1
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
2
|
Pesapane F, Patella F, Fumarola EM, Zanchetta E, Floridi C, Carrafiello G, Standaert C. The prostate cancer focal therapy. Gland Surg 2018; 7:89-102. [PMID: 29770305 PMCID: PMC5938267 DOI: 10.21037/gs.2017.11.08] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Despite prostate cancer (PCa) is the leading form of non-cutaneous cancer in men, most patients with PCa die with disease rather than of the disease. Therefore, the risk of overtreatment should be considered by clinicians who have to distinguish between patients with high risk PCa (who would benefit from radical treatment) and patients who may be managed more conservatively, such as through active surveillance or emerging focal therapy (FT). The aim of FT is to eradicate clinically significant disease while protecting key genito-urinary structures and function from injury. While effectiveness studies comparing FT with conventional care options are still lacking, the rationale supporting FT relies on evidence-based advances such as the understanding of the index lesion's central role in the natural history of the PCa and the improvement of multiparametric magnetic resonance imaging (mpMRI) in the detection and risk stratification of PCa. In this literature review, we want to highlight the rationale for FT in PCa management and the current evidence on patient eligibility. Furthermore, we summarize the best imaging modalities to localize the target lesion, describe the current FT techniques in PCa, provide an update on their oncological outcomes and highlight trends for future research.
Collapse
Affiliation(s)
- Filippo Pesapane
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Francesca Patella
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Enrico Maria Fumarola
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Edoardo Zanchetta
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Chiara Floridi
- Azienda Ospedaliera Fatebenefratelli e Oftalmico, Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Health Sciences, Diagnostic and Interventional Radiology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Chloë Standaert
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
3
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
4
|
Mitxelena-Iribarren O, Hisey CL, Errazquin-Irigoyen M, González-Fernández Y, Imbuluzqueta E, Mujika M, Blanco-Prieto MJ, Arana S. Effectiveness of nanoencapsulated methotrexate against osteosarcoma cells: in vitro cytotoxicity under dynamic conditions. Biomed Microdevices 2017; 19:35. [DOI: 10.1007/s10544-017-0177-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Ouzzane A, Betrouni N, Valerio M, Rastinehad A, Colin P, Ploussard G. Focal therapy as primary treatment for localized prostate cancer: definition, needs and future. Future Oncol 2016; 13:727-741. [PMID: 27882770 DOI: 10.2217/fon-2016-0229] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Focal therapy (FT) may offer a promising treatment option in the field of low to intermediate risk localized prostate cancer. The aim of this concept is to combine minimal morbidity with cancer control as well as maintain the possibility of retreatment. Recent advances in MRI and targeted biopsy has improved the diagnostic pathway of prostate cancer and increased the interest in FT. However, before implementation of FT in routine clinical practice, several challenges are still to overcome including patient selection, treatment planning, post-therapy monitoring and definition of oncologic outcome surrogates. In this article, relevant questions regarding the key steps of FT are critically discussed and the main available energy modalities are analyzed taking into account their advantages and unmet needs.
Collapse
Affiliation(s)
- Adil Ouzzane
- Department of Urology, CHRU de Lille, Hôpital Claude Huriez, F-59037 Lille, France.,NSERM, U1189, ONCO-THAI, F-59037 Lille, France
| | | | - Massimo Valerio
- Department of Urology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Pierre Colin
- Department of Urology, Hôpital Privé de la Louvière, Ramsay Générale de Santé, 59000 Lille, France
| | - Guillaume Ploussard
- Institut universitaire du Cancer de Toulouse - Oncopole, Toulouse, France.,Department of Urology, Saint-Jean Languedoc Hospital, Toulouse, France
| |
Collapse
|
6
|
Navaeipour F, Afsharan H, Tajalli H, Mollabashi M, Ranjbari F, Montaseri A, Rashidi MR. Effects of continuous wave and fractionated diode laser on human fibroblast cancer and dermal normal cells by zinc phthalocyanine in photodynamic therapy: A comparative study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:456-62. [DOI: 10.1016/j.jphotobiol.2016.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022]
|
7
|
Manuchehrabadi N, Zhu L. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hyperthermia 2014; 30:349-61. [PMID: 25244058 DOI: 10.3109/02656736.2014.948497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The objective of this study was to design laser treatment protocols to induce sufficient thermal damage to a tumour embedded in a prostate model, while protecting the surrounding healthy tissue. METHODS A computational Monte Carlo simulation algorithm of light transport in a spherical prostatic tumour containing gold nanorods was developed to determine laser energy deposition. The laser energy absorption was then used to simulate temperature elevations in the tumour embedded in an elliptical human prostate model. The Arrhenius integral was coupled with the heat transfer model to identify heating protocols to induce 100% damage to the tumour, while resulting in less than 5% damage to the surrounding sensitive prostatic tissue. RESULTS Heating time to achieve 100% damage to the tumour was identified to be approximately 630 s when using a laser irradiance of 7 W/cm2 incident on the prostatic urethral surface. Parametric studies were conducted to show how the local blood perfusion rate and urethral surface cooling affect the heating time to achieve the same thermal dosage. The heating time was shorter when cooling at the urethra was not applied and/or with heat-induced vasculature damage. The identified treatment protocols were acceptable since the calculated percentages of the damaged healthy tissue volume to the healthy prostatic volume were approximately 2%, less than the threshold of 5%. The approach and results from this study can be used to design individualised treatment protocols for patients suffering from prostatic cancer.
