1
|
Meijer EFJ, Marek A, Ramage G, Chowdhary A, Bagrade L, Voss A, Bal AM. A practical approach to investigating nosocomial acquisition of Aspergillus. Med Mycol 2025; 63:myaf007. [PMID: 39875195 DOI: 10.1093/mmy/myaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025] Open
Abstract
Invasive mould disease (IMD) has a high mortality in immunosuppressed patients. Invasive aspergillosis (IA) is the most common IMD. A guideline for preventing IA has been published jointly by the Centers for Disease Control and Prevention, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. Use of high-efficiency particulate air filters, adequate air exchange rates, sealing of patient rooms, and preventing exposure to moulds by nursing patients in areas away from construction sites are recommended by the guideline. However, there is limited information in relation to the actions to be undertaken by infection prevention and control teams in the event of one or more cases of nosocomial aspergillosis. In this review, we describe a systematic approach to aspergillosis by defining possible and probable nosocomial acquisition based on the number of days since hospital admission. We advocate an incremental response to the investigation of nosocomial aspergillosis in patients in protective isolation taking into account the number of cases and the likelihood of nosocomial origin. For single cases of nosocomial IA, we suggest that infection control investigations should focus on case surveillance and walk-through inspection escalating in a stepwise manner to enhanced case surveillance, verification of environmental controls, environmental monitoring, genotyping of clinical and environmental isolates, and review of antifungal prophylaxis for multiple cases and outbreaks. Where applicable, the construction site should be inspected with the aim to reduce the dispersal of conidia. Surveillance systems need to be strengthened to better understand the epidemiology of IA.
Collapse
Affiliation(s)
- Eelco F J Meijer
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Medical Microbiology and Immunology, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Aleksandra Marek
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Gordon Ramage
- Safeguarding Health through Infection Prevention (SHIP) Research Group, Research Centre for Health, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Anuradha Chowdhary
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Linda Bagrade
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Andreas Voss
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Abhijit M Bal
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
- Department of Infection Prevention and Control, NHS Greater Glasgow and Clyde, Glasgow, UK
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
2
|
Renovation in hospitals: Training construction crews to work in health care facilities. Am J Infect Control 2020; 48:403-409. [PMID: 31676158 DOI: 10.1016/j.ajic.2019.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Health care facilities require frequent renovations to maintain or enhance their service, and to meet the dynamic demands of their patients. Construction activities in active health care facilities are a significant contributor to various challenges that range from infection to death. It is therefore essential to minimize the adverse impacts of construction activities on health care units as well as their adjacent sites. METHODS A questionnaire was developed to study current training modules to prepare construction crews to work in health care environments. The survey was disseminated among professionals of the top 15 health care contractors. A total of 129 individuals participated, and their responses were analyzed using descriptive and categorical statistics. RESULTS This study investigates current training practices regarding (1) the level of training, (2) the frequency of training, and (3) the impact that the sensitivity of the project has on the training. To effectively prepare construction crews, special training must be provided to them. CONCLUSIONS There are uncertainties about the sufficiency and impact of the existing training. Existing trainings are tailored for upper management positions, and the amount/frequency of training for construction crews are substantially low. Findings of this study contribute to characterizing the activities and conditions pertaining to training of construction crews.
