1
|
Salaria S, Boatwright JL, Johnson N, Madurapperumage A, Joshi P, Thavarajah P, Vandemark G, Thavarajah D. Fatty acid composition and genome-wide associations of a chickpea (Cicer arietinum L.) diversity panel for biofortification efforts. Sci Rep 2023; 13:14002. [PMID: 37635199 PMCID: PMC10460795 DOI: 10.1038/s41598-023-41274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Chickpea is a nutritionally dense pulse crop with high levels of protein, carbohydrates, micronutrients and low levels of fats. Chickpea fatty acids are associated with a reduced risk of obesity, blood cholesterol, and cardiovascular diseases in humans. We measured four primary chickpea fatty acids; palmitic acid (PA), linoleic acid (LA), alpha-linolenic acid (ALA), and oleic acid (OA), which are crucial for human health and plant stress responses in a chickpea diversity panel with 256 accessions (Kabuli and desi types). A wide concentration range was found for PA (450.7-912.6 mg/100 g), LA (1605.7-3459.9 mg/100 g), ALA (416.4-864.5 mg/100 g), and OA (1035.5-1907.2 mg/100 g). The percent recommended daily allowances also varied for PA (3.3-6.8%), LA (21.4-46.1%), ALA (34.7-72%), and OA (4.3-7.9%). Weak correlations were found among fatty acids. Genome-wide association studies (GWAS) were conducted using genotyping-by-sequencing data. Five significant single nucleotide polymorphisms (SNPs) were identified for PA. Admixture population structure analysis revealed seven subpopulations based on ancestral diversity in this panel. This is the first reported study to characterize fatty acid profiles across a chickpea diversity panel and perform GWAS to detect associations between genetic markers and concentrations of selected fatty acids. These findings demonstrate biofortification of chickpea fatty acids is possible using conventional and genomic breeding techniques, to develop superior cultivars with better fatty acid profiles for improved human health and plant stress responses.
Collapse
Affiliation(s)
- Sonia Salaria
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - J Lucas Boatwright
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
- Advanced Plant Technology, Clemson University, Clemson, SC, 29634, USA
| | - Nathan Johnson
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Amod Madurapperumage
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Priyanka Joshi
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Pushparajah Thavarajah
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - George Vandemark
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Washington State University, 303 Johnson Hall, Pullman, WA, 99164, USA
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, 113 Biosystems Research Complex, Clemson, SC, 29634, USA.
| |
Collapse
|
2
|
Hussey B, Steel RP, Gyimah B, Reynolds JC, Taylor IM, Lindley MR, Mastana S. DNA methylation of tumour necrosis factor (TNF) alpha gene is associated with specific blood fatty acid levels in a gender-specific manner. Mol Genet Genomic Med 2021; 9:e1679. [PMID: 33818919 PMCID: PMC8683629 DOI: 10.1002/mgg3.1679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background Fatty acids, specifically polyunsaturated fatty acids (PUFAs) play an important role in inflammation and its resolution, however, their interaction with the epigenome is relatively unexplored. Here we investigate the relationship between circulating blood fatty acids and the DNA methylation of the cytokine encoding gene tumour necrosis factor (TNF, OMIM 191160). Methods Using a cross‐sectional study approach, we collected blood samples from adults (N=88 (30 males, 58 females); 18–74 years old) for DNA methylation pyrosequencing analysis at four sites in TNF exon 1 and gas‐chromatography mass‐spectrometry analysis of the fatty acid profile of dried blood spots (DBS). Results Methylation levels of TNF exon 1 are significantly correlated with specific fatty acids in a gender‐specific manner. In the males the PUFAs Docosahexaenoic Acid (DHA) and Arachidonic Acid (AA) were positively associated with TNF methylation, as was the saturated fatty acid (SFA) Stearic Acid; in contrast, mono‐unsaturated fatty acids (MUFAs) had a negative association. In the females, omega‐6 PUFA γ‐Linolenic acid (GLA) was negatively correlated with TNF methylation; Adrenic acid and Eicosadienoic Acid were positively correlated with TNF methylation. Conclusion These results suggest that one way that fatty acids interact with the inflammation is through altered methylation profiles of cytokine genes; thus, providing potential therapeutic targets for nutritional and health interventions.
