1
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2025; 62:2292-2313. [PMID: 39103716 PMCID: PMC11772535 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Villamar-Flores CI, Rodríguez-Violante M, Abundes-Corona A, Alatriste-Booth V, Valencia-Flores M, Rodríguez-Agudelo Y, Cervantes-Arriaga A, Solís-Vivanco R. Association between alterations in sleep spindles and cognitive decline in persons with Parkinson's disease. Neurosci Lett 2024; 842:138006. [PMID: 39362461 DOI: 10.1016/j.neulet.2024.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Sleep macro and microstructural features have a relevant role for cognition. Although alterations in sleep macrostructure have been reported in persons with neurodegenerative disorders, including Parkinson's disease (PD), it is unknown whether there is a relationship between alterations in microstructure (sleep spindles) and global cognitive deficits in this disease. OBJECTIVE To explore the association between the macro and microstructure of sleep (sleep spindles) and the general cognitive state in persons with PD. METHODS Thirty-three patients with idiopathic PD underwent a one-night polysomnography (PSG) and a global cognitive assessment using the Montreal Cognitive Assessment (MoCA) test. PSG-based macrostructural sleep values and quantification and spectral estimation of sleep spindles were obtained. RESULTS We found increases in total sleep time, latency to rapid eye movement (REM) sleep, and percentage of N1 stage, as well as a decrease in percentage of REM sleep and sleep efficiency compared to values reported in healthy adults. Compared to expected values, a decrease in the number of sleep spindles was found at frontal regions. Participants with cognitive impairment showed an even lower count of sleep spindles, as well as an increase in the amplitude of underlying sigma (12-16 Hz) waves (fast spindles). When exploring MoCA subdomains, we found a consistent relationship between the number and amplitude of sleep spindles and attention capacity. CONCLUSIONS Decreased number and increased amplitude of sleep spindles are linked to cognitive impairment in persons with PD, especially in attention capacity. Therefore, sleep spindles characteristics could serve as prognostic indicators of cognitive deterioration in PD.
Collapse
Affiliation(s)
- Christopher I Villamar-Flores
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Faculty of High Studies Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | - Matilde Valencia-Flores
- Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Sleep Clinic, Neurology and Psychiatry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
| | | | | | - Rodolfo Solís-Vivanco
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
3
|
Zheng Y, Cameron AP. Sleep and Overactive Bladder in Parkinson's Disease. Urol Clin North Am 2024; 51:197-207. [PMID: 38609192 DOI: 10.1016/j.ucl.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Patients with Parkinson's disease (PD) have disturbances in their bladder and sleep physiology that lead to nocturia and overactive bladder (OAB). These symptoms can be extremely bothersome and impact not only their quality of life (QoL) but also the QoL of their caretakers. We aim to highlight the changes in bladder and sleep physiology in PD and explore OAB/nocturia treatment strategies in this population.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Urology, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Anne P Cameron
- Department of Urology, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Tang R, Gong S, Li J, Hu W, Liu J, Liao C. Efficacy of non-pharmacological interventions for sleep quality in Parkinson's disease: a systematic review and network meta-analysis. Front Neurosci 2024; 18:1337616. [PMID: 38449730 PMCID: PMC10914945 DOI: 10.3389/fnins.2024.1337616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background Sleep disorders are one of the most common non-motor symptoms in PD. It can cause a notable decrease in quality of life and functioning in PD patients, as well as place a huge burden on both patients and caregivers. Currently, there are numerous non-pharmacological interventions available to improve sleep quality in PD, with disagreement as to which intervention is most effective. This network meta-analysis was performed to compare and rank non-pharmacological interventions to explore their efficacy in improving sleep quality in PD and to select the best interventions, with a view to providing references and bases for the development of clinical treatments and care programs. Methods The PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched from inception to December 6, 2023. Two authors independently screened all studies, extracted the data, and evaluated risk of bias of included studies. STATA software version 17.0 was used to conduct the network meta-analysis. Results Our network meta-analysis included 29 studies involving 1,477 participants and 16 non-pharmacological interventions. Although most nonpharmacological interventions showed non-significant effects, the surface under the cumulative ranking curve (SUCRA) values indicated that the best non-pharmacological intervention for sleep disorders was massage therapy (97.3%), followed by music therapy (94.2%), and Treadmill training (85.7%). Conclusion Massage therapy can be considered as an effective therapy for improving sleep quality in patients with PD. Due to limited quantity and quality of the included studies, more high quality studies are required to verify the conclusions of this network meta-analysis. Systematic review registration identifier CRD42023429339, PROSPERO (york.ac.uk).
Collapse
Affiliation(s)
| | | | | | | | - Jihong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlian Liao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Wu D, He J, Li K, Liu H, Jin Y, Du W, Ma X, Long Y, Li S, Su W, Chen H. Clinical Manifestations of Subjective Sleep Disorders in Chinese Patients with Parkinson's Disease and Their Relationship with Dopaminergic Drugs. Eur Neurol 2023; 86:377-386. [PMID: 37673041 DOI: 10.1159/000533905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Sleep disorders are common in Parkinson's disease (PD) and significantly impact quality of life. Herein, we surveyed the incidence and severity of sleep disorders in Chinese PD patients and observed their relationship with dopaminergic drugs. METHODS We collected the demographic and disease information of 232 PD patients. The incidence and severity of sleep disorders were surveyed with the Parkinson's disease sleep scale (PDSS) Chinese version. Data on dopaminergic drug intake were collected and converted to levodopa equivalent doses (LED). RESULTS The average total score of PDSS in 232 patients was 119.3 ± 19.7. There was a significant difference in PDSS scores between groups classified by the Hoehn-Yahr (H&Y) stage, but not between the groups classified by the type of dopaminergic drugs. Stepwise regression analysis revealed that the LED of dopaminergic drugs taken before bedtime (p < 0.00), LED of dopaminergic drugs taken over a 24-h period (p < 0.00), and scores of the Hamilton Rating Scale for Depression (HAMD) (p = 0.01) were determinants of PDSS. CONCLUSION Sleep disorders in PD patients may be multifactorial. High dosage of dopaminergic drugs taken prior to sleep, daily total high dosage of dopaminergic drugs, and depression exert negative effects on subjective sleep. The timing and dosage of dopaminergic drugs taken before bedtime should be considered in PD management.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing He
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huijing Liu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Jin
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Du
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Ma
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunfei Long
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuhua Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Scanga A, Lafontaine AL, Kaminska M. An overview of the effects of levodopa and dopaminergic agonists on sleep disorders in Parkinson's disease. J Clin Sleep Med 2023; 19:1133-1144. [PMID: 36716191 PMCID: PMC10235717 DOI: 10.5664/jcsm.10450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/31/2023]
Abstract
Sleep disorders are among the most common nonmotor symptoms in Parkinson's disease and are associated with reduced cognition and health-related quality of life. Disturbed sleep can often present in the prodromal or early stages of this neurodegenerative disease, rendering it crucial to manage and treat these symptoms. Levodopa and dopaminergic agonists are frequently prescribed to treat motor symptoms in Parkinson's disease, and there is increasing interest in how these pharmacological agents affect sleep and their effect on concomitant sleep disturbances and disorders. In this review, we discuss the role of dopamine in regulating the sleep-wake state and the impact of neurodegeneration on sleep. We provide an overview of the effects of levodopa and dopaminergic agonists on sleep architecture, insomnia, excessive daytime sleepiness, sleep-disordered breathing, rapid eye movement sleep behavior disorder, and restless legs syndrome in Parkinson's disease. Levodopa and dopaminergic drugs may have different effects, beneficial or adverse, depending on dosing, method of administration, and differential effects on the different dopamine receptors. Future research in this area should focus on elucidating the specific mechanisms by which these drugs affect sleep in order to better understand the pathophysiology of sleep disorders in Parkinson's disease and aid in developing suitable therapies and treatment regimens. CITATION Scanga A, Lafontaine A-L, Kaminska M. An overview of the effects of levodopa and dopaminergic agonists on sleep disorders in Parkinson's disease. J Clin Sleep Med. 2023;19(6):1133-1144.