Collapse
|
3
|
Loeffert ST, Melloul E, Gustin MP, Hénaff L, Guillot C, Dupont D, Wallon M, Cassier P, Dananché C, Bénet T, Botterel F, Guillot J, Vanhems P. Investigation of the Relationships Between Clinical and Environmental Isolates of Aspergillus fumigatus by Multiple-locus Variable Number Tandem Repeat Analysis During Major Demolition Work in a French Hospital. Clin Infect Dis 2020; 68:321-329. [PMID: 30247539 DOI: 10.1093/cid/ciy498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
Background Genotyping is needed to explore the link between clinical cases from colonization of invasive aspergillosis (IA) and major building construction. Attempts to correlate Aspergillus fumigatus strains from clinical infection or colonization with those found in the environment remain controversial due to the lack of a large prospective study. Our aim in this study was to compare the genetic diversity of clinical and environmental A. fumigatus isolates during a demolition period. Methods Fungal contamination was monitored daily for 11 months in 2015. Environmental surveillance was undertaken indoors and outdoors at 8 locations with automatic agar samplers. IA infection cases were investigated according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group criteria. Isolates were identified by amplification and sequencing of the β- tubulin gene. They were genotyped by multiple-locus variable number tandem repeat analysis (MLVA). The phylogenetic relationships between isolates were assessed by generating a minimum spanning tree. Results Based on 3885 samples, 394 A. fumigatus isolates (383 environmental and 11 clinical) were identified and genotyped using MLVA. Clinical isolates were collected from patients diagnosed as having probable IA (n = 2), possible IA (n = 1), or bronchial colonization (n = 6). MLVA generated 234 genotypes. Seven clinical isolates shared genotypes identical to environmental isolates. Conclusions Among the diversity of genotypes described, similar genotypes were found in clinical and environmental isolates, indicating that A. fumigatus infection and colonization may originate from hospital environments.
Collapse
Affiliation(s)
- Sophie T Loeffert
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Elise Melloul
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Marie-Paule Gustin
- Département de Santé Publique, Institut des Sciences Pharmaceutiques et Biologiques-Faculté de Pharmacie, Université Claude Bernard Lyon 1
| | - Laetitia Hénaff
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Chloé Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Damien Dupont
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Martine Wallon
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Pierre Cassier
- Laboratoire de Biologie Sécurité Environnement, Groupement Hospitalier Centre, Hospices Civils de Lyon
| | - Cédric Dananché
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Thomas Bénet
- Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Jacques Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Philippe Vanhems
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Invasive fungal disease (IFD) and cytomegalovirus (CMV) infections occur frequently, either concomitantly or sequentially in immune-compromised hosts. Although there is extensive knowledge of the risk factors for these infections as single entities, the inter-relationship between opportunistic fungii and CMV has not been comprehensively explored. RECENT FINDINGS Both solid organ and stem cell transplant recipients who develop CMV invasive organ disease are at an increased risk of developing IFD, particularly aspergillosis and Pneumocystis pneumonia (PCP). Moreover, CMV viremia and recipient CMV serostatus also increased the risk of both early and late-onset IFD. Treatment-related factors, such as ganciclovir-induced neutropenia and host genetic Toll-like receptor (TLR) polymorphisms are likely to be contributory. Less is known about the relationship between CMV and IFD outside transplantation, such as in patients with hematological cancers or other chronic immunosuppressive conditions. Finally, few studies report on the relationship between CMV-specific treatments or the viral/antigen kinetics and its influence on IFD management. SUMMARY CMV infection is associated with increased risk of IFD in posttransplant recipients because of a number of overlapping and virus-specific risk factors. Better understanding of how CMV virus, its related treatment, CMV-induced immunosuppression and host genetic factors impact on IFD is warranted.
Collapse
|
5
|
Mousavi ES, Bausman D. Renovation in Hospitals: Pressurization Strategies by Healthcare Contractors in the United States. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2019; 13:179-190. [PMID: 31291749 DOI: 10.1177/1937586719861557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of the study was to identify current practices utilized by contractors in healthcare renovation projects. BACKGROUND Renovation in healthcare facilities comprises nearly half of all healthcare construction. Since a complete shutdown of the healthcare facility during renovation is typically not feasible, efforts must be taken to isolate ongoing functions of the hospital from activities in the construction zone. There are numerous documented cases of morbidity and mortality related to construction activities in the hospital. Hence, guidelines recommend negative pressurization of the construction zone to prevent the migration of dust and potential pathogenic agents into the functioning zone. METHOD To accomplish the paper objective, a questionnaire was developed to address pressurization strategies, the use of backup systems and anterooms, and workforce training for healthcare projects. One hundred twenty-nine project managers and superintendents from top healthcare construction companies in the United States participated in the study. RESULTS Results show that owners influence pressurization strategy, but contractors typically assume a primary role in establishing pressurization levels, monitoring conformance, and training construction personnel. However, without solid evidence of effectiveness, pressurization levels often vary from Center for Disease Control standards. CONCLUSION Further research is needed to establish evidence-based practices and to develop training modules for construction crews to support these best practices. Promoting evidence-based training can improve patient safety and minimize adverse patient outcomes.