Collapse
Affiliation(s)
- Bethan Hussey
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard P Steel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,School of Social Sciences, Nottingham Trent University, Nottingham, UK
| | - Boakye Gyimah
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - James C Reynolds
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - Ian M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Martin R Lindley
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sarabjit Mastana
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
3
|
Marín-Suárez M, Morales-Medina R, Guadix EM, Guadix A. A Simple Enzymatic Process to Produce Functional Lipids From Vegetable and Fish Oil Mixtures. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marta Marín-Suárez
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Rocío Morales-Medina
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Emilia M. Guadix
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| | - Antonio Guadix
- Department of Chemical Engineering, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n E-18071 Granada Spain
| |
Collapse
|
4
|
Marín‐Suárez M, García‐Moreno PJ, Padial‐Domínguez M, Guadix A, Guadix EM. Production and characterization of ice cream with high content in oleic and linoleic fatty acids. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Antonio Guadix
- Department of Chemical EngineeringUniversity of GranadaGranadaSpain
| | - Emilia M. Guadix
- Department of Chemical EngineeringUniversity of GranadaGranadaSpain
| |
Collapse
|
5
|
Speranza P, Ribeiro APB, Macedo GA. Lipase catalyzed interesterification of Amazonian patauá oil and palm stearin for preparation of specific-structured oils. Journal of Food Science and Technology 2015; 52:8268-75. [PMID: 26604403 DOI: 10.1007/s13197-015-1943-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022]
Abstract
This study showed that enzymatic interesterification of Amazonian oils could be an important tool in order to produce new oils with physicochemical properties that improve the applications of these raw materials. Structured oils of Amazonian patauá oil and palm stearin using two lipases were produced in three different enzymatic systems: first, a crude lipase from the fungus Rhizopus sp (a microorganism isolated in our laboratory); second, a commercial lipase; and third, to check any synergistic effect, a mixture of both lipases (Rhizopus sp and commercial). The lipase from Rhizopus sp was specific in the incorporation of oleic acid at the sn-1,3 positions of the triacylglycerol, resulting in an oil richer in saturated fatty acid in the sn-2 position. This enzyme, produced by solid-state fermentation, even though crude, was fatty acid and positional specific and able to operate at low concentration (2.5 %, w/w). In the second enzyme system, the commercial lipase from Thermomyces lanuginosus was not specific in the tested conditions; there was no change in the distribution of saturated and unsaturated fatty acids in the three positions of the triacylglycerol profile, there was only a replacement by the type of fatty acid at the same position. In the third enzyme system, the mixture of both lipases shows no synergic effect. The structured oils retained the concentration of bioactive α- and γ- tocopherol in the three enzyme systems. Triacylglycerol classes and Thermal behavior tests indicated the formation of more homogeneous triacylglycerols, especially the mono and di-unsaturated.
Collapse
Affiliation(s)
- Paula Speranza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| | - Gabriela Alves Macedo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80, Monteiro Lobato St., 13083-970 Campinas, SP Brazil
| |
Collapse
|
6
|
Kha TC, Nguyen MH, Roach PD, Stathopoulos CE. Effect of Drying Pre-treatments on the Yield and Bioactive Content of Oil Extracted from Gac Aril. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2014. [DOI: 10.1515/ijfe-2013-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gac fruit (Momordica cochinchinensis Spreng) aril contains high levels of bioactive compounds including β-carotene, lycopene and fatty acids. Therefore, it is important to find an extraction method of Gac oil resulting in the highest content of bioactive compounds. The effects of microwave and air-drying pre-treatments of Gac aril prior to hydraulic pressing and Soxhlet extraction on the oil yield, nutrients and chemical properties of the oil were compared. Results showed that the highest oil yield could be obtained when the aril was microwave-dried before Soxhlet extraction. This finding was explained by microstructural changes of the dried arils. Microwave-drying prior to pressing resulted in the highest content of β-carotene (174 mg/100 mL) and lycopene (511 mg/100 mL) in the oil extract. Oleic acid (48%) and linoleic acid (18%) were found to be the dominant fatty acids in the oil extracts. Gac oil with the lowest acid (0.69 mg KOH/g) and peroxide values (1.80 meq O2/kg) was extracted when microwave-drying was applied prior to pressing. It can be concluded that the microwave drying pre-treatment before pressing was better than the air-drying pre-treatment for extracting Gac oil of high quality.
Collapse
|
7
|
Harland JI. An assessment of the economic and heart health benefits of replacing saturated fat in the diet with monounsaturates in the form of rapeseed (canola) oil. NUTR BULL 2009. [DOI: 10.1111/j.1467-3010.2009.01756.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
|
9
|
Cayuela JA, Rada M, Pérez-Camino MDC, Benaissa M, Abdelaziz E, Guinda Á. Characterization of artisanally and semiautomatically extracted argan oils from Morocco. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200800146] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|