1
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Structure based analysis of K ATP channel with a DEND syndrome mutation in murine skeletal muscle. Sci Rep 2021; 11:6668. [PMID: 33758250 PMCID: PMC7988048 DOI: 10.1038/s41598-021-86121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, the most severe end of neonatal diabetes mellitus, is caused by mutation in the ATP-sensitive potassium (KATP) channel. In addition to diabetes, DEND patients present muscle weakness as one of the symptoms, and although the muscle weakness is considered to originate in the brain, the pathological effects of mutated KATP channels in skeletal muscle remain elusive. Here, we describe the local effects of the KATP channel on muscle by expressing the mutation present in the KATP channels of the DEND syndrome in the murine skeletal muscle cell line C2C12 in combination with computer simulation. The present study revealed that the DEND mutation can lead to a hyperpolarized state of the muscle cell membrane, and molecular dynamics simulations based on a recently reported high-resolution structure provide an explanation as to why the mutation reduces ATP sensitivity and reveal the changes in the local interactions between ATP molecules and the channel.
Collapse
|
4
|
Ngoc CTB, Dien TM, De Franco E, Ellard S, Houghton JAL, Lan NN, Thao BP, Khanh NN, Flanagan SE, Craig ME, Dung VC. Molecular Genetics, Clinical Characteristics, and Treatment Outcomes of K ATP-Channel Neonatal Diabetes Mellitus in Vietnam National Children's Hospital. Front Endocrinol (Lausanne) 2021; 12:727083. [PMID: 34566892 PMCID: PMC8458931 DOI: 10.3389/fendo.2021.727083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neonatal diabetes mellitus (NDM) is defined as insulin-requiring persistent hyperglycemia occurring within the first 6 months of life, which can result from mutations in at least 25 different genes. Activating heterozygous mutations in genes encoding either of the subunits of the ATP-sensitive K+ channel (KATP channel; KCNJ11 or ABCC8) of the pancreatic beta cell are the most common cause of permanent NDM and the second most common cause of transient NDM. Patients with NDM caused by KATP channel mutations are sensitive to sulfonylurea (SU) treatment; therefore, their clinical management can be improved by replacing insulin with oral agents. PATIENTS AND METHODS Seventy patients were diagnosed with NDM between May 2008 and May 2021 at Vietnam National Children's Hospital, and molecular genetic testing for all genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Patients with ABCC8 or KCNJ11 mutations were transferred from insulin to oral SU. Clinical characteristics, molecular genetics, and annual data relating to glycemic control, SU dose, severe hypoglycemia, and side effects were collected. The main outcomes of interest were SU dose, SU failure (defined as permanent reintroduction of daily insulin), and glycemic control (HbA1c). RESULTS Fifty-four of 70 patients (77%) with NDM harbored a genetic mutation and of these; 27 (50%) had activating heterozygous mutations in ABCC8 or KCNJ11. A total of 21 pathogenic mutations were identified in the 27 patients, including 13 mutations in ABCC8 and 8 mutations in KCNJ11. Overall, 51% had low birth weight (below 3rd percentile), 23 (85%) were diagnosed before 3 months of age, and 23 (85%) presented with diabetic ketoacidosis. At diagnosis, clinical and biochemical findings (mean ± SD) were pH 7.16 ± 0.16; HCO3- , 7.9 ± 7.4 mmol/L; BE, -17.9 ± 9.1 mmol/L; HbA1C, 7.98% ± 2.93%; blood glucose, 36.2 ± 12.3 mmol/L; and C-peptide median, 0.09 (range, 0-1.61 nmol/l). Twenty-six patients were successfully transferred from insulin to SU therapy. In the remaining case, remission of diabetes occurred prior to transfer. Glycemic control on SU treatment was better than on insulin treatment: HbA1c and blood glucose level decreased from 7.58% ± 4.63% and 19.04 ± 14.09 mmol/L when treated with insulin to 5.8 ± 0.94% and 6.87 ± 3.46 mmol/L when treated with SU, respectively. CONCLUSIONS This is the first case series of NDM patients with ABCC8/KCNJ11 mutations reported in Vietnam. SU is safe in the short term for these patients and more effective than insulin therapy, consistent with all studies to date. This is relevant for populations where access to and cost of insulin are problematic, reinforcing the importance of genetic testing for NDM.