Collapse
Affiliation(s)
- Ehsan S Mousavi
- Department of Construction Science and Management, Clemson University, Clemson, SC, USA
| | - Dennis Bausman
- Department of Construction Science and Management, Clemson University, Clemson, SC, USA
| |
Collapse
|
6
|
Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J Fungi (Basel) 2019; 5:jof5030055. [PMID: 31266196 PMCID: PMC6787648 DOI: 10.3390/jof5030055] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aspergillus flavus is the second most common etiological agent of invasive aspergillosis (IA) after A. fumigatus. However, most literature describes IA in relation to A. fumigatus or together with other Aspergillus species. Certain differences exist in IA caused by A. flavus and A. fumigatus and studies on A. flavus infections are increasing. Hence, we performed a comprehensive updated review on IA due to A. flavus. A. flavus is the cause of a broad spectrum of human diseases predominantly in Asia, the Middle East, and Africa possibly due to its ability to survive better in hot and arid climatic conditions compared to other Aspergillus spp. Worldwide, ~10% of cases of bronchopulmonary aspergillosis are caused by A. flavus. Outbreaks have usually been associated with construction activities as invasive pulmonary aspergillosis in immunocompromised patients and cutaneous, subcutaneous, and mucosal forms in immunocompetent individuals. Multilocus microsatellite typing is well standardized to differentiate A. flavus isolates into different clades. A. flavus is intrinsically resistant to polyenes. In contrast to A. fumigatus, triazole resistance infrequently occurs in A. flavus and is associated with mutations in the cyp51C gene. Overexpression of efflux pumps in non-wildtype strains lacking mutations in the cyp51 gene can also lead to high voriconazole minimum inhibitory concentrations. Voriconazole remains the drug of choice for treatment, and amphotericin B should be avoided. Primary therapy with echinocandins is not the first choice but the combination with voriconazole or as monotherapy may be used when the azoles and amphotericin B are contraindicated.
Collapse
Affiliation(s)
- Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India.
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands.
| | - Raees A Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise, 6532SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, 6532SZ Nijmegen, The Netherlands
| |
Collapse
|
7
|
Risk of invasive fungal infections during hospital construction: how to minimize its impact in immunocompromised patients. Curr Opin Infect Dis 2019; 32:322-329. [PMID: 31157630 DOI: 10.1097/qco.0000000000000566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Fungal outbreaks have been reported in healthcare settings, showing that construction activities are a serious threat to immunocompromised hosts. Preventive measures to control fungal outbreaks (especially Aspergillus spp.) are considered essential during hospital construction. In this article, we update the main advances in each of preventive strategies. RECENT FINDINGS Anticipation and multidisciplinary teamwork are the keystone for fungal outbreaks prevention. Strategies focused on environmental control measures of airborne dissemination of fungal spores have proven to be successful. It is important to recommend azole-resistant Aspergillus fumigatus active surveillance from both air (outdoors and indoors) and clinical samples during hospital construction works. Apart from genotyping, studies should be further encouraged to understand the environmental dynamics. Risk assessment and implement preventive measures (environment control strategies, air surveillance, inpatients immunocompromised patients in high-efficiency particulate air filters rooms, patient education, antifungal prophylaxis in high-risk patient groups, etc.) have shown that these accomplish to reduce the incidence of invasive fungal infection (IFI). SUMMARY In general, it is not only a strategy that should be implemented to reduce the risk of IFI but is a bundle of preventive measures, which have proven to be successful in control infection and prevention of airborne transmission of fungi.
