Lee JY, Ju HH, Lee YJ, Jee DH, Ko SH, A Choi J. The Anti-Inflammatory Effects of Glucagon-Like Peptide Receptor Agonist Lixisenatide on the Retinal Nuclear and Nerve Fiber Layers in an Animal Model of Early Type 2 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1080-1094. [PMID: 32354571 DOI: 10.1016/j.ajpath.2020.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
This study explored the anti-inflammatory effects of a glucagon-like peptide-1 receptor agonist (GLP-1RA), known as lixisenatide, on the eyes of early type 2 diabetic mice. Diabetic (db/db) mice were divided into three groups: GLP-1RA [lixisenatide (LIX)], insulin (INS) with controlled hyperglycemia based on the glucose concentration of lixisenatide, and diabetic control (D-CON). Nondiabetic control mice (db/dm) were also characterized for comparison. After 8 weeks of treatment, mRNA levels of inflammatory markers, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, immunohistochemical staining; Western blot of glial fibrillary acidic protein (GFAP) and thioredoxin-interacting protein; and retinal thickness were assessed in the central and peripheral neurosensory retina. LIX showed decreased immunohistochemical staining for both thioredoxin-interacting protein and GFAP in the central and peripheral neurosensory retina compared with D-CON and INS, and decreased expression of these proteins in the neurosensory retina and immunohistochemical staining in the optic nerve head for GFAP compared with D-CON. The inner nuclear layer in the peripheral retina in LIX was only thinner than those of D-CON and INS. In an early type 2 diabetic mouse model, lixisenatide treatment showed superior anti-inflammatory effects on the retina and optic nerve head independent of hyperglycemia. Thus, the neuroprotective effects of lixisenatide treatment in the peripheral inner nuclear layer should be evaluated in early type 2 diabetic retinopathy.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Hyung Lee
- Department of Ophthalmology and Visual Science, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Young Lee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Ju
- Clinical Research Center, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ye-Jee Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyun Jee
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Ding L, Fan L, Xu X, Fu J, Xue Y. Identification of core genes and pathways in type 2 diabetes mellitus by bioinformatics analysis. Mol Med Rep 2019; 20:2597-2608. [PMID: 31524257 PMCID: PMC6691242 DOI: 10.3892/mmr.2019.10522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder. Numerous proteins have been identified that are associated with the occurrence and development of T2DM. This study aimed to identify potential core genes and pathways involved in T2DM, through exhaustive bioinformatic analyses using GSE20966 microarray profiles of pancreatic β‑cells obtained from healthy controls and patients with T2DM. The original microarray data were downloaded from the Gene Expression Omnibus database. Data were processed by the limma package in R software and the differentially expressed genes (DEGs) were identified. Gene Ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out to identify potential biological functions and pathways of the DEGs. Key transcription factors were identified using the WEB‑based GEne SeT AnaLysis Toolkit (WebGestalt) and Enrichr. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to establish a protein‑protein interaction (PPI) network for the DEGs. In total, 329 DEGs were involved in T2DM, with 208 upregulated genes enriched in pancreatic secretion and the complement and coagulation cascades, and 121 downregulated genes enriched in insulin secretion, carbohydrate digestion and absorption, and the Toll‑like receptor pathway. Furthermore, hepatocyte nuclear factor 1‑alpha (HNF1A), signal transducer and activator of transcription 3 (STAT3) and glucocorticoid receptor (GR) were key transcription factors in T2DM. Twenty important nodes were detected in the PPI network. Finally, two core genes, serpin family G member 1 (SERPING1) and alanyl aminopeptidase, membrane (ANPEP), were shown to be associated with the development of T2DM. On the whole, the findings of this study enhance our understanding of the potential molecular mechanisms of T2DM and provide potential targets for further research.
