1
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
2
|
Dwivedi M, Laddha NC, Begum R. The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:61-103. [PMID: 35286692 DOI: 10.1007/978-3-030-92616-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitiligo is a hypomelanotic skin disease and considered to be of autoimmune origin due to breaching of immunological self-tolerance, resulting in inappropriate immune responses against melanocytes. The development of vitiligo includes a strong heritable component. Different strategies ranging from linkage studies to genome-wide association studies are used to explore the genetic factors responsible for the disease. Several vitiligo loci containing the respective genes have been identified which contribute to vitiligo and genetic variants for some of the genes are still unknown. These genes include mainly the proteins that play a role in immune regulation and a few other genes important for apoptosis and regulation of melanocyte functions. Despite the available data on genetic variants and risk alleles which influence the biological processes, only few immunological pathways have been found responsible for all ranges of severity and clinical manifestations of vitiligo. However, studies have concluded that vitiligo is of autoimmune origin and manifests due to complex interactions in immune components and their inappropriate response toward melanocytes. The genes involved in the immune regulation and processing the melanocytes antigen and its presentation can serve as effective immune-therapeutics that can target specific immunological pathways involved in vitiligo. This chapter highlights those immune-regulatory genes involved in vitiligo susceptibility and loci identified to date and their implications in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, 394350, Gujarat, India.
| | - Naresh C Laddha
- In Vitro Specialty Lab Pvt. Ltd, 205-210, Golden Triangle, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
3
|
Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, Ko R, Tang X, Zhu C, Yin X, Sun L, Cui Y, Zhang X. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci. Front Genet 2016; 7:3. [PMID: 26870082 PMCID: PMC4740779 DOI: 10.3389/fgene.2016.00003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yujun Sheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jinfa Dou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xiaodong Zheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico Albuquerque, NM, USA
| | - Xianfa Tang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Caihong Zhu
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xianyong Yin
- Department of Genetics and Renaissance Computing Institute, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital Beijing, China
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical UniversityHefei, China; Department of Dermatology, The Second Affiliated Hospital, Anhui Medical UniversityHefei, China
| |
Collapse
|
4
|
Allam M, Riad H. Concise review of recent studies in vitiligo. Qatar Med J 2013; 2013:1-19. [PMID: 25003059 PMCID: PMC4080492 DOI: 10.5339/qmj.2013.10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 10/20/2013] [Indexed: 12/12/2022] Open
Abstract
Vitiligo is an acquired pigmentry disorder of the skin and mucous membranes which manifests as white macules and patches due to selective loss of melanocytes. Etiological hypotheses of vitiligo include genetic, immunological, neurohormonal, cytotoxic, biochemical, oxidative stress and newer theories of melanocytorrhagy and decreased melanocytes survival. There are several types of vitiligo which are usually diagnosed clinically and by using a Wood's lamp; also vitiligo may be associated with autoimmune diseases, audiological and ophthalmological findings or it can be a part of polyendocrinopathy syndromes. Several interventions are available for the treatment for vitiligo to stop disease progression and/or to attain repigmentation or even depigmentation. In this article, we will present an overall view of current standing of vitiligo research work especially in the etiological factors most notably the genetic components, also, types and associations and various and newer treatment modalities.
Collapse
Affiliation(s)
- Mohamed Allam
- Dermatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Hassan Riad
- Dermatology Department, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
5
|
Dwivedi M, Laddha NC, Shah K, Shah BJ, Begum R. Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized vitiligo. J Interferon Cytokine Res 2013; 33:646-59. [PMID: 23777204 PMCID: PMC3814581 DOI: 10.1089/jir.2012.0171] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interferon-gamma (IFN-γ) is a paracrine inhibitor of melanocytes and genetic variability due to intron 1 polymorphisms in IFNG has been reported to be associated with increased risk for several autoimmune diseases. The aim of present study was to determine whether intron 1 +874A/T (rs2430561) and CA microsatellite (rs3138557) polymorphisms in IFNG are associated with generalized vitiligo (GV) susceptibility and expression of IFNG and intercellular adhesion molecule-1 (ICAM1) affects the disease onset and progression. Here we report that IFNG CA microsatellite but not +874A/T may be a genetic risk factor for GV; however, +874T allele plays a crucial role in increased expression of IFNG mRNA and protein levels which could affect the onset and progression of the disease. Active GV patients showed increased IFNG levels compared to stable GV patients. The genotype-phenotype analysis revealed that IFNG expression levels were higher in patients with +874 TT genotypes and 12 CA repeats. Patients with the early age of onset showed higher IFNG expression and female GV patients showed higher IFNG and ICAM1 expression implicating gender biasness and involvement of IFN-γ in early onset of the disease. Moreover, the increased IFN-γ levels in patients lead to increased ICAM1 expression, which could be a probable link between cytokines and T-cell involvement in pathogenesis of GV.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Naresh C. Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kriti Shah
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Bela J. Shah
- Department of Dermatology, STD and Leprosy, B.J. Medical College and Civil Hospital, Ahmedabad, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
6
|
Birlea SA, Ahmad FJ, Uddin RM, Ahmad S, Pal SS, Begum R, Laddha NC, Dwivedi M, Shoab Mansuri M, Jin Y, Gowan K, Riccardi SL, Holland PJ, Ben S, Fain PR, Spritz RA. Association of generalized vitiligo with MHC class II loci in patients from the Indian subcontinent. J Invest Dermatol 2013; 133:1369-72. [PMID: 23303446 PMCID: PMC3626744 DOI: 10.1038/jid.2012.501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|