Collapse
Affiliation(s)
- Navid Manuchehrabadi
- Department of Mechanical Engineering, University of Maryland Baltimore County , Baltimore, Maryland , USA
| | | |
Collapse
|
8
|
Gómez-Veiga F, Martínez-Breijo S, Solsona-Narbón E, Hernández C, Ciudin A, Ribal M, Dickinson L, Moore C, Ahmed H, Rodríguez Antolín A, Breda A, Gaya J, Portela-Pereira P, Emberton M. Focal therapy for prostate cancer. Alternative treatment. Actas Urol Esp 2014; 38:465-75. [PMID: 24612733 DOI: 10.1016/j.acuro.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 02/04/2023]
Abstract
CONTEXT The great controversy surrounding the treatment of localized prostate cancer is related with its possibilities of radical treatment or active surveillance. The objective of this paper is to analyze the rationale selection among current focal therapy modalities regarding tumor and patient selection. EVIDENCE ACQUISITION Current articles about advantages and disadvantages on the treatment of localized prostate cancer as well as information about focal therapy regarding tumour selection, characteristics and indications cited in MEDLINE search were reviewed. SUMMARY OF EVIDENCE Focal therapy standardized criteria must be: low risk tumors, PSA<10-15, Gleason score ≤ 6, and unilateral presentation all supported by image-guided biopsy and nuclear magnetic resonance (NMR). There are doubts about the suitability of focal therapy in cases of bilateralism or in those with Gleason score 3+4 or PSA>15. CONCLUSIONS Focal therapy is an alternative for localized prostate cancer treatment. However, some aspects of their diagnosis and selection criteria should be defined by prospective studies which should provide knowledge about the indication for focal therapy.
Collapse
|
9
|
|
10
|
Master A, Livingston M, Sen Gupta A. Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 2013; 168:88-102. [PMID: 23474028 DOI: 10.1016/j.jconrel.2013.02.020] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is a promising treatment strategy where activation of photosensitizer drugs with specific wavelengths of light results in energy transfer cascades that ultimately yield cytotoxic reactive oxygen species which can render apoptotic and necrotic cell death. Without light the photosensitizer drugs are minimally toxic and the photoactivating light itself is non-ionizing. Therefore, harnessing this mechanism in tumors provides a safe and novel way to selectively eradicate tumor with reduced systemic toxicity and side effects on healthy tissues. For successful PDT of solid tumors, it is necessary to ensure tumor-selective delivery of the photosensitizers, as well as, the photoactivating light and to establish dosimetric correlation of light and drug parameters to PDT-induced tumor response. To this end, the nanomedicine approach provides a promising way towards enhanced control of photosensitizer biodistribution and tumor-selective delivery. In addition, refinement of nanoparticle designs can also allow incorporation of imaging agents, light delivery components and dosimetric components. This review aims at describing the current state-of-the-art regarding nanomedicine strategies in PDT, with a comprehensive narrative of the research that has been carried out in vitro and in vivo, with a discussion of the nanoformulation design aspects and a perspective on the promise and challenges of PDT regarding successful translation into clinical application.
Collapse
Affiliation(s)
- Alyssa Master
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland 44106, USA
| | | | | |
Collapse
|
11
|
Bozzini G, Colin P, Nevoux P, Villers A, Mordon S, Betrouni N. Focal therapy of prostate cancer: energies and procedures. Urol Oncol 2013; 31:155-67. [DOI: 10.1016/j.urolonc.2012.05.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
12
|
Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc 2013; 46:7-23. [PMID: 23423543 PMCID: PMC3572355 DOI: 10.5946/ce.2013.46.1.7] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 01/28/2023] Open
Abstract
The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo.