Collapse
Affiliation(s)
- Can Thi Bich Ngoc
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Tran Minh Dien
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Jayne A. L. Houghton
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Phuong Thao
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Nguyen Ngoc Khanh
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Maria E. Craig
- Institute of Endocrinology and Diabetes, The Children’s Hospital at Westmead/Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales Medicine, Sydney, NSW, Australia
| | - Vu Chi Dung
- Department of Endocrinology, Metabolism and Genetics, Vietnam National Children’s Hospital, Hanoi, Vietnam
- *Correspondence: Vu Chi Dung,
| |
Collapse
|
5
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Emfinger CH, Yan Z, Welscher A, Hung P, McAllister W, Hruz PW, Nichols CG, Remedi MS. Contribution of systemic inflammation to permanence of K ATP-induced neonatal diabetes in mice. Am J Physiol Endocrinol Metab 2018; 315:E1121-E1132. [PMID: 30226997 PMCID: PMC6336961 DOI: 10.1152/ajpendo.00137.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gain-of-function (GOF) mutations in the ATP-sensitive potassium (KATP) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome. We have tested the underlying mechanism of transient vs. permanent neonatal diabetes in KATP-GOF mice treated for 14 days with glibenclamide. Some KATP-GOF mice show remission of diabetes and enhanced insulin sensitivity long after diabetes treatment has ended, while others maintain severe insulin-resistance. However, insulin sensitivity is not different between the two groups before or during diabetes induction, suggesting that improved sensitivity is a consequence, rather than the cause of, remission, implicating other factors modulating glucose early in diabetes progression. Leptin, glucagon, insulin, and glucagon-like peptide-1 are not different between remitters and nonremitters. However, liver glucose production is significantly reduced before transgene induction in remitter, relative to nonremitter and nontreated, mice. Surprisingly, while subsequent remitter animals exhibited normal serum cytokines, nonremitter mice showed increased cytokines, which paralleled the divergence in blood glucose. Together, these results suggest that systemic inflammation may play a role in the remitting versus non-remitting outcome. Supporting this conclusion, treatment with the anti-inflammatory meloxicam significantly increased the fraction of remitting animals. Beyond neonatal diabetes, the potential for inflammation and glucose production to exacerbate other forms of diabetes from a compensated state to a glucotoxic state should be considered.
Collapse
Affiliation(s)
- Christopher H Emfinger
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Zihan Yan
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Alecia Welscher
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Peter Hung
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
| | - William McAllister
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
| | - Paul W Hruz
- Department of Pediatrics, Washington University in St. Louis , St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| | - Maria S Remedi
- Department of Medicine, Washington University in St. Louis , St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University in St. Louis , St. Louis, Missouri
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis , St. Louis, Missouri
| |
Collapse
|
7
|
Abstract
Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the KATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the KATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
Collapse
Affiliation(s)
- Kenju Shimomura
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| | - Yuko Maejima
- Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Japan
| |
Collapse
|
8
|
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K ATP Channel: From Mutation to Therapy. Trends Endocrinol Metab 2017; 28:377-387. [PMID: 28262438 PMCID: PMC5582192 DOI: 10.1016/j.tem.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabilities. Here, we review how KATP channel mutations lead to the varied clinical phenotype, how sulfonylureas exert their therapeutic effects, and why their efficacy varies with individual mutations.
Collapse
Affiliation(s)
- Frances M Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK.
| | - Michael C Puljung
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| | - Natascia Vedovato
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, UK
| |
Collapse
|
9
|
Moghbeli M, Naghibzadeh B, Ghahraman M, Fatemi S, Taghavi M, Vakili R, Abbaszadegan MR. Mutations in HNF1A Gene are not a Common Cause of Familial Young-Onset Diabetes in Iran. Indian J Clin Biochem 2017; 33:91-95. [PMID: 29371776 DOI: 10.1007/s12291-017-0648-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/08/2017] [Indexed: 01/29/2023]
Abstract
Mutations in hepatocyte nuclear factor-1 alpha (HNF1A) as a homeodomain transcription factor which regulates variety of genes, are the most common cause of maturity-onset diabetes of the young (MODY). Detection of HNF1A mutations not only classifies the subtype, but also predicts the likely clinical course and may alters the method of treatment from insulin to the oral sulphonylureas, which is shown to improve glycemic control. The coding and promoter regions of HNF1A gene were screened for mutations in 34 unrelated Iranian MODY patients. We identified one novel missense mutation (C49G) and two novel polymorphisms and 8 recently identified SNPs in the HNF1A gene. It is possible that in Iran, other yet to be identified genes are responsible for the familial young onset diabetes. Hence, there is a need for more extensive genetic analyses in Iranian patients with familial young onset diabetes.