Collapse
Affiliation(s)
- Amanda Scanga
- Division of Experimental Medicine, Glen Site, McGill University Health Centre, Montréal, Québec, Canada
| | - Anne-Louise Lafontaine
- Montreal Neurological Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
7
|
Lauretani F, Testa C, Salvi M, Zucchini I, Giallauria F, Maggio M. Clinical Evaluation of Sleep Disorders in Parkinson’s Disease. Brain Sci 2023; 13:brainsci13040609. [PMID: 37190574 DOI: 10.3390/brainsci13040609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The paradigm of the framing of Parkinson’s disease (PD) has undergone significant revision in recent years, making this neurodegenerative disease a multi-behavioral disorder rather than a purely motor disease. PD affects not only the “classic” substantia nigra at the subthalamic nuclei level but also the nerve nuclei, which are responsible for sleep regulation. Sleep disturbances are the clinical manifestations of Parkinson’s disease that most negatively affect the quality of life of patients and their caregivers. First-choice treatments for Parkinson’s disease determine amazing effects on improving motor functions. However, it is still little known whether they can affect the quantity and quality of sleep in these patients. In this perspective article, we will analyze the treatments available for this specific clinical setting, hypothesizing a therapeutic approach in relation to neurodegenerative disease state.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Clinic Geriatric Unit and Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via S. Pansini 5, 80131 Naples, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Clinic Geriatric Unit and Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Sleep and wakefulness disturbances in Parkinson's disease: A meta-analysis on prevalence and clinical aspects of REM sleep behavior disorder, excessive daytime sleepiness and insomnia. Sleep Med Rev 2023; 68:101759. [PMID: 36708642 DOI: 10.1016/j.smrv.2023.101759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Sleep disorders (SDs) are common non-motor symptoms of Parkinson's disease (PD) with wide variability in their prevalence rates. The etiology of SDs in PD is multifactorial because the degenerative processes underlying the disease and their interaction with drugs and clinical features may promote REM sleep behavior disorder (RBD), excessive daytime sleepiness (EDS) and insomnia. Therefore, we designed a meta-analytic study to provide a reliable estimate of the prevalence and associated clinical and neuropsychiatric aspects of SDs in PD. A systematic literature search was performed up to February 2022. Pooled RBD prevalence was 46%, and its occurrence was associated with older age, lower education, longer disease duration, higher levodopa equivalent daily dose (LEDD), worse motor and autonomic manifestations, poorer quality of life and autonomy, and more severe neuropsychiatric symptoms. The pooled prevalence of EDS was 35% and was associated with older age, longer disease duration, worse motor and autonomic symptoms, higher LEDD, reduced autonomy, and more severe neuropsychiatric symptoms. Insomnia was reported in 44% of PD patients and was related to longer disease duration, higher LEDD, and more severe depression. SDs are associated with a more severe PD clinical phenotype; further studies should explore the pathophysiological mechanisms underlying SDs and develop targeted therapeutic strategies.
Collapse
|
9
|
Fleming JE, Kremen V, Gilron R, Gregg NM, Zamora M, Dijk DJ, Starr PA, Worrell GA, Little S, Denison TJ. Embedding Digital Chronotherapy into Bioelectronic Medicines. iScience 2022; 25:104028. [PMID: 35313697 PMCID: PMC8933700 DOI: 10.1016/j.isci.2022.104028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Schütz L, Sixel-Döring F, Hermann W. Management of Sleep Disturbances in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2029-2058. [PMID: 35938257 PMCID: PMC9661340 DOI: 10.3233/jpd-212749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 06/07/2023]
Abstract
Parkinson's disease (PD) is defined by its motor symptoms rigidity, tremor, and akinesia. However, non-motor symptoms, particularly autonomic disorders and sleep disturbances, occur frequently in PD causing equivalent or even greater discomfort than motor symptoms effectively decreasing quality of life in patients and caregivers. Most common sleep disturbances in PD are insomnia, sleep disordered breathing, excessive daytime sleepiness, REM sleep behavior disorder, and sleep-related movement disorders such as restless legs syndrome. Despite their high prevalence, therapeutic options in the in- and outpatient setting are limited, partly due to lack of scientific evidence. The importance of sleep disturbances in neurodegenerative diseases has been further emphasized by recent evidence indicating a bidirectional relationship between neurodegeneration and sleep. A more profound insight into the underlying pathophysiological mechanisms intertwining sleep and neurodegeneration might lead to unique and individually tailored disease modifying or even neuroprotective therapeutic options in the long run. Therefore, current evidence concerning the management of sleep disturbances in PD will be discussed with the aim of providing a substantiated scaffolding for clinical decisions in long-term PD therapy.
Collapse
Affiliation(s)
- Lukas Schütz
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | - Wiebke Hermann
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Baumgartner AJ, Kushida CA, Summers MO, Kern DS, Abosch A, Thompson JA. Basal Ganglia Local Field Potentials as a Potential Biomarker for Sleep Disturbance in Parkinson's Disease. Front Neurol 2021; 12:765203. [PMID: 34777232 PMCID: PMC8581299 DOI: 10.3389/fneur.2021.765203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep disturbances, specifically decreases in total sleep time and sleep efficiency as well as increased sleep onset latency and wakefulness after sleep onset, are highly prevalent in patients with Parkinson's disease (PD). Impairment of sleep significantly and adversely impacts several comorbidities in this patient population, including cognition, mood, and quality of life. Sleep disturbances and other non-motor symptoms of PD have come to the fore as the effectiveness of advanced therapies such as deep brain stimulation (DBS) optimally manage the motor symptoms. Although some studies have suggested that DBS provides benefit for sleep disturbances in PD, the mechanisms by which this might occur, as well as the optimal stimulation parameters for treating sleep dysfunction, remain unknown. In patients treated with DBS, electrophysiologic recording from the stimulating electrode, in the form of local field potentials (LFPs), has led to the identification of several findings associated with both motor and non-motor symptoms including sleep. For example, beta frequency (13–30 Hz) oscillations are associated with worsened bradykinesia while awake and decrease during non-rapid eye movement sleep. LFP investigation of sleep has largely focused on the subthalamic nucleus (STN), though corresponding oscillatory activity has been found in the globus pallidus internus (GPi) and thalamus as well. LFPs are increasingly being recognized as a potential biomarker for sleep states in PD, which may allow for closed-loop optimization of DBS parameters to treat sleep disturbances in this population. In this review, we discuss the relationship between LFP oscillations in STN and the sleep architecture of PD patients, current trends in utilizing DBS to treat sleep disturbance, and future directions for research. In particular, we highlight the capability of novel technologies to capture and record LFP data in vivo, while patients continue therapeutic stimulation for motor symptoms. These technological advances may soon allow for real-time adaptive stimulation to treat sleep disturbances.
Collapse
Affiliation(s)
- Alexander J Baumgartner
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clete A Kushida
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael O Summers
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
Yan J, Liu A, Huang J, Wu J, Shen R, Ma H, Yang J. Pharmacological Interventions for REM Sleep Behavior Disorder in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2021; 13:709878. [PMID: 34483882 PMCID: PMC8415017 DOI: 10.3389/fnagi.2021.709878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
To review the therapeutic effects of drugs on REM sleep behavior disorder (RBD) in Parkinson's disease (PD) by searching the MEDLINE/PubMed, Embase, Cochrane, and CBM databases. According to the inclusion and exclusion criteria, studies were included after excluding duplicate data. We evaluated the safety and efficacy of pharmacological intervention to improve RBD in patients with Parkinson's disease (PD-RBD). This systematic review mainly describes the drugs that can be used to treat PD-RBD patients. The results have shown that melatonin can be used as the first-line drug for PD-RBD, and clonazepam provides significant improvement on PD-RBD, androtigotine can be used as an alternative drug. However, further large-scale clinical trial studies are still needed to provide the best guidelines for the pharmacological treatment of PD-RBD.