Collapse
Affiliation(s)
- Il Yoon
- PDT Research Institute, Inje University School of Nano System Engineering, Gimhae, Korea
| | | | | |
Collapse
|
13
|
Focal laser ablation of prostate cancer: definition, needs, and future. Adv Urol 2012; 2012:589160. [PMID: 22666240 PMCID: PMC3362007 DOI: 10.1155/2012/589160] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/13/2023] Open
Abstract
Current challenges and innovations in prostate cancer management concern the development of focal therapies that allow the treatment of only the cancer areas sparing the rest of the gland to minimize the potential morbidity. Among these techniques, focal laser ablation (FLA) appears as a potential candidate to reach the goal of focusing energy delivery on the identified targets. The aim of this study is to perform an up-to-date review of this new therapeutic modality. Relevant literature was identified using MEDLINE database with no language restrictions (entries: focal therapy, laser interstitial thermotherapy, prostate cancer, FLA) and by cross-referencing from previously identified studies. Precision, real-time monitoring, MRI compatibility, and low cost of integrated system are principal advantages of FLA. Feasibility and safety of this technique have been reported in phase I assays. FLA might eventually prove to be a middle ground between active surveillance and radical treatment. In conclusion, FLA may have found a role in the management of prostate cancer. However, further trials are required to demonstrate the oncologic effectiveness in the long term.
Collapse
|
14
|
Bozzini G, Colin P, Betrouni N, Nevoux P, Ouzzane A, Puech P, Villers A, Mordon S. Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagnosis Photodyn Ther 2012; 9:261-73. [PMID: 22959806 DOI: 10.1016/j.pdpdt.2012.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is an innovative technique in oncologic urology. Its application appears increasingly realistic to all kind of cancers with technological progress made in treatment planning and light delivery associated with the emergence of novel photosensitizers. The aim of this study is to review applications of this technique in urology. MATERIALS AND METHODS We reviewed the literature on PDT for urological malignancies with the following key words: photodynamic therapy, prostate cancer, kidney cancer, urothelial cancer, penile cancer and then by cross-referencing from previously identified studies. RESULTS Focal therapy of prostate cancer is an application of PDT. Clinical studies are ongoing to determine PDT efficacy and safety. PDT as salvage treatment after radiotherapy has been tested. Oncologic results were promising but important side effects were reported. Individual dosimetric planning is necessary to avoid toxicity. PDT was tested to treat superficial bladder carcinoma with promising oncologic results. Serious side effects have limited use of first photosensitizers generation. Second generation of photosensitizer allowed reducing morbidity. For upper urinary tract carcinoma and urethra, data are limited. Few studies described PDT application in penile oncology for conservative management of carcinoma in situ and premalignant lesions. For renal cancer, PDT was only tested on preclinical model despite of its potential application. No data is available concerning PDT application for testicular cancer. CONCLUSION PDT clinical applications in urology have proved a kind of efficiency balanced with an important morbidity. Development of new photosensitizer generations and improvement in illumination protocols should permit to decrease side effects.
Collapse
Affiliation(s)
- G Bozzini
- Department of Urology, Centre Hospitalier Regional Universitaire de Lille, avenue oscar lambret, Lille, France. bozzini
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Colin P, Nevoux P, Marqa M, Auger F, Leroy X, Villers A, Puech P, Mordon S, Betrouni N. Focal laser interstitial thermotherapy (LITT) at 980 nm for prostate cancer: treatment feasibility in Dunning R3327-AT2 rat prostate tumour. BJU Int 2011; 109:452-8. [DOI: 10.1111/j.1464-410x.2011.10406.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Moore CM, Emberton M, Bown SG. Photodynamic therapy for prostate cancer-an emerging approach for organ-confined disease. Lasers Surg Med 2011; 43:768-75. [DOI: 10.1002/lsm.21104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Marqa MF, Colin P, Nevoux P, Mordon SR, Betrouni N. Focal laser ablation of prostate cancer: numerical simulation of temperature and damage distribution. Biomed Eng Online 2011; 10:45. [PMID: 21635775 PMCID: PMC3117748 DOI: 10.1186/1475-925x-10-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 06/02/2011] [Indexed: 12/21/2022] Open
Abstract
