1
|
Dong C, Liu Z, Zhu L, Zhang B, Chi T, Yu Z, Zhou M, Sun L, Zhao Y, Zhu L, Hu B. Dynamic migration and risk of cephalosporin antibiotic resistance genes: Move from pharmaceutical plants through wastewater treatment plants to coastal tidal flats sediments. WATER RESEARCH 2024; 261:121983. [PMID: 38924951 DOI: 10.1016/j.watres.2024.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The migration and dissemination of antibiotics and their corresponding antibiotic resistance genes (ARGs) from pharmaceutical plants through wastewater treatment to the environment introduce exogenous ARGs, increasing the risk of antibiotic resistance. Cephalosporin antibiotics (Ceps) are among the most widely used antibiotics with the largest market scale today, and the issue of resistance is becoming increasingly severe. In this study, a cephalosporin pharmaceutical plant was selected and metagenomic analysis was employed to investigate the dissemination patterns of cephalosporin antibiotics (Ceps) and their ARGs (CepARGs) from the pharmaceutical plant through the wastewater treatment plant to tidal flats sediments. The findings revealed a significant reduction in the total concentration of Ceps by 90.32 % from the pharmaceutical plant's Pioneer Bio Reactor (PBR) to the effluent of the wastewater treatment plant, and a notable surge of 172.13 % in the relative abundance of CepARGs. It was observed that CepARGs originating from the PBR could migrate along the dissemination chain, contributing to 60 % of the CepARGs composition in tidal flats sediments. Microorganisms play a crucial role in the migration of CepARGs, with efflux-mediated CepARGs, as an intrinsic resistance mechanism, exhibiting a higher prospensity for migration due to their presence in multiple hosts. While Class I risk CepARGs are present at the pharmaceutical and wastewater plant stages, Class I ina-CepARGs are completely removed during wastewater treatment and do not migrate to the environment. This study reveals the dynamic migration characteristics and potential risk changes regarding Ceps and CepARGs in real dissemination chains, providing new theoretical evidence for the mitigation, control, and risk prevention of CepARGs.
Collapse
Affiliation(s)
- Chifei Dong
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China
| | - Taolve Chi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingtao Sun
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Araten AH, Brooks RS, Choi SDW, Esguerra LL, Savchyn D, Wu EJ, Leon G, Sniezek KJ, Brynildsen MP. Cephalosporin resistance, tolerance, and approaches to improve their activities. J Antibiot (Tokyo) 2024; 77:135-146. [PMID: 38114565 DOI: 10.1038/s41429-023-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Cephalosporins comprise a β-lactam antibiotic class whose first members were discovered in 1945 from the fungus Cephalosporium acremonium. Their clinical use for Gram-negative bacterial infections is widespread due to their ability to traverse outer membranes through porins to gain access to the periplasm and disrupt peptidoglycan synthesis. More recent members of the cephalosporin class are administered as last resort treatments for complicated urinary tract infections, MRSA, and other multi-drug resistant pathogens, such as Neisseria gonorrhoeae. Unfortunately, there has been a global increase in cephalosporin-resistant strains, heteroresistance to this drug class has been a topic of increasing concern, and tolerance and persistence are recognized as potential causes of cephalosporin treatment failure. In this review, we summarize the cephalosporin antibiotic class from discovery to their mechanisms of action, and discuss the causes of cephalosporin treatment failure, which include resistance, tolerance, and phenomena when those qualities are exhibited by only small subpopulations of bacterial cultures (heteroresistance and persistence). Further, we discuss how recent efforts with cephalosporin conjugates and combination treatments aim to reinvigorate this antibiotic class.