Collapse
Affiliation(s)
- Junqiang Yan
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Anran Liu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiarui Huang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiannan Wu
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ruile Shen
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jianxue Yang
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.,School of Nursing, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
13
|
Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The Neurophysiology of Sleep in Parkinson's Disease. Mov Disord 2021; 36:1526-1542. [PMID: 33826171 DOI: 10.1002/mds.28562] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep disturbances are among the most common nonmotor complications of Parkinson's disease (PD), can present in prodromal stages, and progress with advancing disease. In addition to being a symptom of neurodegeneration, sleep disturbances may also contribute to disease progression. Currently, limited options exist to modulate sleep disturbances in PD. Studying the neurophysiological changes that affect sleep in PD at the cortical and subcortical level may yield new insights into mechanisms for reversal of sleep disruption. In this article, we review cortical and subcortical recording studies of sleep in PD with a particular focus on dissecting reported electrophysiological changes. These studies show that slow-wave sleep and rapid eye movement sleep are both notably disrupted in PD. We further explore the impact of these electrophysiological changes and discuss the potential for targeting sleep via stimulation therapy to modify PD-related motor and nonmotor symptoms. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hengameh Zahed
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | | | - Ro'ee Gilron
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Timothy Denison
- Institute of Biomedical Engineering and MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Mc Carthy CE. Sleep Disturbance, Sleep Disorders and Co-Morbidities in the Care of the Older Person. Med Sci (Basel) 2021; 9:medsci9020031. [PMID: 34063838 PMCID: PMC8162526 DOI: 10.3390/medsci9020031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Sleep complaints can be both common and complex in the older patient. Their consideration is an important aspect of holistic care, and may have an impact on quality of life, mortality, falls and disease risk. Sleep assessment should form part of the comprehensive geriatric assessment. If sleep disturbance is brought to light, consideration of sleep disorders, co-morbidity and medication management should form part of a multifaceted approach. Appreciation of the bi-directional relationship and complex interplay between co-morbidity and sleep in older patients is an important element of patient care. This article provides a brief overview of sleep disturbance and sleep disorders in older patients, in addition to their association with specific co-morbidities including depression, heart failure, respiratory disorders, gastro-oesophageal reflux disease, nocturia, pain, Parkinson's disease, dementia, polypharmacy and falls. A potential systematic multidomain approach to assessment and management is outlined, with an emphasis on non-pharmacological treatment where possible.
Collapse
Affiliation(s)
- Christine E. Mc Carthy
- Department of Geriatric Medicine, University Hospital Galway, Galway, Ireland;
- HRB-Clinical Research Facility, National University of Ireland, Galway, Co., Galway, Ireland
| |
Collapse
|
15
|
Voysey ZJ, Barker RA, Lazar AS. The Treatment of Sleep Dysfunction in Neurodegenerative Disorders. Neurotherapeutics 2021; 18:202-216. [PMID: 33179197 PMCID: PMC8116411 DOI: 10.1007/s13311-020-00959-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep dysfunction is highly prevalent across the spectrum of neurodegenerative conditions and is a key determinant of quality of life for both patients and their families. Mounting recent evidence also suggests that such dysfunction exacerbates cognitive and affective clinical features of neurodegeneration, as well as disease progression through acceleration of pathogenic processes. Effective assessment and treatment of sleep dysfunction in neurodegeneration is therefore of paramount importance; yet robust therapeutic guidelines are lacking, owing in part to a historical paucity of effective treatments and trials. Here, we review the common sleep abnormalities evident in neurodegenerative disease states and evaluate the latest evidence for traditional and emerging interventions, both pharmacological and nonpharmacological. Interventions considered include conservative measures, targeted treatments of specific clinical sleep pathologies, established sedating and alerting agents, melatonin, and orexin antagonists, as well as bright light therapy, behavioral measures, and slow-wave sleep augmentation techniques. We conclude by providing a suggested framework for treatment based on contemporary evidence and highlight areas that may emerge as major therapeutic advances in the near future.
Collapse
Affiliation(s)
- Zanna J Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
16
|
Taximaimaiti R, Luo X, Wang XP. Pharmacological and Non-pharmacological Treatments of Sleep Disorders in Parkinson's Disease. Curr Neuropharmacol 2021; 19:2233-2249. [PMID: 33998990 PMCID: PMC9185775 DOI: 10.2174/1570159x19666210517115706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep disorders are one of the most common non-motor symptoms in Parkinson's disease (PD). It can cause a notable decrease in quality of life and functioning in PD patients, as well as place a huge burden on both patients and caregivers. The most cited sleep disorders in PD included insomnia, restless legs syndrome (RLS), rapid eye movement (REM), sleep behavior disorders (RBD), excessive daytime sleepiness (EDS) and sleep disordered breathing (SDB), which can appear alone or several at the same time. In this review, we listed the recommended pharmacological treatments for common sleep disorders in PD, and discussed the recommended dosages, benefits and side effects of relative drugs. We also discussed non-pharmacological treatments to improve sleep quality, including sleep hygiene education, exercise, deep brain stimulation, cognitive behavior therapy and complementary therapies. We tried to find proper interventions for different types of sleep disorders in PD, while minimizing relative side effects.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Wang
- Address correspondence to this author at the Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail:
| |
Collapse
|
17
|
Bjerknes S, Skogseid IM, Hauge TJ, Dietrichs E, Toft M. Subthalamic deep brain stimulation improves sleep and excessive sweating in Parkinson’s disease. NPJ Parkinsons Dis 2020; 6:29. [PMID: 33083523 PMCID: PMC7560751 DOI: 10.1038/s41531-020-00131-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is a complex multisystem disorder with motor and non-motor symptoms (NMS). NMS may have an even greater impact on quality of life than motor symptoms. Subthalamic nucleus deep brain stimulation (STN-DBS) has been shown to improve motor fluctuations and quality of life, whereas the effects on different NMS have been less examined. Sleep disturbances and autonomic dysfunction are among the most prevalent NMS. We here report the efficacy of STN-DBS on sleep disturbances and autonomic dysfunction. In the parent trial, 60 patients were included in a single-center randomized prospective study, with MDS-UPDRS III and PDQ-39 as primary endpoints at 12 months of STN-DBS. Preplanned assessments at baseline and postoperatively at 3 and 12 months also included Parkinson’s Disease Sleep Scale (PDSS); Scopa-Aut; and MDS-UPDRS I, II, and IV. We found that STN-DBS had a significant and lasting positive effect on overall sleep quality, nocturnal motor symptoms and restlessness, and daytime dozing. Several aspects of autonomic dysfunction were also improved at 3 months postoperatively, although at 12 months only thermoregulation (sudomotor symptoms) remained significantly improved. We could not identify preoperative factors that predicted improvement in PDSS or Scopa-Aut. There was a close relationship between improved autonomic symptoms and improved quality of life after 1 year. NMS and especially sleep and autonomic dysfunction deserve more focus to improve patient outcomes further.
Collapse
|
18
|
Zuzuárregui JRP, During EH. Sleep Issues in Parkinson's Disease and Their Management. Neurotherapeutics 2020; 17:1480-1494. [PMID: 33029723 PMCID: PMC7851262 DOI: 10.1007/s13311-020-00938-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is an alpha-synucleinopathy that leads to prominent motor symptoms including tremor, bradykinesia, and postural instability. Nonmotor symptoms including autonomic, neurocognitive, psychiatric symptoms, and sleep disturbances are also seen frequently in PD. The impact of PD on sleep is related to motor and nonmotor symptoms, in addition to the disruption of the pathways regulating sleep by central nervous system pathology. Rapid eye movement sleep behavior disorder is a parasomnia that can lead to self-injury and/or injury to partners at night. Restless legs syndrome is a subjective sensation of discomfort and urge to move the legs prior to falling asleep and can lead to insomnia and reduced sleep quality. Excessive daytime sleepiness is common in PD and exerts a negative impact on quality of life in addition to increasing the risk of falls. Obstructive sleep apnea is a breathing disorder during sleep that can cause frequent awakenings and excessive daytime sleepiness. Circadian rhythm dysfunction can lead to an advanced or delayed onset of sleep in patients and create disruption of normal sleep and wake times. All of these disorders are common in PD and can significantly reduce sleep quantity, sleep quality, or quality of life for patients and caretakers. Treatment approaches for each of these disorders are distinct and should be individualized to the patient. We review the literature regarding these common sleep issues encountered in PD and their treatment options.
