1
|
Cancelarich NL, Arrulo M, Gugliotti ST, Barbosa EA, Moreira DC, Basso NG, Pérez LO, Teixeira C, Gomes P, de la Torre BG, Albericio F, Eaton P, Leite JRSA, Marani MM. First Bioprospecting Study of Skin Host-Defense Peptides in Odontophrynus americanus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1714-1724. [PMID: 38900961 DOI: 10.1021/acs.jnatprod.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Miriam Arrulo
- School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Eder A Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
- Laboratorio de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química-UnB, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral (IDEAus), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Luis Orlando Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Gyros Protein Technologies, Inc., Tucson, Arizona 85714, United States
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Beatriz G de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Peter Eaton
- Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, United Kingdom
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| |
Collapse
|
2
|
Hernández-Palma TL, Rueda-Solano LA, Valkonen JK, Rojas B. Predator response to the coloured eyespots and defensive posture of Colombian four-eyed frogs. J Evol Biol 2023; 36:1040-1049. [PMID: 37341128 DOI: 10.1111/jeb.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 06/22/2023]
Abstract
Deimatic displays, where sudden changes in prey appearance elicit aversive predator reactions, have been suggested to occur in many taxa. These (often only putative) displays frequently involve different components that may also serve antipredator functions via other mechanisms (e.g., mimicry, warning signalling, body inflation). The Colombian four-eyed frog, Pleurodema brachyops, has been suggested to gain protection against predation through putative deimatic displays where they inflate and elevate the posterior part of their body revealing eye-like colour markings. We exposed stationary artificial frogs to wild predators to test whether the two components (eyespot/colour markings, defensive posture) of their putative deimatic display, and their combination, provide protection from predation without the sudden change in appearance. We did not detect any obvious additive effect of defensive posture and eyespots/colour markings on predation risk, but found a marginally significant trend for model frogs in the resting posture to be less attacked when displaying eyespots/colour markings than when they were not, suggesting that the presence of colour markings/eyespots may provide some protection on its own. Additionally, we found that models in a resting posture were overall more frequently attacked on the head than models in a defensive posture, indicating that a defensive posture alone could help redirect predator attacks to non-vital parts of the body. The trends found in our study suggest that the different components of P. brachyops' coloration may serve different functions during a deimatic display, but further research is needed to elucidate the role of each component when accompanied by sudden prey movement.
Collapse
Affiliation(s)
- Tatiana L Hernández-Palma
- Grupo de Investigación en Biodiversidad y Ecología Aplicada (GIBEA), Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| | - Luis Alberto Rueda-Solano
- Grupo de Investigación en Biodiversidad y Ecología Aplicada (GIBEA), Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
- Fundación Atelopus, Santa Marta, Colombia
| | - Janne K Valkonen
- Department of Biology and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
- Janne Valkonen Research and Consulting, Vesanka, Finland
| | - Bibiana Rojas
- Department of Biology and Environmental Science, University of Jyvaskyla, Jyväskylä, Finland
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zieri R, Franco-Belussi L, Oliveira CDE. Short-term effects of α-melanocyte-stimulating hormone in three distinct melanin-pigmented cell types of Anura. AN ACAD BRAS CIENC 2023; 95:e20211581. [PMID: 36946809 DOI: 10.1590/0001-3765202320211581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/17/2022] [Indexed: 03/16/2023] Open
Abstract
Ectothermic animals present melanin-containing cells in their integument and viscera. Besides cutaneous melanophores, amphibians have melanomacrophages in the hepatic parenchyma and melanocytes in the viscera, which are also present in their testicular stroma. The native melanocyte stimulating hormone (α-MSH) is the main hormone that modulates the color change in melanophores. However, we still know too little about how the α-MSH acts in vivo on visceral melanin-containing cells. In this study, we collected 30 adult males of Physalaemus nattereri (Anura, Leptodactylidae) to evaluate the short-term effects of α-MSH on melanophores, melanocytes and melanomacrophages under light microscopy. For this, we injected 0.05 ml of a single intraperitoneal dose containing 2.5x10-7 mmol/10g of α-MSH, diluted in ringer solution, in five experimental groups with five individuals each one. The different groups were analyzed after 1, 3, 6, 12 and 24h. The control group with five other individuals received only 0.05 ml of ringer solution. The skin pigmentation increased quickly after animals received the hormone α-MSH with the consequent darkening of the body (body darkness). Melanophores, melanocytes and melanomacrophages responded similarly to the test, with an increase in the area containing melanin. However, melanophores and melanomacrophages reached their darkest pigmentation in a shorter period of time in comparison to the testicular melanocytes, probably due to specific metabolic characteristics of each organ. Thus, we verified that the three types of cells, although present in different organs, are responsive to the native hormone α-MSH, which enables us to treat them as a pigmentary system.