Collapse
Affiliation(s)
- Alison H Araten
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel S Brooks
- Department of English, Princeton University, Princeton, NJ, USA
| | - Sarah D W Choi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura L Esguerra
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Diana Savchyn
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Emily J Wu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Tahoun A, Elnafarawy HK, Elmahallawy EK, Abdelhady A, Rizk AM, El-Sharkawy H, Youssef MA, El-Khodery S, Ibrahim HMM. Epidemiological and Molecular Investigation of Ocular Fungal Infection in Equine from Egypt. Vet Sci 2020; 7:vetsci7030130. [PMID: 32911615 PMCID: PMC7558555 DOI: 10.3390/vetsci7030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Diagnosis and treatment of ocular fungal infection in equine seems very challenging for owners and clinicians. The present study aimed to identify and characterize fungal species isolated from the eyes of clinically healthy and diseased equines (N = 100) from Dakahlia Governorate, Egypt. The work also involved morphological and molecular characterization of the major fungal species. In addition, correlations between the occurrence of isolated fungi and some of the potential risk factors were also investigated. Interestingly, the prevalence rate of ocular mycosis in all examined equines in the study was 28% and there were major clinical signs associated with ocular fungal infection. Moreover, the identified fungal species included Aspergillus flavus, A. fumigatus, A. niger, Penicillium spp., Mucor spp., and Alternari spp. with a corresponding prevalence rate of 63.9%, 27.8%, 15.3%, 18.1%, 13.9%, and 4.2%, respectively, in healthy equine eyes, while their prevalence in diseased equine eyes was 57.1%, 32.1%, 21.4%, 7.1%, 3.6%, and 0%. Furthermore, a statistical significant association (p < 0.05) was found between the frequency of isolation of A. fumigatus and Penicillium and several risk factors (breed, sex, and ground type), while the remaining risk factors and occurrence of fungi were not statistically correlated. A subset of the Aspergillus species samples positive by polymerase chain reaction (PCR) were sequenced and their phylogenetic analysis identified three species of Aspergillus. Taken together, our study provides novel data related to the occurrence of ocular mycosis in equine in Egypt. Given the zoonotic potential of some identified fungi, our data may be helpful for implementation of novel diagnostic and therapeutic strategies for combating this sight-threatening infection in equine.
Collapse
Affiliation(s)
- Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelshkh University, Kafrelsheikh 33511, Egypt;
| | - Helmy K. Elnafarawy
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Department of Biomedical Sciences, University of Leon, s/n, 24071 León, Spain
- Correspondence: (E.K.E.); (H.M.M.I.)
| | - Abdelhamed Abdelhady
- Parasitology and Animal Diseases Department, National Research center, Dokki, Giza, 12622, Egypt;
| | - Amira M. Rizk
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mohamed A. Youssef
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Sabry El-Khodery
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
| | - Hussam M. M. Ibrahim
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (H.K.E.); (M.A.Y.); (S.E.-K.)
- Correspondence: (E.K.E.); (H.M.M.I.)
| |
Collapse
|
4
|
Wickham G. An investigation into the relative resistances of common bacterial pathogens to quaternary ammonium cation disinfectants. ACTA ACUST UNITED AC 2017. [DOI: 10.1093/biohorizons/hzx008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gregory Wickham
- Department of Biological Science, University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
5
|
Umamaheswara Reddy C, Arun A, Amalraj A, Reddy BSR. Polymeric drug based on sulfanilamide: synthesis, antimicrobial and drug releasing studies. J Pharm Pharmacol 2010; 59:1207-13. [PMID: 17883891 DOI: 10.1211/jpp.59.9.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
N-((4-amino sulfonyl)phenyl)acrylamide (APA) was synthesized using sulfanilamide and acryloyl chloride in the presence of triethyl amine at 0–5°C. Homo- and co-polymerization of 2-hydroxyethyl acrylate (HEA) and acrylic acid (AA) were done by adopting a solution polymerization technique using methyl ethyl ketone (MEK) as a solvent and benzoyl peroxide (BPO) as a free radical initiator at 70+1°C. All the monomers and polymers were characterized by IR and NMR techniques. These monomers and polymers were tested for their antimicrobial activity against five different ATCC strain microorganisms (Escherichia coli (25922), Pseudomonas aeruginosa (27853), Klebsiella (70063), Salmonella typhi (6539) and Staphylococcus aureus (25923)). The effect of co-monomer, other than the active drug moiety present in the polymeric drug, is discussed. The antimicrobial activity of APA on Gram-positive bacteria was enhanced when copolymerized with AA and HEA. The polymer was made into a film form and that film was used for drug releasing study. The drug releasing rate was monitored by the absorption at 268 nm using a UV spectrophotometer. The effect of pH and the temperature on the drug releasing rate was monitored and found that the releasing rate was dependent on the co-monomer, pH and temperature of the medium.