Background The use of minimally invasive ablative techniques in the management of patients with low grade and localized prostate tumours could represent a treatment option between active surveillance and radical therapy. Focal laser ablation (FLA) could be one of these treatment modalities. Dosimetry planning and conformation of the treated area to the tumor remain major issues, especially when, several fibers are required. An effective method to perform pre-treatment planning of this therapy is computer simulation. In this study we present an in vivo validation of a mathematical model. Methods The simulation model is based on finite elements method (FEM) to solve the bio-heat and the thermal damage equations. Laser irradiation was performed with a 980 nm laser diode system (5 W, 75 s). Light was transmitted using a cylindrical diffusing fiber inserted inside a preclinical animal prostate cancer model induced in Copenhagen rats. Non-enhanced T2-weighted and dynamic gadolinium-enhanced T1-weighted MR imaging examinations were performed at baseline and 48 hours after the procedure. The model was validated by comparing the simulated necrosis volume to the results obtained in vivo on (MRI) and by histological analysis. 3 iso-damage temperatures were considered 43° C, 45° C and 50° C. Results The mean volume of the tissue necrosis, estimated from the histological analyses was 0.974 ± 0.059 cc and 0.98 ± 0.052 cc on the 48 h MR images. For the simulation model, volumes were: 1.38 cc when T = 43° C, 1.1 cc for T = 45°C and 0.99 cc when T = 50 C°. Conclusions In this study, a clear correlation was established between simulation and in vivo experiments of FLA for prostate cancer. Simulation is a promising planning technique for this therapy. It needs further more evaluation to allow to FLA to become a widely applied surgical method.
Collapse
Affiliation(s)
- Mohamad-Feras Marqa
- Inserm (French National Institute of Health and Medical Research), U703, 152 rue du Docteur Yersin, 59120 Loos, France
| | | | | | | | | |
Collapse
|
18
|
Colin P, Estevez JP, Betrouni N, Ouzzane A, Puech P, Leroy X, Biserte J, Villers A, Mordon S. [Photodynamic therapy and prostate cancer]. Prog Urol 2010; 21:85-92. [PMID: 21296274 DOI: 10.1016/j.purol.2010.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/21/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE Photodynamic therapy (PDT) is an innovative therapeutic modality in urologic oncology. MATERIAL AND METHODS We reviewed the current literature on principles and modalities of PDT in prostatic oncology. RESULTS Focal therapy of prostate cancer is an application field of PDT. Clinical phase II studies are ongoing to determine PDT efficacy and safety in this indication. PDT as salvage treatment after prostatic radiotherapy has been tested. Carcinologic results were promising but important side effects were reported. Individual dosimetric planification is necessary to avoid this toxicity. CONCLUSION PDT first clinical experience for prostate cancer has showed its technical feasibility. Several research ways are currently in study to improve carcinologic efficacy and to limit potential side effects.
Collapse
Affiliation(s)
- P Colin
- Inserm, U703, Université Nord de France, CHRU de Lille, 152, rue du Dr-Yersin, 59120 Loos, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Davidson SRH, Weersink RA, Haider MA, Gertner MR, Bogaards A, Giewercer D, Scherz A, Sherar MD, Elhilali M, Chin JL, Trachtenberg J, Wilson BC. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Phys Med Biol 2009; 54:2293-313. [PMID: 19305043 DOI: 10.1088/0031-9155/54/8/003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately +/-2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D(90), was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D(90) less than 23 J cm(-2) had complete biopsy response, while 8/13 (62%) of patients with a D(90) greater than 23 J cm(-2) had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.
Collapse
Affiliation(s)
- Sean R H Davidson
- Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang LW, Li LB, Li ZS, Chen YK, Hetzel FW, Huang Z. Self-expandable metal stents and trans-stent light delivery: are metal stents and photodynamic therapy compatible? Lasers Surg Med 2009; 40:651-9. [PMID: 18951422 DOI: 10.1002/lsm.20680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Obstructive non-small cell lung cancer and obstructive esophageal cancer are US FDA approved indications of photodynamic therapy (PDT). The usefulness of PDT for the treatment of cholangiocarcinoma is currently under clinical investigation. Endoscopic stenting for lumen restoration is a common palliative intervention for those indications. It is important to assess whether self-expandable metal stents are compatible with trans-stent PDT light delivery. STUDY DESIGN/MATERIALS AND METHODS Direct effects of various components of metal biliary (n = 2), esophageal (n = 2), and bronchial (n = 1) stents on PDT light transmittance and distribution were examined using a point or linear light source (630 or 652 nm diode laser). Resected pig biliary duct and esophageal wall tissues were used to examine the feasibility of PDT light delivery through the fully expanded metal stents. RESULTS While using a point light source, the metal components (thread and joint) of the stent could cause a significant shadow effect. The liner material (polytetrafluoroethylene or polyurethane) could cause various degrees of light absorption. When the stent was covered with a thin layer of biliary duct and esophageal tissues containing all wall layers, the shadow effect could be mitigated due to tissue scattering. CONCLUSIONS This study clearly demonstrates that it is feasible to combine stenting and PDT for the treatment of luminal lesions. PDT light dose should be adjusted to counteract the reduction of light transmittance caused by the metal and liner materials of stent.