Collapse
Affiliation(s)
- Meysam Moghbeli
- 1North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Naghibzadeh
- 2Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Martha Ghahraman
- 2Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- 3Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sedigheh Fatemi
- 4Immunogenetics Department, Immunology Research Center, Bu-Ali Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Taghavi
- 5Endocrinology and Metabolism Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Vakili
- 6Department of Pediatric Endocrinology, School of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- 2Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- 3Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Li CJ, Zhou HL, Li J, Yao HT, Su R, Li WP. Roles of sulfonylurea receptor 1 and multidrug resistance protein 1 in modulating insulin secretion in human insulinoma. Hepatobiliary Pancreat Dis Int 2011; 10:88-94. [PMID: 21269941 DOI: 10.1016/s1499-3872(11)60013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sulfonylurea receptor 1 (SUR1) and multidrug resistance protein 1 (MRP1) are two prominent members of multidrug resistance proteins associated with insulin secretion. The aims of this study were to investigate their expression in insulinomas and their sole and synergistic effects in modulating abnormal insulin secretion. METHODS Fasting glucose, insulin and C-peptide were measured in 11 insulinoma patients and 11 healthy controls. Prolonged oral glucose tolerance tests were performed in 6 insulinoma patients. Insulin content, SUR1 and MRP1 were detected in 11 insulinoma patients by immunohistochemistry. SUR1 and MRP1 were also detected in 6 insulinoma patients by immunofluorescence. RESULTS Insulinoma patients presented the typical demonstrations of Whipple's triad. Fasting glucose of each insulinoma patient was lower than 2.8 mmol/L, and simultaneous insulin and C-peptide were increased in insulinoma patients. Prolonged oral glucose tolerance tests showed that insulin secretion in insulinoma patients were also stimulated by high glucose. Immunohistochemistry and immunofluorescence staining showed that SUR1 increased, but MRP1 decreased in insulinoma compared with the adjacent islets. CONCLUSIONS The hypersecretion of insulin in insulinomas might be, at least partially, due to the enrichment of SUR1. In contrast, MRP1, which is down-regulated in insulinomas, might reflect a negative feedback in insulin secretion.
Collapse
Affiliation(s)
- Cheng-Jiang Li
- Department of Endocrinology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
11
|
Pearl EJ, Jarikji Z, Horb ME. Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev Biol 2011; 351:135-45. [PMID: 21215266 DOI: 10.1016/j.ydbio.2010.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 11/30/2022]
Abstract
Mutations in rfx6 were recently associated with Mitchell-Riley syndrome, which involves neonatal diabetes, and other digestive system defects. To better define the function of Rfx6 in early endoderm development we cloned the Xenopus homologue. Expression of rfx6 begins early, showing broad expression throughout the anterior endoderm; at later stages rfx6 expression becomes restricted to the endocrine cells of the gut and pancreas. Morpholino knockdown of rfx6 caused a loss of pancreas marker expression, as well as other abnormalities. Co-injection of exogenous wild-type rfx6 rescued the morpholino phenotype in Xenopus tadpoles, whereas attempts to rescue the loss-of-function phenotype using mutant rfx6 based on Mitchell-Riley patients were unsuccessful. To better define the pleiotropic effects, we performed microarray analyses of gene expression in knockdown foregut tissue. In addition to pancreatic defects, the microarray analyses revealed downregulation of lung, stomach and heart markers and an upregulation of kidney markers. We verified these results using RT-PCR and in situ hybridization. Based on the different rfx6 expression patterns and our functional analyses, we propose that rfx6 has both early and late functions. In early development Rfx6 plays a broad role, being essential for development of most anterior endodermal organs. At later stages however, Rfx6 function is restricted to endocrine cells.
Collapse
Affiliation(s)
- Esther J Pearl
- Laboratory of Molecular Organogenesis, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montreal, QC H2V4K1, Canada.
| | | | | |
Collapse
|