Collapse
|
8
|
Wang L, Wang Y, Hu J, Sun Y, Huang H, Chen J, Li J, Ma J, Li J, Liang Y, Wang J, Li Y, Yu K, Hu J, Jin J, Wang C, Wu D, Xiao Y, Huang X. Clinical risk score for invasive fungal diseases in patients with hematological malignancies undergoing chemotherapy: China Assessment of Antifungal Therapy in Hematological Diseases (CAESAR) study. Front Med 2019; 13:365-377. [PMID: 30604166 DOI: 10.1007/s11684-018-0641-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/25/2018] [Indexed: 01/22/2023]
Abstract
Invasive fungal disease (IFD) is a major infectious complication in patients with hematological malignancies. In this study, we examined 4889 courses of chemotherapy in patients with hematological diseases to establish a training dataset (n = 3500) by simple random sampling to develop a weighted risk score for proven or probable IFD through multivariate regression, which included the following variables: male patients, induction chemotherapy for newly diagnosed or relapsed disease, neutropenia, neutropenia longer than 10 days, hypoalbuminemia, central-venous catheter, and history of IFD. The patients were classified into three groups, which had low (0-10, ~1.2%), intermediate (11-15, 6.4%), and high risk ( > 15, 17.5%) of IFD. In the validation set (n = 1389), the IFD incidences of the groups were ~1.4%, 5.0%, and 21.4%. In addition, we demonstrated that antifungal prophylaxis offered no benefits in low-risk patients, whereas benefits were documented in intermediate (2.1% vs. 6.6%, P = 0.007) and high-risk patients (8.4% vs. 23.3%, P = 0.007). To make the risk score applicable for clinical settings, a pre-chemo risk score that deleted all unpredictable factors before chemotherapy was established, and it confirmed that anti-fungal prophylaxis was beneficial in patients with intermediate and high risk of IFD. In conclusion, an objective, weighted risk score for IFD was developed, and it may be useful in guiding antifungal prophylaxis.
Collapse
Affiliation(s)
- Ling Wang
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiong Hu
- Blood & Marrow Transplantation Center, Department of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University, People's Hospital, Beijing, 100044, China
| | - He Huang
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, China
| | - Jing Chen
- Department of Hematology-Oncology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jun Ma
- Harbin Hematologic Tumor Institution, Harbin, 150010, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yingmin Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital of the Second Military Medical University, Shanghai, 200082, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, China
| | - Jianda Hu
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003, China
| | - Chun Wang
- Department of Hematology, The First People's Hospital of Shanghai, Shanghai, 200080, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yang Xiao
- Department of Hematology, The General Hospital of Guangzhou Military Command of PLA, Guangzhou, 510010, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University, People's Hospital, Beijing, 100044, China.
| |
Collapse
|
9
|
Antifungal Prophylaxis in Children Receiving Antineoplastic Chemotherapy. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0311-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Combariza JF, Toro LF, Orozco JJ. Effectiveness of environmental control measures to decrease the risk of invasive aspergillosis in acute leukaemia patients during hospital building work. J Hosp Infect 2017; 96:336-341. [PMID: 28545828 DOI: 10.1016/j.jhin.2017.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Invasive aspergillosis (IA) is a significant problem in acute leukaemia patients. Construction work near hospital wards caring for immunocompromised patients is one of the main risk factors for developing invasive pulmonary aspergillosis (IPA). AIM To assess the impact of environmental control measures used during hospital construction for the prevention of IA in acute leukaemia patients. METHODS A retrospective cohort study was developed to evaluate the IA incidence in acute leukaemia patients with different environmental control measures employed during hospital construction. We used European Organisation for the Research and Treatment of Cancer (EORTC) criterial diagnosis parameters for definition of IA. FINDINGS A total of 175 episodes of inpatient care were evaluated, 62 of which did not have any environmental control measures (when an outbreak occurred), and 113 that were subject to environmental control measures directed to preventing IA. The study showed an IA incidence of 25.8% for the group without environmental control measures vs 12.4% for those who did receive environmental control measures (P=0.024). The relative risk for IA was 0.595 (95% confidence interval: 0.394-0.897) for the group with environmental control measures. CONCLUSION The current study suggests that the implementation of environmental control measures during a hospital construction has a positive impact for prevention of IA in patients hospitalized with acute leukaemia.