Collapse
|
6
|
De Rossi E, Aínsa JA, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 2006; 30:36-52. [PMID: 16438679 DOI: 10.1111/j.1574-6976.2005.00002.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two mechanisms are thought to be involved in the natural drug resistance of mycobacteria: the mycobacterial cell wall permeability barrier and active multidrug efflux pumps. Genes encoding drug efflux transporters have been isolated from several mycobacterial species. These proteins transport tetracycline, fluoroquinolones, aminoglycosides and other compounds. Recent reports have suggested that efflux pumps may also be involved in transporting isoniazid, one of the main drugs used to treat tuberculosis. This review highlights recent advances in our understanding of efflux-mediated drug resistance in mycobacteria, including the distribution of efflux systems in these organisms, their substrate profiles and their contribution to drug resistance. The balance between the drug transport into the cell and drug efflux is not yet clearly understood, and further studies are required in mycobacteria.
Collapse
Affiliation(s)
- Edda De Rossi
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Pavia, Italy
| | | | | |
Collapse
|
7
|
Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Biochem Pharmacol 2006; 71:910-8. [PMID: 16427026 DOI: 10.1016/j.bcp.2005.12.008] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
The world of antibiotic drug discovery and development is driven by the necessity to overcome antibiotic resistance in common Gram-positive and Gram-negative pathogens. However, the lack of Gram-negative activity among both recently approved antibiotics and compounds in the developmental pipeline is a general trend despite the fact that the plethora of covered drug targets are well-conserved across the bacterial kingdom. Such intrinsic resistance in Gram-negative bacteria is largely attributed to the activity of multidrug resistance (MDR) efflux pumps. Moreover, these pumps also play a significant role in acquired clinical resistance. Together, these considerations make efflux pumps attractive targets for inhibition in that the resultant efflux pump inhibitor (EPI)/antibiotic combination drug should exhibit increased potency, enhanced spectrum of activity and reduced propensity for acquired resistance. To date, at least one class of broad-spectrum EPI has been extensively characterized. While these efforts indicated a significant potential for developing small molecule inhibitors against efflux pumps, they did not result in a clinically useful compound. Stemming from the continued clinical pressure for novel approaches to combat drug resistant bacterial infections, second-generation programs have been initiated and show early promise to significantly improve the clinical usefulness of currently available and future antibiotics against otherwise recalcitrant Gram-negative infections. It is also apparent that some changes in regulatory decision-making regarding resistance would be very helpful in order to facilitate approval of agents aiming to reverse resistance and prevent its further development.
Collapse
Affiliation(s)
- Olga Lomovskaya
- Mpex Pharmaceuticals Inc., 3030 Bunker Hill Street, San Diego, CA 92109, USA
| | | |
Collapse
|
8
|
Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamoto H, Fujiwara H, Nishino T, Shimizu E. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. FEMS Microbiol Lett 2005; 243:125-31. [PMID: 15668010 DOI: 10.1016/j.femsle.2004.11.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/29/2022] Open
Abstract
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.