Collapse
Affiliation(s)
- Rodrigo Zieri
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo/IFSP, Laboratório de Zoologia e Anatomia Animal Comparada, Avenida C-Um, 250, 14781-502 Barretos, SP, Brazil
| | - Lilian Franco-Belussi
- Universidade Federal de Mato Grosso do Sul/UFMS, Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências, s/n, Universitário, 79002-970 Campo Grande, MS, Brazil
| | - Classius DE Oliveira
- Universidade Estadual Paulista/IBILCE/UNESP, Departamento de Biologia, Laboratório de Anatomia Comparativa, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
4
|
Drinkwater E, Allen WL, Endler JA, Hanlon RT, Holmes G, Homziak NT, Kang C, Leavell BC, Lehtonen J, Loeffler‐Henry K, Ratcliffe JM, Rowe C, Ruxton GD, Sherratt TN, Skelhorn J, Skojec C, Smart HR, White TE, Yack JE, Young CM, Umbers KDL. A synthesis of deimatic behaviour. Biol Rev Camb Philos Soc 2022; 97:2237-2267. [DOI: 10.1111/brv.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Eleanor Drinkwater
- Department of Animal Science Writtle University College Writtle Chelmsford CM1 3RR UK
| | - William L. Allen
- Department of Biosciences Swansea University Sketty Swansea SA2 8PP UK
| | - John A. Endler
- Centre for Integrative Ecology, School of Life & Environmental Sciences Deakin University Waurn Ponds VIC 3216 Australia
| | | | - Grace Holmes
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Nicholas T. Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
- Entomology and Nematology Department University of Florida Gainesville FL 32611 USA
| | - Changku Kang
- Department of Biosciences Mokpo National University Muan Jeollanamdo 58554 South Korea
- Department of Agricultural Biotechnology Seoul National University Seoul 08826 South Korea
- Department of Agriculture and Life Sciences Seoul National University Seoul 08826 South Korea
| | - Brian C. Leavell
- Department of Biological Sciences Purdue University West Lafayette IN 47907 USA
| | - Jussi Lehtonen
- Faculty of Science, School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä 40014 Finland
| | | | - John M. Ratcliffe
- Department of Biology University of Toronto Mississauga Mississauga ON L5L 1C6 Canada
| | - Candy Rowe
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Graeme D. Ruxton
- School of Biology University of St Andrews St Andrews Fife KY16 9TH UK
| | - Tom N. Sherratt
- Department of Biology Carleton University Ottawa ON K1S 5B6 Canada
| | - John Skelhorn
- Biosciences Institute, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH UK
| | - Chelsea Skojec
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
- Entomology and Nematology Department University of Florida Gainesville FL 32611 USA
| | - Hannah R. Smart
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia
| | - Thomas E. White
- Faculty of Science, School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
| | - Jayne E. Yack
- Department of Biology Carleton University Ottawa ON K1S 5B6 Canada
| | | | - Kate D. L. Umbers
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia
- School of Science Western Sydney University Penrith NSW 2751 Australia
| |
Collapse
|
5
|
Mari RDB, Mori GM, Vannucchi FS, Ribeiro LF, Correa CN, Lima SKS, Teixeira L, Sandretti‐Silva G, Nadaline J, Bornschein MR. Relationships of mineralized dermal layer of mountain endemic miniature frogs with climate. J Zool (1987) 2022. [DOI: 10.1111/jzo.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R. de B. Mari
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - G. M. Mori
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - F. S. Vannucchi
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - L. F. Ribeiro
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - C. N. Correa
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - S. K. S. Lima
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
| | - L. Teixeira
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - G. Sandretti‐Silva
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| | - J. Nadaline
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Paraná Brazil
| | - M. R. Bornschein
- Departamento de Ciências Biológicas e Ambientais, Instituto de Biociências Universidade Estadual Paulista (UNESP) São Paulo Brazil
- Mater Natura – Instituto de Estudos Ambientais Curitiba Paraná Brazil
| |
Collapse
|
6
|
Ferraro DP. Combined phylogenetic analysis of Pleurodema (Anura: Leptodactylidae: Leiuperinae). Cladistics 2022; 38:301-319. [PMID: 34985147 DOI: 10.1111/cla.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
The genus Pleurodema comprises 15 species distributed through the Neotropical region, from sea level up to 5000 m.a.s.l. A total-evidence analysis of Pleurodema is provided based on the parsimony criterion. The combined dataset included morphometric, phenotypic, and DNA evidence (34 taxa, 4441 characters). The parsimony analysis yielded one most-parsimonious tree. Pleurodema was recovered as a well-supported clade composed of two major subclades. One subclade has an identical topology to that of previous analyses, the P. brachyops Clade (P. alium, P. borellii, P. brachyops, P. cinereum, P. diplolister, and P. tucumanum). The other subclade includes the remaining nine species of the genus, exhibiting a topology different from that of previous studies. According to the present phylogeny, this second lineage is formed by the P. nebulosum Clade (P. guayapae + P. nebulosum), P. marmoratum, the re-defined P. thaul Clade (P. bufoninum, P. somuncurense, P. thaul) and the P. bibroni Clade (P. bibroni, P. cordobae, P. kriegi). The reproductive modes of Pleurodema represent a unique combination of features within Leiuperinae, including three egg-clutch structures, two types of amplexus, and lack of vocalization. Also, some species of Pleurodema have been considered fossorial, because they are capable of digging with their hind-limbs and remaining in self-made burrows during dry seasons. The evolution of characters associated with reproductive biology and fossoriality is discussed in light of the obtained results.