Collapse
Affiliation(s)
- Luo-Wei Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer—a review of current status and future promise. ACTA ACUST UNITED AC 2009; 6:18-30. [DOI: 10.1038/ncpuro1274] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/17/2008] [Indexed: 11/09/2022]
|
22
|
L'eplattenier HF, Klem B, Teske E, van Sluijs FJ, van Nimwegen SA, Kirpensteijn J. Preliminary results of intraoperative photodynamic therapy with 5-aminolevulinic acid in dogs with prostate carcinoma. Vet J 2008; 178:202-7. [PMID: 17904397 DOI: 10.1016/j.tvjl.2007.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 11/22/2022]
Abstract
Six client-owned dogs with prostate carcinoma were treated with a combination of (1) partial subcapsular prostatectomy using an Nd:YAG laser, (2) intraoperative photodynamic therapy using a halogen broad band lamp after local administration of a photosensitiser, and (3) systemic treatment with meloxicam. Median survival time was 41days (range 10-68days), which compared negatively with previous reports of subtotal laser prostatectomy combined with topical interleukin-2 administration, and photodynamic therapy alone. Despite treatment, the disease progressed locally, causing signs of stranguria to recur, and in the form of distant metastases. The recurrence of clinical signs due to the primary tumour despite photodynamic therapy is probably largely explained by insufficient penetration of light into the tissue. Better results may be obtained using other light sources (e.g. laser) and alternative techniques of light delivery, such as fibres or catheters allowing interstitial diffusion of light.
Collapse
Affiliation(s)
- H F L'eplattenier
- Utrecht University, Veterinary Faculty, Department of Clinical Sciences of Companion Animals, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Huang Z, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Chen YK. Photodynamic therapy for treatment of solid tumors--potential and technical challenges. Technol Cancer Res Treat 2008; 7:309-20. [PMID: 18642969 DOI: 10.1177/153303460800700405] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Photodynamic therapy (PDT) involves the administration of photosensitizer followed by local illumination with visible light of specific wavelength(s). In the presence of oxygen molecules, the light illumination of photosensitizer can lead to a series of photochemical reactions and consequently the generation of cytotoxic species. The quantity and location of PDT-induced cytotoxic species determine the nature and consequence of PDT. Much progress has been seen in both basic research and clinical application in recent years. Although the majority of approved PDT clinical protocols have primarily been used for the treatment of superficial lesions of both malignant and non-malignant diseases, interstitial PDT for the ablation of deep-seated solid tumors are now being investigated worldwide. The complexity of the geometry and non-homogeneity of solid tumor pose a great challenge on the implementation of minimally invasive interstitial PDT and the estimation of PDT dosimetry. This review will discuss the recent progress and technical challenges of various forms of interstitial PDT for the treatment of parenchymal and/or stromal tissues of solid tumors.