Collapse
Affiliation(s)
- J F Combariza
- Hospital Pablo Tobón Uribe, Medellin, Antioquia, Colombia.
| | - L F Toro
- Universidad CES, Medellín, Antioquia, Colombia
| | - J J Orozco
- Universidad CES, Medellín, Antioquia, Colombia
| |
Collapse
|
11
|
Pagano L, Busca A, Candoni A, Cattaneo C, Cesaro S, Fanci R, Nadali G, Potenza L, Russo D, Tumbarello M, Nosari A, Aversa F. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev 2016; 31:17-29. [PMID: 27682882 DOI: 10.1016/j.blre.2016.09.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Invasive fungal infections (IFIs) are an important cause of morbidity and mortality in immunocompromised patients. Patients with hematological malignancies undergoing conventional chemotherapy, autologous or allogeneic hematopoietic stem cell transplantation are considered at high risk, and Aspergillus spp. represents the most frequently isolated micro-organisms. In the last years, attention has also been focused on other rare molds (e.g., Zygomycetes, Fusarium spp.) responsible for devastating clinical manifestations. The extensive use of antifungal prophylaxis has reduced the infections from yeasts (e.g., candidemia) even though they are still associated with high mortality rates. This paper analyzes concurrent multiple predisposing factors that could favor the onset of fungal infections. Although neutropenia is common to almost all hematologic patients, other factors play a key role in specific patients, in particular in patients with AML or allogeneic HSCT recipients. Defining those patients at higher risk of IFIs may help to design the most appropriate diagnostic work-up and antifungal strategy.
Collapse
Affiliation(s)
- Livio Pagano
- Istituto di Ematologia, Università Cattolica S. Cuore, Roma, Italy.
| | - Alessandro Busca
- Stem Cell Transplant Center, AOU Citta' della Salute e della Scienza, Turin, Italy
| | - Anna Candoni
- Clinica Ematologica, Azienda Ospedaliero-Universitaria Santa Maria Misericordia, Udine, Italy
| | | | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Rosa Fanci
- Unità Funzionale di Ematologia, Azienda Ospedaliero-Universitaria Careggi e Università di Firenze, Italy
| | - Gianpaolo Nadali
- Unità Operativa Complessa di Ematologia, Azienda Ospedaliera Universitaria Integrata di Verona, Italy
| | - Leonardo Potenza
- UOC Ematologia, Dipartimento di Scienze Mediche e Chirurgiche Materno Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Domenico Russo
- Cattedra di Ematologia, Unità di Malattie del Sangue e Trapianto di Midollo Osseo, Dipartimento di Scienze Cliniche e Sperimentali, Università di Brescia e ASST Spedali Civili, Brescia, Italy
| | - Mario Tumbarello
- Istituto di Malattie Infettive, Università Cattolica S. Cuore, Roma, Italy
| | - Annamaria Nosari
- Divisione di Ematologia e Centro Trapianti Midollo, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Franco Aversa
- Hematology and BMT Unit, Department of Clinical and Experimental Medicine, University of Parma, Italy
| |
Collapse
|
12
|
The Plasmair Decontamination System Is Protective Against Invasive Aspergillosis in Neutropenic Patients. Infect Control Hosp Epidemiol 2016; 37:845-51. [PMID: 27340735 DOI: 10.1017/ice.2016.