Collapse
Affiliation(s)
- Daiana Paola Ferraro
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" -CONICET, Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| |
Collapse
|
7
|
Ferraro DP, Pereyra MO, Topa PE, Faivovich J. Evolution of macroglands and defensive mechanisms in Leiuperinae (Anura: Leptodactylidae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Anurans show a wide variety of anti-predator mechanisms, and the species of the Neotropical clade Leiuperinae display several of them. Most species of Edalorhina, Physalaemus and Pleurodema show eyespots, hidden bright colours, macroglands in a inguinal/lumbar position, defensive behaviours and/or chemical defence. We conducted a histological analysis of dorsal and lumbar skin and revised the colour patterns, defensive behaviours and glandular secretions to study the diversity and evolution of anti-predator mechanisms associated with macroglands. We describe 17 characters and optimize these in a phylogenetic hypothesis of Leiuperinae. In the most recent common ancestor of Edalorhina + Engystomops + Physalaemus + Pleurodema, a particular type of serous gland (the main component of macroglands) evolved in the lumbar skin, along with the absence of the Eberth–Katschenko layer. A defensive behaviour observed in leiuperines with macroglands includes four displays (‘crouching down’ behaviour, rear elevation, body inflation and eye protection), all present in the same ancestor. The two elements associated with aposematism (hidden bright colours and eyespots) evolved independently in several species. Our results provide phylogenetic evidence for the startle-first hypothesis, which suggests that behavioural displays arise as sudden movements in camouflaged individuals to avoid predatory attacks, before the origin of bright coloration.
Collapse
Affiliation(s)
- Daiana Paola Ferraro
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (CONICET), Buenos Aires, Argentina
| | - Martín Oscar Pereyra
- Laboratorio de Genética Evolutiva ‘Claudio J. Bidau’, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pascual Emilio Topa
- Centro de Estudios Parasitológicos y de Vectores (CONICET), La Plata, Buenos Aires, Argentina
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Fedotovskikh GV, Arifulova II, Dujsebayeva TN. Ultrastructural study of the mucocytes in the dermal glands of
Bufotes pewzowi
(Amphibia, Bufonidae), with some reflections on the polymorphism of the secretory epithelium. ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ponssa ML, Barrionuevo JS, Pucci Alcaide F, Pucci Alcaide A. Morphometric Variations in the Skin Layers of Frogs: An Exploration Into Their Relation With Ecological Parameters in Leptodactylus (Anura, Leptodactylidae), With an Emphasis on the Eberth-Kastschenko Layer. Anat Rec (Hoboken) 2017; 300:1895-1909. [PMID: 28681539 DOI: 10.1002/ar.23640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 11/10/2022]
Abstract
Leptodactylus is a genus of frogs known to live in diverse habitats and to show both aquatic and terrestrial breeding habits. We studied 21 species of Leptodactylus to explore whether skin structure specialization relates to habitats and habit variation. Morphometric analyses of the skin thickness revealed that phylogeny has a strong influence on variations in the thickness of the epidermis, stratum spongiosum, Eberth-Kastschenko layer, and stratum compactum, while habitat and habits display no significant correlation. The optimization of the phylogenetic hypothesis suggested that a pattern of intermediate values for skin layer thickness are plesiomorphic for this group. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1895-1909, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Laura Ponssa
- Unidad Ejecutora Lillo. CONICET-Fundación Miguel Lillo, Tucumán, Argentina
| | - J Sebastián Barrionuevo
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Tucumán, Argentina
| | | | - Ana Pucci Alcaide
- Facultad de Ciencias Naturales e Inst. Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
10
|
Regueira E, Dávila C, Sassone AG, O'Donohoe MEA, Hermida GN. Post-metamorphic development of skin glands in a true toad: Parotoids versus dorsal skin. J Morphol 2017; 278:652-664. [PMID: 28165149 DOI: 10.1002/jmor.20661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/13/2016] [Accepted: 01/07/2017] [Indexed: 01/24/2023]
Abstract