Collapse
Affiliation(s)
- Kazuhiko Yoneda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-machi, Yonago-shi, Tottori-ken 683-0805, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hocquet D, Llanes C, Patry I, El Garch F, Plésiat P. Deux systèmes d'efflux exprimés simultanément chez des souches cliniques de Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2004; 52:455-61. [PMID: 15465264 DOI: 10.1016/j.patbio.2004.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 03/22/2004] [Indexed: 11/24/2022]
Abstract
Active efflux systems MexAB-OprM and MexXY were found to be overexpressed simultaneously in 12 multiresistant clinical isolates of Pseudomonas aeruginosa. Nine of these strains (agrZ mutants) harbored mutations in gene mexZ, the product of which down-regulates expression of operon mexXY. Eight of the 12 strains exhibited mutations in genes known to control transcription of operon mexAB-oprM, such as mexR (four nalB mutants) or PA3721 (three nalC mutants). One strain was a nalB/nalC double mutant. For MexAB-OprM as well as for MexXY, no clear correlation could be established between (i) the types of mutations, (ii) the over-expression levels of genes mexA or mexX, and (iii) the resistance levels to effluxed antibiotics. Finally, three and four isolates overproduced MexXY (agrW mutants) or MexAB-OprM (nalD mutants), respectively, without any mutation in the known regulator genes. These data show that clinical isolates are able to broaden their drug resistance profiles by coexpressing two Mex efflux pumps and suggest the existence of additional regulators for MexAB-OprM and MexXY.
Collapse
Affiliation(s)
- D Hocquet
- Laboratoire de bactériologie, Hôpital Jean-Minjoz, 25030 Besançon cedex, France.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother 2004; 48:1797-802. [PMID: 15105137 PMCID: PMC400543 DOI: 10.1128/aac.48.5.1797-1802.2004] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simultaneous overexpression of the MexAB-OprM and MexXY efflux systems was demonstrated by real-time reverse transcription-PCR and immunoblotting experiments for 12 multiresistant clinical isolates of Pseudomonas aeruginosa. DNA sequencing analysis showed that nine of these strains (named agrZ mutants) harbored mutations in mexZ, the product of which downregulates the expression of the mexXY operon. In addition, 8 of the 12 strains exhibited mutations in genes known to control transcription of the mexAB-oprM operon. Four of them were nalB mutants with alterations in the repressor gene mexR, three of them appeared to be nalC mutants deficient in gene PA3721 and overexpressing gene PA3720, and one strain was a nalB nalC double mutant. For MexAB-OprM as well as for MexXY, no clear correlation could be established between (i) the types of mutations, (ii) the expression level of mexA or mexX, and (iii) resistance to effluxed antibiotics. Finally, three isolates, named agrW mutants, overproduced MexXY and had an intact mexZ gene, and four strains overproduced MexAB-OprM and had intact mexR and PA3721 genes (nalD mutants). These data show that clinical isolates are able to broaden their drug resistance profiles by coexpressing two Mex efflux pumps and suggest the existence of additional regulators for MexAB-OprM and MexXY.
Collapse
Affiliation(s)
- Catherine Llanes
- Laboratoire de Bactériologie, Hôpital Jean Minjoz, Besançon, France.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self-replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site-specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.
Collapse
Affiliation(s)
- B Henriques Normark
- Swedish Institute of Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
13
|
Abstract
The introduction and increasing use of antibiotics for antibacterial therapy has initiated a rapid development and expansion of antibiotic resistance in microorganisms, particularly in human pathogens. Additionally, a shift to an increase in number and severity of Gram-positive infections has been observed the last decades. Common to these pathogens is their tendency to accumulate multiple resistances under antibiotic pressure and selection. Methicillin-resistant Staphylococcus aureus (MRSA), that have acquired multiresistance to all classes of antibiotics, have become a serious nosocomial problem. Recently, the emergence of the first MRSA with reduced vancomycin susceptibility evoked the specter of a totally resistant S. aureus. Problems with multiresistance expand also to penicillin-resistant Streptococcus pneumoniae that are partially or totally resistant to multiple antibiotics, and to vancomycin-resistant Enterococcus ssp., completely resistant to all commonly used antibiotics. The rapid development of resistance is due to mutational events and/or gene transfer and acquisition of resistance determinants, allowing strains to survive antibiotic treatment.
Collapse
|