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Invasive aspergillosis (IA) is a rare but severe infection caused by Aspergillus spp. that often develops in immunocompromised patients. Lethality remains high in this population. Therefore, preventive strategies are of key importance. The impact of a mobile air decontamination system (Plasmair, AirInSpace, Montigny-le-Bretonneux, France) on the incidence of IA in neutropenic patients was evaluated in this study. DESIGN Retrospective cohort study METHODS Patients with chemotherapy-induced neutropenia lasting 7 days or more were included over a 2-year period. Cases of IA were confirmed using the revised European Organization for Research and Treatment of Cancer (EORTC) criteria. We took advantage of a partial installation of Plasmair systems in the hematology intensive care unit during this period to compare patients treated in Plasmair-equipped versus non-equipped rooms. Patients were assigned to Plasmair-equipped or non-equipped rooms depending only on bed availability. Differences in IA incidence in both groups were compared using Fisher's exact test, and a multivariate analysis was performed to take into account potential confounding factors. RESULTS Data from 156 evaluable patients were available. Both groups were homogenous in terms of age, gender, hematological diagnosis, duration of neutropenia, and prophylaxis. A total of 11 cases of probable IA were diagnosed: 10 in patients in non-equipped rooms and only 1 patient in a Plasmair-equipped room. The odds of developing IA were much lower for patients hospitalized in Plasmair-equipped rooms than for patients in non-equipped rooms (P=.02; odds ratio [OR] =0.11; 95% confidence interval [CI], 0.00-0.84). CONCLUSION In this study, Plasmair demonstrated a major impact in reducing the incidence of IA in neutropenic patients with hematologic malignancies. Infect Control Hosp Epidemiol 2016;37:845-851.
Collapse
|
13
|
In-hospital transfer is a risk factor for invasive filamentous fungal infection among hospitalized patients with hematological malignancies: a matched case-control study. Infect Control Hosp Epidemiol 2015; 36:320-8. [PMID: 25695174 DOI: 10.1017/ice.2014.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Immunocompromised patients now benefit from a longer life expectancy due to advanced medical techniques, but they are also weakened by aggressive treatment approaches and are at high risk for invasive fungal disease. We determined risk factors associated with an outbreak of invasive filamentous fungal infection (IFFI) among hospitalized hemato-oncological patients. METHODS A retrospective, matched, case-control study was conducted between January 1, 2009, and April 31, 2011, including 29 cases (6 proven, 8 probable, and 15 possible) of IFFI and 102 matched control patients hospitalized during the same time period. Control patients were identified from the hospital electronic database. Conditional logistic regression was performed to identify independent risk factors for IFFI. RESULTS Overall mortality associated with IFFI was 20.7% (8.0%-39.7%). Myelodysplastic syndrome was associated with a higher risk for IFFI compared to chronic hematological malignancies. After adjustment for major risk factors and confounders, >5 patient transfers outside the protected environment of the hematology ward increased the IFFI risk by 6.1-fold. The risk increased by 6.7-fold when transfers were performed during neutropenia. CONCLUSION This IFFI outbreak was characterized by a strong association with exposure to the unprotected environment outside the hematology ward during patient transfer. The independent associations of a high number of transfers with the presence of neutropenia suggest that affected patients were probably not sufficiently protected during transport in the corridors. Our study highlights that a heightened awareness of the need for preventive measures during the entire care process of at-risk patients should be promoted among healthcare workers.