Collapse
Affiliation(s)
| | - Emmanuel H During
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
19
|
Rota S, Boura I, Batzu L, Titova N, Jenner P, Falup-Pecurariu C, Chaudhuri KR. 'Dopamine agonist Phobia' in Parkinson's disease: when does it matter? Implications for non-motor symptoms and personalized medicine. Expert Rev Neurother 2020; 20:953-965. [PMID: 32755243 DOI: 10.1080/14737175.2020.1806059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Dopamine agonists have been widely used to treat patients with Parkinson's disease, but concerns related to their well-known side effects might prevent their use even when indicated. In this review, the authors describe for the first time the concept of 'Dopamine Agonist Phobia', a pharmacophobia that the authors believe might affect clinicians, and they provide evidence of the benefits of dopamine agonists, focusing on non-motor symptoms. AREAS COVERED The authors performed an extensive literature research, including studies exploring the use of dopamine agonists for the treatment of non-motor symptoms. The authors indicate the highest level of evidence in each section. EXPERT OPINION 'Dopamine Agonist Phobia' may preclude valid therapeutic options in selected cases, specifically for the treatment of non-motor symptoms. Thus, the authors propose a personalized approach in Parkinson's disease treatment, and encourage a thoughtful use of dopamine agonists, rather than an overall nihilism.
Collapse
Affiliation(s)
- Silvia Rota
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London , London, UK.,Parkinson's Foundation Centre of Excellence, King's College Hospital , London, UK
| | - Iro Boura
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London , London, UK.,Parkinson's Foundation Centre of Excellence, King's College Hospital , London, UK
| | - Lucia Batzu
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London , London, UK.,Parkinson's Foundation Centre of Excellence, King's College Hospital , London, UK
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation , Moscow, Russia.,Department of Neurodegenerative Diseases, Federal State Budgetary Institution «federal Center of Brain and Neurotechnologies» of the Ministry of Health of the Russian Federation , Moscow, Russia
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, School of Cancer and Pharmaceutical Sciences, Faculty of Life Science and Medicine, King's College London , London, UK
| | - Cristian Falup-Pecurariu
- Department of Neurology, County Emergency Clinic Hospital, Faculty of Medicine, Transilvania University Brasov , Brasov, Romania
| | - K Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London , London, UK.,Parkinson's Foundation Centre of Excellence, King's College Hospital , London, UK
| |
Collapse
|
20
|
Park KW, Jo S, Lee SH, Hwang YS, Lee D, Ryu HS, Chung SJ. Therapeutic Effect of Levodopa/Carbidopa/Entacapone on Sleep Disturbance in Patients with Parkinson's Disease. J Mov Disord 2020; 13:205-212. [PMID: 32894900 PMCID: PMC7502296 DOI: 10.14802/jmd.20055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023] Open
Abstract
Objective To investigate the efficacy of levodopa/carbidopa/entacapone (LCE) at bedtime for treating sleep disturbance in patients with Parkinson’s disease (PD) with motor fluctuations. Methods Participants included 128 PD patients with motor fluctuations. All patients were assessed for motor, nonmotor, and sleep-specific symptoms using the United Parkinson’s Disease Rating Scale (UPDRS), the Korean version of the Nonmotor Symptom Scale, the Parkinson’s Disease Sleep Scale (PDSS), the Epworth Sleepiness Scale, and the Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ). We compared the baseline characteristics of patients with sleep disturbance (PDSS score < 120) and those without sleep disturbance (PDSS score ≥ 120). Thirty-nine patients with sleep disturbance who agreed to take LCE at bedtime completed 3-month follow-ups. We analyzed changes in the scores of motor, nonmotor, and sleep symptom scales over the 3 months. Results PD patients with sleep disturbance were at more advanced disease stages and had more severe motor, nonmotor, and sleep symptoms than those without sleep disturbance. Patients who took LCE at night showed improvements in motor (UPDRS part III, p = 0.007) and sleep symptoms (total PDSS, p < 0.001). Sleep features that benefitted from LCE included not only nocturnal motor components but also insomnia (PDSS items 2 and 3, p = 0.005 and p < 0.001) and rapid eye movement behavior disorder (PDSS item 6, p = 0.002; and RBDSQ, p < 0.001). Conclusion The use of LCE at bedtime may be a useful treatment for sleep disturbance in advanced PD patients with motor fluctuations.
Collapse
Affiliation(s)
- Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dagyo Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Sung Ryu
- Department of Neurology, Kyungpook National University Hospital, Daegu, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, Li T, Zhang J, Wing YK, Shi J, Lu L, Tang X. Sleep in Parkinson's disease: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 2020; 51:101281. [PMID: 32135452 DOI: 10.1016/j.smrv.2020.101281] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies have been conducted to explore sleep changes in Parkinson's disease (PD), but the relationships between sleep disturbances and PD are imperfectly understood. We conducted a systematic review of the literature exploring polysomnographic differences between PD patients and controls in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycIFNO. 67 studies were identified for systematic review, 63 of which were used for meta-analysis. Meta-analyses revealed significant reductions in total sleep time, sleep efficiency, N2 percentage, slow wave sleep, rapid eye movement sleep (REM) percentage, and increases in wake time after sleep onset, N1 percentage, REM latency, apnea hypopnea index, and periodic limb movement index in PD patients compared with controls. There were no remarkable differences in sleep continuity or sleep architecture between PD patients with and without REM sleep behavior disorder (RBD). Our study suggests that PD patients have poor sleep quality and quantity. Sex, age, disease duration, presence of RBD, medication status, cognitive impairment, and adaptation night are factors that contributed to heterogeneity between studies.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tan
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jihui Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yun-Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Wallace DM, Wohlgemuth WK, Trotti LM, Amara AW, Malaty IA, Factor SA, Nallu S, Wittine L, Hauser RA. Practical Evaluation and Management of Insomnia in Parkinson's Disease: A Review. Mov Disord Clin Pract 2020; 7:250-266. [PMID: 32258222 PMCID: PMC7111581 DOI: 10.1002/mdc3.12899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Insomnia is one of the most common nonmotor features of Parkinson's disease (PD). However, there are few practical guidelines for providers on how to best evaluate and treat this problem. Methods and Findings This review was developed to provide clinicians with a pragmatic approach to assessing and managing insomnia in PD. Recommendations were based on literature review and expert opinion. We addressed the following topics in this review: prevalence of insomnia in PD, sleep-wake mechanisms, theoretical models of insomnia, risk factors, assessment, pharmacologic and nonpharmacologic treatments. Insomnia treatment choices may be guided by PD severity, comorbidities, and patient preference. However, there is limited evidence supporting pharmacotherapy and nonpharmacologic treatments of insomnia in PD. Conclusions We provide a pragmatic algorithm for evaluating and treating insomnia in PD based on the literature and our clinical experience. We propose personalized insomnia treatment approaches based on age and other issues. Gaps in the existing literature and future directions in the treatment of insomnia in PD are also highlighted.