Collapse
Affiliation(s)
- Linchao Ding
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Lei Fan
- Department of Pharmacy, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Xiaodong Xu
- Department of Endocrinology, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jianfei Fu
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Yadong Xue
- Department of Scientific Research, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
6
|
Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 2019; 10:607. [PMID: 31406105 PMCID: PMC6690951 DOI: 10.1038/s41419-019-1822-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Rapamycin (Sirolimus) slows aging, extends life span, and prevents age-related diseases, including diabetic complications such as retinopathy. Puzzlingly, rapamycin can induce insulin sensitivity, but may also induce insulin resistance or glucose intolerance without insulin resistance. This mirrors the effect of fasting and very low calorie diets, which improve insulin sensitivity and reverse type 2 diabetes, but also can cause a form of glucose intolerance known as benevolent pseudo-diabetes. There is no indication that starvation (benevolent) pseudo-diabetes is detrimental. By contrast, it is associated with better health and life extension. In transplant patients, a weak association between rapamycin/everolimus use and hyperglycemia is mostly due to a drug interaction with calcineurin inhibitors. When it occurs in cancer patients, the hyperglycemia is mild and reversible. No hyperglycemic effects of rapamycin/everolimus have been detected in healthy people. For antiaging purposes, rapamycin/everolimus can be administrated intermittently (e.g., once a week) in combination with intermittent carbohydrate restriction, physical exercise, and metformin.
Collapse
|
7
|
Methods to Study Roles of β-Arrestins in the Regulation of Pancreatic β-Cell Function. Methods Mol Biol 2019. [PMID: 30919365 DOI: 10.1007/978-1-4939-9158-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Novel findings reveal important functional roles for β-arrestin 1 and β-arrestin 2 in the regulation of insulin secretion, β-cell survival, and β-cell mass plasticity not only by glucose but also by G-protein-coupled receptors, such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors or GPR40, or tyrosine kinase receptors, such as the insulin receptor. Here, we describe experimental protocols to knock down β-arrestins by small interference RNA, to follow subcellular localization of β-arrestins in the cytosol and nucleus of the insulinoma INS-1E rat pancreatic β-cell line, and to analyze β-arrestin protein expression by Western blot using INS-1E cells and isolated mouse or human pancreatic islets. We also provide details on how to genotype β-arrestin 2 knockout (Arrb2-/-) mice and to evaluate β-arrestin-mediated roles in β-cell mass plasticity and β-cell signaling using immunocytochemistry on pancreatic sections or on primary dispersed β-cells from wild-type mice and Arrb2-/- mice.
Collapse
|
8
|
QiNan W, XiaGuang G, XiaoTian L, WuQuan D, Ling Z, Bing C. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity. J Diabetes Res 2016; 2016:4692478. [PMID: 27340675 PMCID: PMC4906207 DOI: 10.1155/2016/4692478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4)/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER) stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.
Collapse
Affiliation(s)
- Wu QiNan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Gan XiaGuang
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Lei XiaoTian
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Deng WuQuan
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Zhang Ling
- Outpatient Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| | - Chen Bing
- Endocrine Department, The First Affiliated Hospital of the Third Military Medical University, Chong Qing 400038, China
| |
Collapse
|
9
|
Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G. Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 2014; 57:1505-16. [PMID: 24795087 DOI: 10.1007/s00125-014-3255-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Autophagy is a lysosomal degradation pathway recycling intracellular long-lived proteins and damaged organelles, thereby maintaining cellular homeostasis. In addition to inflammatory processes, autophagy has been implicated in the regulation of adipose tissue and beta cell functions. In obesity and type 2 diabetes autophagic activity is modulated in a tissue-dependent manner. In this review we discuss the regulation of autophagy in adipose tissue and beta cells, exemplifying tissue-specific dysregulation of autophagy and its implications for the pathophysiology of obesity and type 2 diabetes. We will highlight common themes and outstanding gaps in our understanding, which need to be addressed before autophagy could be envisioned as a therapeutic target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of General Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|
11
|
Soliman GA. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 2013; 5:2231-57. [PMID: 23783557 PMCID: PMC3725503 DOI: 10.3390/nu5062231] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022] Open
Abstract
The mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase which is a member of the PI3K related kinase (PIKK) family. mTOR emerged as a central node in cellular metabolism, cell growth, and differentiation, as well as cancer metabolism. mTOR senses the nutrients, energy, insulin, growth factors, and environmental cues and transmits signals to downstream targets to effectuate the cellular and metabolic response. Recently, mTOR was also implicated in the regulation of both the innate and adaptive immune responses. This paper will summarize the current knowledge of mTOR, as related to the immune microenvironment and immune responses.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Health Promotion, Social and Behavioral Health Sciences, College of Public Health, University of Nebraska Medical Center, 984365 Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|