Collapse
Affiliation(s)
- Zheng Huang
- University of Colorado Denver, Aurora Campus, CO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fei B, Wang H, Meyers JD, Feyes DK, Oleinick NL, Duerk JL. High-field magnetic resonance imaging of the response of human prostate cancer to Pc 4-based photodynamic therapy in an animal model. Lasers Surg Med 2008; 39:723-30. [PMID: 17960753 DOI: 10.1002/lsm.20576] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION High-field magnetic resonance imaging (MRI) is an emerging technique that provides a powerful, non-invasive tool for in vivo studies of cancer therapy in animal models. Photodynamic therapy (PDT) is a relatively new treatment modality for prostate cancer, the second leading cause of cancer mortality in American males. The goal of this study was to evaluate the response of human prostate tumor cells growing as xenografts in athymic nude mice to Pc 4-sensitized PDT. MATERIALS AND METHODS PC-3, a cell line derived from a human prostate malignant tumor, was injected intradermally on the back flanks of athymic nude mice. Two tumors were initiated on each mouse. One was treated and the other served as the control. A second-generation photosensitizing drug Pc 4 (0.6 mg/kg body weight) was delivered to each animal by tail vein injection 48 hours before laser illumination (672 nm, 100 mW/cm(2), 150 J/cm(2)). A dedicated high-field (9.4 T) small-animal MR scanner was used for image acquisitions. A multi-slice multi-echo (MSME) technique, permitting noninvasive in vivo assessment of potential therapeutic effects, was used to measure the T2 values and tumor volumes. Animals were scanned immediately before and after PDT and 24 hours after PDT. T2 values were computed and analyzed for the tumor regions. RESULTS For the treated tumors, the T2 values significantly increased (P<0.002) 24 hours after PDT (68.2+/- 8.5 milliseconds), compared to the pre-PDT values (55.8+/-6.6 milliseconds). For the control tumors, there was no significant difference (P = 0.53) between the pre-PDT (52.5+/-6.1 milliseconds) and 24-hour post-PDT (54.3+/-6.4 milliseconds) values. Histologic analysis showed that PDT-treated tumors demonstrated necrosis and inflammation that was not seen in the control. DISCUSSION Changes in tumor T2 values measured by multi-slice multi-echo MR imaging provide an assay that could be useful for clinical monitoring of photodynamic therapy of prostate tumors.
Collapse
Affiliation(s)
- Baowei Fei
- Department of Radiology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio, 44106, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Rendon A, Beck JC, Lilge L. Treatment planning using tailored and standard cylindrical light diffusers for photodynamic therapy of the prostate. Phys Med Biol 2008; 53:1131-49. [PMID: 18263963 DOI: 10.1088/0031-9155/53/4/021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interstitial photodynamic therapy (PDT) has seen a rebirth, partially prompted by the development of photosensitizers with longer absorption wavelengths that enable the treatment of larger tissue volumes. Here, we study whether using diffusers with customizable longitudinal emission profiles, rather than conventional ones with flat emission profiles, improves our ability to conform the light dose to the prostate. We present a modified Cimmino linear feasibility algorithm to solve the treatment planning problem, which improves upon previous algorithms by (1) correctly minimizing the cost function that penalizes deviations from the prescribed light dose, and (2) regularizing the inverse problem. Based on this algorithm, treatment plans were obtained under a variety of light delivery scenarios using 5-15 standard or tailored diffusers. The sensitivity of the resulting light dose distributions to uncertainties in the optical properties, and the placement of diffusers was also studied. We find that tailored diffusers only marginally outperform conventional ones in terms of prostate coverage and rectal sparing. Furthermore, it is shown that small perturbations in optical properties can lead to large changes in the light dose distribution, but that those changes can be largely corrected with a simple light dose re-normalization. Finally, we find that prostate coverage is only minimally affected by small changes in diffuser placement. Our results suggest that prostate PDT is not likely to benefit from the use of tailored diffusers. Other locations with more complex geometries might see a better improvement.
Collapse
Affiliation(s)
- Augusto Rendon
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
26
|
Svensson T, Andersson-Engels S, Einarsdóttír M, Svanberg K. In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:014022. [PMID: 17343497 DOI: 10.1117/1.2435175] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of photodynamic therapy into a modality for treatment of prostate cancer calls for reliable optical dosimetry. We employ, for the first time, interstitial time-resolved spectroscopy to determine in vivo optical properties of human prostate tissue. Nine patients are included in the study, and measurements are conducted prior to primary brachytherapy treatment of prostate cancer. Intrasubject variability is examined by measuring across three tissue volumes within each prostate. The time-resolved instrumentation proves its usefulness by producing good signal levels in all measurements. We are able to present consistent values on reduced scattering coefficients (mu(s)'), absorption coefficients (mu(a)), and effective attenuation (mu(eff)) at the wavelengths 660, 786, and 916 nm. At 660 nm, mu(s)' is found to be 9+/-2 cm(-1), and mu(a) is 0.5+/-0.1 cm(-1). Derived values of mu(eff) are in the range of 3 to 4 cm(-1) at 660 nm, a result in good agreement with previously published steady state data. Total hemoglobin concentration (THC) and oxygen saturation are spectroscopically determined using derived absorption coefficients. Derived THC values are fairly variable (215+/-65 microM), while derived values of oxygen saturation are gathered around 75% (76+/-4%). Intrasubject variations in derived parameters correlate (qualitatively) with the heterogeneity exhibited in acquired ultrasound images.
Collapse
Affiliation(s)
- Tomas Svensson
- Lund University, Department of Physics, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|