Collapse
Affiliation(s)
- Douglas M Wallace
- Department of Neurology, Sleep Medicine Division University of Miami Miller School of Medicine Miami FL USA.,Neurology Service Bruce W. Carter Department of Veterans Affairs Medical Center Miami FL USA
| | - William K Wohlgemuth
- Neurology Service Bruce W. Carter Department of Veterans Affairs Medical Center Miami FL USA.,Psychology Service Bruce W. Carter Department of Veterans Affairs Medical Center Miami FL USA
| | - Lynn Marie Trotti
- Department of Neurology and Emory Sleep Center Emory University School of Medicine Atlanta GA USA
| | - Amy W Amara
- Department of Neurology University of Alabama at Birmingham School of Medicine Birmingham AL USA
| | - Irene A Malaty
- Department of Neurology, Fixel Institute University of Florida Gainesville FL USA
| | - Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Center Emory University School of Medicine Atlanta GA USA
| | - Sagarika Nallu
- Department of Pediatrics, Morsani College of Medicine University of South Florida Tampa FL USA
| | - Lara Wittine
- Department of Medicine, Morsani College of Medicine University of South Florida Tampa FL USA
| | - Robert A Hauser
- Department of Neurology, Morsani College of Medicine University of South Florida Tampa FL USA
| |
Collapse
|
23
|
Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, Weintraub D, Sampaio C. Update on treatments for nonmotor symptoms of Parkinson's disease-an evidence-based medicine review. Mov Disord 2019; 34:180-198. [PMID: 30653247 PMCID: PMC6916382 DOI: 10.1002/mds.27602] [Citation(s) in RCA: 577] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To update evidence-based medicine recommendations for treating nonmotor symptoms in Parkinson's disease (PD). BACKGROUND The International Parkinson and Movement Disorder Society Evidence-Based Medicine Committee's recommendations for treatments of PD were first published in 2002, updated in 2011, and now updated again through December 31, 2016. METHODS Level I studies testing pharmacological, surgical, or nonpharmacological interventions for the treatment of nonmotor symptoms in PD were reviewed. Criteria for inclusion and quality scoring were as previously reported. The disorders covered were a range of neuropsychiatric symptoms, autonomic dysfunction, disorders of sleep and wakefulness, pain, fatigue, impaired olfaction, and ophthalmologic dysfunction. Clinical efficacy, implications for clinical practice, and safety conclusions are reported. RESULTS A total of 37 new studies qualified for review. There were no randomized controlled trials that met inclusion criteria for the treatment of anxiety disorders, rapid eye movement sleep behavior disorder, excessive sweating, impaired olfaction, or ophthalmologic dysfunction. We identified clinically useful or possibly useful interventions for the treatment of depression, apathy, impulse control and related disorders, dementia, psychosis, insomnia, daytime sleepiness, drooling, orthostatic hypotension, gastrointestinal dysfunction, urinary dysfunction, erectile dysfunction, fatigue, and pain. There were no clinically useful interventions identified to treat non-dementia-level cognitive impairment. CONCLUSIONS The evidence base for treating a range of nonmotor symptoms in PD has grown substantially in recent years. However, treatment options overall remain limited given the high prevalence and adverse impact of these disorders, so the development and testing of new treatments for nonmotor symptoms in PD remains a top priority. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College and Parkinson Foundation International Centre of Excellence at King's College Hospital, Denmark Hill, London, United Kingdom
| | - Miguel Coelho
- Serviço de Neurologia, Hospital Santa Maria Instituto de Medicina Molecular Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Susan H Fox
- Edmond J Safra Program in Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, and the University of Toronto Department of Medicine, Toronto, Ontario, Canada
| | - Regina Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Danube Hospital, Vienna, Austria
| | - Santiago Perez Lloret
- Institute of Cardiology Research, University of Buenos Aires, National Research Council, Buenos Aires, Argentina
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Cristina Sampaio
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
- Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
24
|
Abbott SM, Malkani RG, Zee PC. Circadian disruption and human health: A bidirectional relationship. Eur J Neurosci 2019; 51:567-583. [PMID: 30549337 DOI: 10.1111/ejn.14298] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythm disorders have been classically associated with disorders of abnormal timing of the sleep-wake cycle, however circadian dysfunction can play a role in a wide range of pathology, ranging from the increased risk for cardiometabolic disease and malignancy in shift workers, prompting the need for a new field focused on the larger concept of circadian medicine. The relationship between circadian disruption and human health is bidirectional, with changes in circadian amplitude often preceding the classical symptoms of neurodegenerative disorders. As our understanding of the importance of circadian dysfunction in disease grows, we need to develop better clinical techniques for identifying circadian rhythms and also develop circadian based strategies for disease management. Overall this review highlights the need to bring the concept of time to all aspects of medicine, emphasizing circadian medicine as a prime example of both personalized and precision medicine.
Collapse
Affiliation(s)
- Sabra M Abbott
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Roneil G Malkani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
25
|
Liu CF, Wang T, Zhan SQ, Geng DQ, Wang J, Liu J, Shang HF, Wang LJ, Chan P, Chen HB, Chen SD, Wang YP, Zhao ZX, Chaudhuri KR. Management Recommendations on Sleep Disturbance of Patients with Parkinson's Disease. Chin Med J (Engl) 2018; 131:2976-2985. [PMID: 30539911 PMCID: PMC6302643 DOI: 10.4103/0366-6999.247210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 02/05/2023] Open
Affiliation(s)
- Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215004, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shu-Qin Zhan
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Juan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Piu Chan
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Yu-Ping Wang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhong-Xin Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - K Ray Chaudhuri
- National Parkinson Foundation Centre of Excellence and The Maurice Wohl Clinical Neuroscience Institute, King's College London and King's College Hospital, London WC2R 2LS, UK
| |
Collapse
|
26
|
Koo DL, Lee JY, Nam H. Difference in severity of sleep apnea in patients with rapid eye movement sleep behavior disorder with or without parkinsonism. Sleep Med 2018; 49:99-104. [PMID: 30093262 DOI: 10.1016/j.sleep.2018.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) is a common sleep disturbance in patients with neurodegenerative disorders. We aimed to compare sleep parameters among the different types of RBD patients. METHODS A total of 122 patients with dream enactment behavior were screened. Of these, 92 patients who were diagnosed with RBD by polysomnography were included in this study. Enrolled patients with RBD were classified into four groups based on the following diagnoses: idiopathic RBD (iRBD); RBD with Parkinson disease (PD-RBD); multiple system atrophy (MSA) with RBD (MSA-RBD); and dementia with Lewy bodies (DLB) with RBD (DLB-RBD). Various clinical and polysomnographic parameters were compared. RESULTS Among the 92 patients with RBD, 35 had iRBD, 25 had PD-RBD, 17 had MSA-RBD, and 15 had DLB-RBD. The mean apnea-hypopnea index of atypical parkinsonism with RBD (AP-RBD) group was 16.2 ± 17.7 events/h (MSA-RBD, 14.0 ± 16.6; DLB-RBD, 18.8 ± 19.1), which was significantly higher than the other groups (p < 0.05). The proportion of patients with 100% supine sleep in the AP-RBD group (44%) was higher than that in the iRBD group (14%; p = 0.030). The proportion of OSA with 100% supine sleep position was significantly higher in the MSA-RBD and DLB-RBD groups than in the iRBD group (p = 0.042 and p = 0.029, respectively). CONCLUSION Our study demonstrated that patients in the MSA-RBD and DLB-RBD groups had a tendency to sleeping in the supine position and a higher vulnerability to OSA compared to other RBD groups. Further cohort studies are needed to evaluate the influence of these factors on the development of parkinsonism.
Collapse
Affiliation(s)
- Dae Lim Koo
- Department of Neurology, Seoul National University Boramae Hospital, Seoul, South Korea
| | - Jee Young Lee
- Department of Neurology, Seoul National University Boramae Hospital, Seoul, South Korea
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University Boramae Hospital, Seoul, South Korea.
| |
Collapse
|
27
|
Xue F, Wang FY, Mao CJ, Guo SP, Chen J, Li J, Wang QJ, Bei HZ, Yu Q, Liu CF. Analysis of nocturnal hypokinesia and sleep quality in Parkinson's disease. J Clin Neurosci 2018; 54:96-101. [PMID: 29908717 DOI: 10.1016/j.jocn.2018.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
Nocturnal hypokinesia/akinesia and sleep disorder are believed to be common in Parkinson's disease (PD), but are often underestimated. To date, only a few studies have focused on nocturnal symptoms related to motor function and sleep quality in PD patients, and the assessments were based mainly on the subjective descriptions of the patients. In this study, we assessed the relationships between motor symptoms and sleep quality in 29 PD patients (17 PD patients reporting impaired bed mobility (IBM) and 12 patients without IBM). All the participants were monitored using multisite inertial sensors and polysomnography in sleep-monitoring rooms for whole night. Compared with PD-IBM patients, PD+IBM patients tended to have fewer turning-over episodes and smaller degree turns. Meanwhile, PD+IBM patients had worse Pittsburgh Sleep Quality Index (PSQI) and Parkinson's Disease Sleep Scale (PDSS) scores, and less total sleep time (TST) than PD-IBM patients. Spearman correlation analyses found that the number of turning-over events showed negative correlations with disease duration (r = -0.378, P < 0.05) and Unified Parkinson's Disease Rating Scale (UPDRS) axial scores (r = -0.370, P < 0.05). Moreover, TST (r = 0.505, p < 0.05) and sleep efficiency (SE) (r = 0.473, p < 0.05) positively correlated with the number of turns in bed. Multivariate linear regression analyses showed that UPDRS axial scores and the number of turns were significantly associated with TST (both p < 0.05). In conclusion, the number of turns in bed and UPDRS axial scores were two significant factors affecting sleep quality. Multisite inertial sensors can be used to quantitatively evaluate nocturnal motor functions in PD patients.