Chemical defenses in amphibians are a common antipredatory and antimicrobial strategy related to the presence of dermal glands that synthesize and store toxic or unpalatable substances. Glands are either distributed throughout the skin or aggregated in multiglandular structures, being the parotoids the most ubiquitous macrogland in toads of Bufonidae. Even though dermal glands begin to develop during late-larval stages, many species, including Rhinella arenarum, have immature glands by the end of metamorphosis, and their post-metamorphic growth is unknown. Herein, we compared the post-metamorphic development of parotoids and dorsal glands by histological and allometric studies in a size series of R. arenarum. Histological and histochemical studies to detect proteins, acidic glycoconjugates, and catecholamines, showed that both, parotoids and dorsal glands, acquire characteristics of adults in individuals larger than 50 mm; that is, a moment in which the cryptic coloration disappears. Parotoid height increased allometrically as a function of body size, whereas the size of small dorsal glands decreased with body size. The number of glands in the dorsum was not linearly related to body size, appearing to be an individual characteristic. Only adult specimens had intraepithelial granular glands in the duct of the largest glands of the parotoids. Since toxic secretions accumulate in the central glands of parotoids, allometric growth of parotoids may translate into greater protection from predators in the largest animals. Conversely, large glands in the dorsum, which produce a proteinaceous secretion of unknown function, grow isometrically to body size. Some characteristics, like intraepithelial glands in the ducts and basophilic glands in the dorsum, are limited to adults.
Collapse
Affiliation(s)
- Eleonora Regueira
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de Anfibios-Histología Animal, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1033AAJ, Argentina
| | - Camila Dávila
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de Anfibios-Histología Animal, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - Alina G Sassone
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de Anfibios-Histología Animal, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - María E Ailín O'Donohoe
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de Anfibios-Histología Animal, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1033AAJ, Argentina
| | - Gladys N Hermida
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de Anfibios-Histología Animal, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
11
|
Barrionuevo JS. Frogs at the summits: phylogeny of the Andean frogs of the genusTelmatobius(Anura, Telmatobiidae) based on phenotypic characters. Cladistics 2016; 33:41-68. [DOI: 10.1111/cla.12158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- J. Sebastián Barrionuevo
- División Herpetología; Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” - CONICET; Ángel Gallardo 470 Buenos Aires C1405DJR Argentina
| |
Collapse
|
12
|
|
13
|
Regueira E, Dávila C, Hermida GN. Morphological Changes in Skin Glands During Development in Rhinella Arenarum (Anura: Bufonidae). Anat Rec (Hoboken) 2016; 299:141-56. [PMID: 26479879 DOI: 10.1002/ar.23284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/19/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022]
Abstract
Avoiding predation is critical to survival of animals; chemical defenses represent a common strategy among amphibians. In this study, we examined histologically the morphology of skin glands and types of secretions related to chemical skin defense during ontogeny of Rhinella arenarum. Prior to metamorphic climax the epidermis contains typical bufonid giant cells producing a mucous substance supposedly involved in triggering a flight reaction of the tadpole school. An apical layer of alcianophilic mucus covers the epidermis, which could produce the unpleasant taste of bufonid tadpoles. Giant cells disappear by onset of metamorphic climax, when multicellular glands start developing, but the apical mucous layer remains. By the end of climax, neither the granular glands of the dorsum nor the parotoid regions are completely developed. Conversely, by the end of metamorphosis the mucous glands are partially developed and secrete mucus. Adults have at least three types of granular glands, which we designate type A (acidophilic), type B (basophilic) and ventral (mucous). Polymorphic granular glands distribute differently in the body: dorsal granular glands between warts and in the periphery of parotoids contain protein; granular glands of big warts and in the central region of parotoids contain catecholamines, lipids, and glycoconjugates, whereas ventral granular glands produce acidic glycoconjugates. Mucous glands produce both mucus and proteins. Results suggest that in early juveniles the chemical skin defense mechanisms are not functional. Topographical differences in adult skin secretions suggest that granular glands from the big warts in the skin produce similar toxins to the parotoid glands.
Collapse
Affiliation(s)
- Eleonora Regueira
- Laboratorio de Biología de Anfibios-Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Dávila
- Laboratorio de Biología de Anfibios-Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gladys N Hermida
- Laboratorio de Biología de Anfibios-Histología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Lumbar glands in the frog generaPleurodemaandSomuncuria(Anura: Leiuperidae): histological and histochemical perspectives. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|