Collapse
Affiliation(s)
- Fei Xue
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Emergency Department, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi 214400, China
| | - Fu-Yu Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Si-Ping Guo
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jie Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qiao-Jun Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hong-Zhe Bei
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qian Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
28
|
Mantovani S, Smith SS, Gordon R, O'Sullivan JD. An overview of sleep and circadian dysfunction in Parkinson's disease. J Sleep Res 2018; 27:e12673. [PMID: 29493044 DOI: 10.1111/jsr.12673] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/18/2022]
Abstract
Sleep and circadian alterations are amongst the very first symptoms experienced in Parkinson's disease, and sleep alterations are present in the majority of patients with overt clinical manifestation of Parkinson's disease. However, the magnitude of sleep and circadian dysfunction in Parkinson's disease, and its influence on the pathophysiology of Parkinson's disease remains often unclear and a matter of debate. In particular, the confounding influences of dopaminergic therapy on sleep and circadian dysfunction are a major challenge, and need to be more carefully addressed in clinical studies. The scope of this narrative review is to summarise the current knowledge around both sleep and circadian alterations in Parkinson's disease. We provide an overview on the frequency of excessive daytime sleepiness, insomnia, restless legs, obstructive apnea and nocturia in Parkinson's disease, as well as addressing sleep structure, rapid eye movement sleep behaviour disorder and circadian features in Parkinson's disease. Sleep and circadian disorders have been linked to pathological conditions that are often co-morbid in Parkinson's disease, including cognitive decline, memory impairment and neurodegeneration. Therefore, targeting sleep and circadian alterations could be one of the earliest and most promising opportunities to slow disease progression. We hope that this review will contribute to advance the discussion and inform new research efforts to progress our knowledge in this field.
Collapse
Affiliation(s)
- Susanna Mantovani
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Simon S Smith
- Institute for Social Science Research (ISSR), The University of Queensland, Indooroopilly, Australia
| | - Richard Gordon
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia
| | - John D O'Sullivan
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| |
Collapse
|
29
|
Chahine LM, Amara AW, Videnovic A. A systematic review of the literature on disorders of sleep and wakefulness in Parkinson's disease from 2005 to 2015. Sleep Med Rev 2017; 35:33-50. [PMID: 27863901 PMCID: PMC5332351 DOI: 10.1016/j.smrv.2016.08.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
Sleep disorders are among the most common non-motor manifestations in Parkinson's disease (PD) and have a significant negative impact on quality of life. While sleep disorders in PD share most characteristics with those that occur in the general population, there are several considerations specific to this patient population regarding diagnosis, management, and implications. The available research on these disorders is expanding rapidly, but many questions remain unanswered. We thus conducted a systematic review of the literature published from 2005 to 2015 on the following disorders of sleep and wakefulness in PD: REM sleep behavior disorder, insomnia, nocturia, restless legs syndrome and periodic limb movements, sleep disordered breathing, excessive daytime sleepiness, and circadian rhythm disorders. We discuss the epidemiology, etiology, clinical implications, associated features, evaluation measures, and management of these disorders. The influence on sleep of medications used in the treatment of motor and non-motor symptoms of PD is detailed. Additionally, we suggest areas in need of further research.
Collapse
Affiliation(s)
- Lama M Chahine
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 330 S. 9th st, Philadelphia, PA 19107, USA.
| | - Amy W Amara
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aleksandar Videnovic
- Neurobiological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Abstract
Purpose of review Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Recent findings Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. Summary We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.
Collapse
|
31
|
Kim R, Jeon B. Nonmotor Effects of Conventional and Transdermal Dopaminergic Therapies in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:989-1018. [PMID: 28805592 DOI: 10.1016/bs.irn.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nonmotor symptoms (NMS) are an integral component of Parkinson's disease (PD). Because the burden and range of NMS are key determinants of quality of life for patients and caregivers, their management is a crucial issue in clinical practice. Although a range of NMS have a dopaminergic pathophysiological basis, this fact is underrecognized, and thus, they are often regarded as dopamine unresponsive symptoms. However, substantial evidence indicates that many NMS respond to oral and transdermal dopaminergic therapies. In contrast, certain NMS are exacerbated or even precipitated by dopaminergic drugs and these unwanted effects may be seriously dangerous. Therefore, a dopaminergic strategy for NMS should be based on a consideration of the benefits vs the risks in individual patients with PD.
Collapse
Affiliation(s)
- Ryul Kim
- Seoul National University, College of Medicine, Seoul, South Korea
| | - Beomseok Jeon
- Seoul National University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
32
|
Loddo G, Calandra-Buonaura G, Sambati L, Giannini G, Cecere A, Cortelli P, Provini F. The Treatment of Sleep Disorders in Parkinson's Disease: From Research to Clinical Practice. Front Neurol 2017; 8:42. [PMID: 28261151 PMCID: PMC5311042 DOI: 10.3389/fneur.2017.00042] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Sleep disorders (SDs) are one of the most frequent non-motor symptoms of Parkinson’s disease (PD), usually increasing in frequency over the course of the disease and disability progression. SDs include nocturnal and diurnal manifestations such as insomnia, REM sleep behavior disorder, and excessive daytime sleepiness. The causes of SDs in PD are numerous, including the neurodegeneration process itself, which can disrupt the networks regulating the sleep–wake cycle and deplete a large number of cerebral amines possibly playing a role in the initiation and maintenance of sleep. Despite the significant prevalence of SDs in PD patients, few clinical trials on SDs treatment have been conducted. Our aim is to critically review the principal therapeutic options for the most common SDs in PD. The appropriate diagnosis and treatment of SDs in PD can lead to the consolidation of nocturnal sleep, the enhancement of daytime alertness, and the amelioration of the quality of life of the patients.
Collapse
Affiliation(s)
- Giuseppe Loddo
- Department of Biomedical and Neuromotor Sciences, University of Bologna , Bologna , Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Annagrazia Cecere
- Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna , Bologna , Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Bellaria Hospital, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
34
|
Gulyani S, Salas R, Mari Z, Choi S, Mahajan A, Gamaldo C. Evaluating and Managing Sleep Disorders in the Parkinson's Disease Clinic. ACTA ACUST UNITED AC 2016; 6:165-172. [PMID: 27818912 DOI: 10.1016/j.baga.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a multi-systems neurodegenerative disorder that is characterized by a combination of motor and non-motor symptoms. Non-motor symptoms of Parkinson's disease comprise a variety of cognitive, neuropsychiatric, autonomic, sensory, and sleep complaints. Although sleep disruption represents one of the most common non-motor symptom complaints among Parkinson's disease patients, recommendations regarding effective evaluation and management strategies for this specific population remain limited. This review gives an evidence based summary of the available treatment options and management strategies for the sleep complaints commonly encountered by patients with Parkinson's disease.
Collapse
Affiliation(s)
- S Gulyani
- Human Neurosciences Unit/National Institutes on Aging/NIH. Baltimore, MD
| | - R Salas
- Johns Hopkins University, School of Medicine, Department of Neurology
| | - Z Mari
- Johns Hopkins University, School of Medicine, Department of Neurology
| | - S Choi
- Johns Hopkins University, School of Medicine, Department of Neurology
| | | | - C Gamaldo
- Johns Hopkins University, School of Medicine, Department of Neurology
| |
Collapse
|
35
|
Belaid H, Adrien J, Karachi C, Hirsch EC, François C. Effect of melatonin on sleep disorders in a monkey model of Parkinson's disease. Sleep Med 2015; 16:1245-51. [PMID: 26429753 DOI: 10.1016/j.sleep.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/21/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate and compare the effects of melatonin and levodopa (L-dopa) on sleep disorders in a monkey model of Parkinson's disease. MATERIALS AND METHODS The daytime and nighttime sleep patterns of four macaques that were rendered parkinsonian by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were recorded using polysomnography in four conditions: at baseline, during the parkinsonian condition; after administration of L-dopa, and after administration of a combination of melatonin with L-dopa. RESULTS It was confirmed that MPTP intoxication induces sleep disorders, with sleep episodes during daytime and sleep fragmentation at nighttime. L-dopa treatment significantly reduced the awake time during the night and tended to improve all other sleep parameters, albeit not significantly. In comparison to the parkinsonian condition, combined treatment with melatonin and L-dopa significantly increased total sleep time and sleep efficiency, and reduced the time spent awake during the night in all animals. A significant decrease in sleep latencies was also observed in three out of four animals. Compared with L-dopa alone, combined treatment with melatonin and L-dopa significantly improved all these sleep parameters in two animals. On the other hand, combined treatment had no effect on sleep architecture and daytime sleep. CONCLUSION These data demonstrated, for the first time, objective improvement on sleep parameters of melatonin treatment in MPTP-intoxicated monkeys, showing that melatonin treatment has a real therapeutic potential to treat sleep disturbances in people with Parkinson's disease.
Collapse
Affiliation(s)
- Hayat Belaid
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Joelle Adrien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Etienne C Hirsch
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, ICM, F-75013 Paris, France
| | - Chantal François
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, ICM, F-75013 Paris, France.
| |
Collapse
|
36
|
Latreille V, Carrier J, Lafortune M, Postuma RB, Bertrand JA, Panisset M, Chouinard S, Gagnon JF. Sleep spindles in Parkinson's disease may predict the development of dementia. Neurobiol Aging 2014; 36:1083-90. [PMID: 25442116 DOI: 10.1016/j.neurobiolaging.2014.09.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 11/28/2022]
Abstract
Sleep disturbances and cognitive impairment are common non-motor manifestations of Parkinson's disease (PD). Recent studies suggest that sleep spindles and slow waves play a role in brain plasticity mechanisms and are associated with cognitive performance. However, it remains unknown whether these sleep parameters could serve as markers of cognitive decline in PD. Therefore, we examined whether alterations in sleep spindles and slow waves at baseline visit were associated with increased likelihood of developing dementia at follow-up in PD. Sixty-eight nondemented PD patients (64.9 ± 8.8 years old; 46 men) participated in the study, along with 47 healthy individuals (65.0 ± 10.6 years old; 30 men). All participants underwent baseline polysomnographic recording and a comprehensive neuropsychological assessment. Sleep spindles (12-15 Hz) and slow waves (>75 μV and <4 Hz) were automatically detected on all-night non-rapid eye movement sleep electroencephalography. At follow-up (mean: 4.5 years later), 18 PD patients developed dementia (70.2 ± 7.6 years old; 13 men) and 50 remained dementia-free (63.0 ± 8.5 years old; 33 men). Sleep spindle density and amplitude were lower in PD patients who converted to dementia compared with both patients who remained dementia-free and controls, mostly in posterior cortical regions (p < 0.05). Dementia-free PD patients were intermediate between dementia patients and controls, with lower baseline sleep spindle density in all cortical areas compared with controls (p < 0.01). In demented PD patients, lower sleep spindle amplitude in parietal and occipital areas was associated with poorer visuospatial abilities. Although slow wave amplitude was lower in PD patients compared with controls (p < 0.0001), no difference was observed between those who developed or did not develop dementia. Results demonstrate non-rapid eye movement sleep electroencephalographic abnormalities in PD patients. Sleep spindle activity was particularly impaired in PD patients who developed dementia, with a more posterior topographic pattern. Sleep spindle alterations are associated with later development of dementia in PD, and thus may serve as an additional marker of cognitive decline in these patients.
Collapse
Affiliation(s)
- Véronique Latreille
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Marjolaine Lafortune
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Josie-Anne Bertrand
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Michel Panisset
- Unité des troubles du mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chouinard
- Unité des troubles du mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
37
|
Sleep disorders in Parkinsonian macaques: effects of L-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 2014; 34:9124-33. [PMID: 24990932 DOI: 10.1523/jneurosci.0181-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with Parkinson's disease (PD) display significant sleep disturbances and daytime sleepiness. Dopaminergic treatment dramatically improves PD motor symptoms, but its action on sleep remains controversial, suggesting a causal role of nondopaminergic lesions in these symptoms. Because the pedunculopontine nucleus (PPN) regulates sleep and arousal, and in view of the loss of its cholinergic neurons in PD, the PPN could be involved in these sleep disorders. The aims of this study were as follows: (1) to characterize sleep disorders in a monkey model of PD; (2) to investigate whether l-dopa treatment alleviates sleep disorders; and (3) to determine whether a cholinergic PPN lesion would add specific sleep alterations. To this end, long-term continuous electroencephalographic monitoring of vigilance states was performed in macaques, using an implanted miniaturized telemetry device. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment induced sleep disorders that comprised sleep episodes during daytime and sleep fragmentation and a reduction of sleep efficiency at nighttime. It also induced a reduction in time spent in rapid eye movement (REM) sleep and slow-wave sleep and an increase in muscle tone during REM and non-REM sleep episodes and in the number of awakenings and movements. l-Dopa treatment resulted in a partial but significant improvement of almost all sleep parameters. PPN lesion induced a transient decrease in REM sleep and in slow-wave sleep followed by a slight improvement of sleep quality. Our data demonstrate the efficacy of l-dopa treatment in improving sleep disorders in parkinsonian monkeys, and that adding a cholinergic PPN lesion improves sleep quality after transient sleep impairment.
Collapse
|
38
|
Stocchi F, Stirpe P. The relevance of dopaminergic level in nocturnal disability in Parkinson's disease: implications of continuous dopaminergic stimulation at night to treat the symptoms. J Neural Transm (Vienna) 2014; 121 Suppl 1:S79-83. [PMID: 24990308 DOI: 10.1007/s00702-014-1259-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/08/2014] [Indexed: 11/30/2022]
Abstract
Sleep problems are an under-emphasized cause of disability in Parkinson's disease (PD). Difficult sleep maintenance (light and fragmented sleep) and difficulties in initiating sleep are often the earliest and the most frequent symptoms observed in PD patients. In fluctuating patients, nocturnal akinesia, dystonia, painful cramps, and parasomnias may aggravate nocturnal problems. Treatment of sleep problems can be complex and challenging for the physicians. Dopaminergic treatment may improve some of the nocturnal symptoms in PD. In this paper, the effect of drugs and technique that ensure a more continuous delivery of dopaminergic drugs on sleep problems in PD is reviewed.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Institute for Research and Medical Care IRCCS San Raffaele, Via della Pisana 235, 00163, Rome, Italy,
| | | |
Collapse
|
39
|
Abstract
Sleep disorders are common in patients with Parkinson's disease (PD), and preliminary work has suggested viable treatment options for many of these disorders. For rapid eye movement sleep behavior disorder, melatonin and clonazepam are most commonly used, while rivastigmine might be a useful option in patients whose behaviors are refractory to the former. Optimal treatments for insomnia in PD have yet to be determined, but preliminary evidence suggests that cognitive-behavioral therapy, light therapy, eszopiclone, donepezil, and melatonin might be beneficial. Use of the wake-promoting agent modafinil results in significant improvement in subjective measures of excessive daytime sleepiness, but not of fatigue. Optimal treatment of restless legs syndrome and obstructive sleep apnea in PD are not yet established, although a trial of continuous positive airway pressure for sleep apnea was recently completed in PD patients. In those patients with early morning motor dysfunction and disrupted sleep, the rotigotine patch provides significant benefit.
Collapse
Affiliation(s)
- Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA, 30329, USA,
| | | |
Collapse
|
40
|
Chahine LM, Daley J, Horn S, Duda JE, Colcher A, Hurtig H, Cantor C, Dahodwala N. Association between dopaminergic medications and nocturnal sleep in early-stage Parkinson's disease. Parkinsonism Relat Disord 2013; 19:859-63. [PMID: 23751512 DOI: 10.1016/j.parkreldis.2013.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/20/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Poor nocturnal sleep is common in Parkinson's disease (PD) and negatively impacts quality of life. There is little data on how dopaminergic drugs influence nocturnal sleep in PD, particularly in relation to medication timing. We examined the association between dopaminergic medications and subjective and objective nocturnal sleep in PD. METHODS Individuals with PD were recruited from the outpatient clinic. Demographics and disease information were collected. Patients underwent one-night polysomnography and responded to SCOPA-SLEEP, a self-administered questionnaire which includes a section on nighttime sleep and an overall measure of sleep quality; higher scores indicate worse sleep. Medication intake, including medication timing in relation to bedtime, was obtained and converted to levodopa equivalents. RESULTS 41 Males and 21 females, median age 63.9 years, participated. Median disease duration was 5 years. After adjusting for age, sex, disease severity, and disease duration, greater total levodopa equivalent intake within 4 h of sleep was associated with higher total SCOPA-nighttime score (p = 0.009) and greater wake time after sleep onset (p = 0.049). Greater dopaminergic medication intake prior to sleep was also associated with less rapid eye movement (REM) sleep as a percent of total sleep time (p = 0.004). CONCLUSIONS Higher amounts of dopaminergic medications taken prior to sleep were associated with poor sleep quality and less REM sleep. Although poor nocturnal sleep in PD is likely multi-factorial in etiology, our findings suggest that timing and dose of medications prior to sleep need to be considered in its management.
Collapse
Affiliation(s)
- Lama M Chahine
- Department of Neurology, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Negative influence of L-dopa on subjectively assessed sleep but not on nocturnal polysomnography in Parkinson's disease. Pharmacol Rep 2013; 65:614-23. [DOI: 10.1016/s1734-1140(13)71038-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 03/09/2013] [Indexed: 11/22/2022]
|
42
|
Willison LD, Kudo T, Loh DH, Kuljis D, Colwell CS. Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson's disease: insights from a transgenic mouse model. Exp Neurol 2013; 243:57-66. [PMID: 23353924 PMCID: PMC3994881 DOI: 10.1016/j.expneurol.2013.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/20/2012] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
Sleep disorders are nearly ubiquitous among patients with Parkinson's disease (PD), and they manifest early in the disease process. While there are a number of possible mechanisms underlying these sleep disturbances, a primary dysfunction of the circadian system should be considered as a contributing factor. Our laboratory's behavioral phenotyping of a well-validated transgenic mouse model of PD reveals that the electrical activity of neurons within the master pacemaker of the circadian system, the suprachiasmatic nuclei (SCN), is already disrupted at the onset of motor symptoms, although the core features of the intrinsic molecular oscillations in the SCN remain functional. Our observations suggest that the fundamental circadian deficit in these mice lies in the signaling output from the SCN, which may be caused by known mechanisms in PD etiology: oxidative stress and mitochondrial disruption. Disruption of the circadian system is expected to have pervasive effects throughout the body and may itself lead to neurological and cardiovascular disorders. In fact, there is much overlap in the non-motor symptoms experienced by PD patients and in the consequences of circadian disruption. This raises the possibility that the sleep and circadian dysfunction experienced by PD patients may not merely be a subsidiary of the motor symptoms, but an integral part of the disease. Furthermore, we speculate that circadian dysfunction can even accelerate the pathology underlying PD. If these hypotheses are correct, more aggressive treatment of the circadian misalignment and sleep disruptions in PD patients early in the pathogenesis of the disease may be powerful positive modulators of disease progression and patient quality of life.
Collapse
Affiliation(s)
- L David Willison
- Division of Child and Adolescent Psychiatry, Laboratory of Circadian and Sleep Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Peeraully T, Yong MH, Chokroverty S, Tan EK. Sleep and Parkinson's disease: a review of case-control polysomnography studies. Mov Disord 2012; 27:1729-37. [PMID: 23115083 DOI: 10.1002/mds.25197] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 11/12/2022] Open
Abstract
The link between Parkinson's disease (PD) and certain primary sleep disorders has yet to be clarified. We performed a systematic review of case-control polysomnography studies to evaluate the relationship between PD and sleep disorders. A PubMed literature search and bibliography review yielded 15 case-control polysomnography studies in patients with PD. Studies differed by recruitment methods, duration of polysomnography monitoring, and sleep parameters measured. Subjective sleepiness was greater in patients than controls (50%-66% vs 2.9%-12%) despite lack of objective increase in daytime sleepiness by mean sleep latency testing. The 4 case-control polysomnography studies investigating rapid eye movement behavior disorder support a higher prevalence in PD (0%-47% vs 0%-1.8% in controls), although differences in diagnostic criteria hamper interpretation. The preponderance of evidence did not support an increased incidence of obstructive sleep apnea (27%-60% vs 13%-65%) or periodic leg movements of sleep in patients compared to controls. Adequately powered, prospective studies with uniform methodology and healthy controls are needed to further address the association and pathophysiological significance between PD and sleep problems.
Collapse
Affiliation(s)
- Tasneem Peeraully
- National Neuroscience Institute, Department of Neurology, Singapore General Hospital, Singapore, Singapore
| | | | | | | |
Collapse
|
45
|
|
46
|
Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C. Age, drugs, or disease: what alters the macrostructure of sleep in Parkinson's disease? Sleep Med 2012; 13:1178-83. [PMID: 22841842 DOI: 10.1016/j.sleep.2012.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe the alterations in the macrostructure of sleep in a large cohort of sleep-disturbed patients with Parkinson's disease (PD) and investigate influencing factors. METHODS A cohort of sleep-disturbed but otherwise unselected PD patients (n=351) was investigated with video-supported polysomnography. We analyzed the influence of age, disease duration, disease severity, and dopaminergic medication on subjective sleep perception, sleep efficiency, the amount of slow wave sleep, awakenings, periodic leg movements in sleep (PLMS), and REM sleep behavior disorder (RBD). RESULTS Sleep efficiency and slow wave sleep decreased with age (p=0.003 and p=0.041, respectively). The number of awakenings and the frequency of RBD increased with age (p=0.028 and p=0.006, respectively). Higher Hoehn & Yahr stages were associated with more PLMS (p=0.017). A higher daily dose of levodopa corresponded to more RBD (p<0.001). Neither disease duration nor levodopa dosage had any influence on sleep efficiency, slow wave sleep, awakenings, or PLMS. Dopamine agonists increased awakenings (p<0.001) and lowered PLMS (p<0.001). Subjective sleep perception was not influenced by any of the factors analyzed. The only path model that could be replicated identified disease severity and dopamine agonists as interdependent factors influencing awakenings and PLMS. CONCLUSION Age leads to less sleep and a higher risk for RBD, and disease severity increases motor phenomena such as PLMS; dopamine agonists reduce PLMS but increase awakenings. No single factor analyzed influenced subjective sleep perception in this cohort of sleep disturbed PD patients.
Collapse
|
47
|
Diederich NJ, McIntyre DJ. Sleep disorders in Parkinson's disease: Many causes, few therapeutic options. J Neurol Sci 2012; 314:12-9. [DOI: 10.1016/j.jns.2011.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/20/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
48
|
Yong MH, Fook-Chong S, Pavanni R, Lim LL, Tan EK. Case control polysomnographic studies of sleep disorders in Parkinson's disease. PLoS One 2011; 6:e22511. [PMID: 21799880 PMCID: PMC3142152 DOI: 10.1371/journal.pone.0022511] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/23/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The relationship between a number of primary sleep disorders and Parkinson's disease (PD) is still debated. There are limited case control polysomnographic studies in PD and most of these study sample sizes are small. METHODOLOGY/FINDINGS We conducted one of the largest case-control studies involving overnight polysomnographic evaluation, with prospective recruitment of unselected Parkinson's disease patients and healthy controls from an Asian population. The cases were recruited from the specialized movement disorder outpatient clinics in a tertiary referral center, and controls from the same geographical locations. All subjects underwent an overnight polysomnographic study and a multiple sleep latency test. A total of 124 subjects including 56 patients and 68 controls frequency-matched for age and sex were included. Multivariate analysis revealed that patients had significantly shorter total sleep time than controls (p = 0.01), lower sleep efficiency (p = 0.001) and increased REM latency (p = 0.007). In patients, multivariate analysis showed that reduced total sleep time was significantly associated with increased age (p = 0.001) and increased levodopa dose (p = 0.032). The mean Insomnia Severity Index was higher in PD patients (9.0±7.1) compared to controls (3.3±3.9, p<0.001). The mean Epworth Sleepiness Scale score was higher in PD patients (9.3±5.9 vs. 5.7±4.8, p<0.001). Nocturnal arousals, obstructive sleep apnea, periodic leg movements and objective abnormal sleepiness were not increased in our patients. CONCLUSIONS/SIGNIFICANCE Our case-control polysomnographic study, the first-ever performed in an Asian population, revealed altered sleep architecture and reduced sleep in PD patients compared to controls. Reduced total sleep time was associated with increased age and levodopa dose. However, nocturnal arousals, primary sleep disorders and abnormal sleepiness were not increased in our PD patients suggesting that ethnic/genetic differences may be a factor in the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Ming-Hui Yong
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | | | - Ratnagopal Pavanni
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Li-Ling Lim
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|