Collapse
|
14
|
Picot-Guéraud R, Khouri C, Brenier-Pinchart MP, Saviuc P, Fares A, Sellon T, Thiebaut-Bertrand A, Mallaret MR. En-suite bathrooms in protected haematology wards: a source of filamentous fungal contamination? J Hosp Infect 2015; 91:244-9. [PMID: 26341270 DOI: 10.1016/j.jhin.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In spite of 25 recently built high-risk haematology rooms with a protected environment and fitted with en-suite bathrooms in our university hospital centre in 2008, sporadic cases of hospital-acquired invasive aspergillosis remained in these wards. AIM This study aimed to identify unsuspected environmental sources of filamentous fungal contamination in these rooms. METHODS Over two months, environmental fungal flora in the air (150 samples) as well as air particle counting and physical environmental parameters (airspeed, temperature, humidity, pressure) were prospectively monitored twice on the sampling day in all 25 protected rooms and en-suite bathrooms in use, and on bathroom surfaces (150 samples). FINDINGS In rooms under laminar airflow, in the presence of patients during sampling sessions, fungi were isolated in two samples (4%, 2/50) with a maximum value of 2cfu/500L (none was Aspergillus sp.). However, 88% of the air samples (44/50) in the bathroom were contaminated with a median range and maximum value of 2 and 16cfu/500L. Aspergillus spp. were involved in 24% of contaminated samples (12/44) and A. fumigatus in 6% (3/44). Bathroom surfaces were contaminated by filamentous fungi in 5% of samples (8/150). CONCLUSION This study highlighted that en-suite bathrooms in protected wards are likely to be a source of fungi. Before considering specific treatment of air in bathrooms, technicians have first corrected the identified deficiencies: replacement of high-efficiency particulate air filters, improvement of air control automation, and restoration of initial technical specifications. Assessment of measure effectiveness is planned.
Collapse
Affiliation(s)
- R Picot-Guéraud
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France.
| | - C Khouri
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France
| | - M-P Brenier-Pinchart
- CHU Grenoble, Pôle Biologie et Pathologie, Laboratoire de Parasitologie-Mycologie, Grenoble, France; Université Grenoble Alpes, CNRS, LAPM, Grenoble, France
| | - P Saviuc
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France
| | - A Fares
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France
| | - T Sellon
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France
| | | | - M-R Mallaret
- CHU Grenoble, Pôle Santé Publique, Unité d'Hygiène Hospitalière, Grenoble, France; Université Grenoble Alpes, CNRS, TIMC-IMAG, Grenoble, France
| |
Collapse
|
15
|
Kanamori H, Rutala WA, Sickbert-Bennett EE, Weber DJ. Review of Fungal Outbreaks and Infection Prevention in Healthcare Settings During Construction and Renovation. Clin Infect Dis 2015; 61:433-44. [DOI: 10.1093/cid/civ297] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/04/2015] [Indexed: 01/08/2023] Open
|
16
|
Castagnola E, Mikulska M, Viscoli C. Prophylaxis and Empirical Therapy of Infection in Cancer Patients. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7173426 DOI: 10.1016/b978-1-4557-4801-3.00310-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Jacob JT, Kasali A, Steinberg JP, Zimring C, Denham ME. The Role of the Hospital Environment in Preventing Healthcare-Associated Infections Caused by Pathogens Transmitted through the Air. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2013. [DOI: 10.1177/193758671300701s07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE: To assess and synthesize available evidence in the infection control and healthcare design literature on strategies using the built environment to reduce the transmission of pathogens in the air that cause healthcare-associated infections (HAIs). BACKGROUND: Air can serve as a route for transmission of important HAI pathogens, including Mycobacterium tuberculosis and influenza, and may play a role for others typically transmitted by contact, including Staphylococcus aureus and Clostridium difficile. TOPICAL HEADINGS: Four primary interventions can be used interrupt the transmission of pathogens in air: ventilation, filtration, decontamination, and isolation. Many studies demonstrate that unidirectional airflows, when combined with very clean air and frequent air changes, reduce bacterial counts in the air, though mostly focused on the operating room. A high-efficiency particulate air filter removes almost all particles from the air and is used in protective environments such as the operating room, but little evidence supports its broader application. Ultraviolet germicidal radiation can augment the performance of heating, ventilation, and air conditioning systems. Isolation with negative pressure ventilation prevents spread of airborne pathogens such as tuberculosis. CONCLUSIONS: Current evidence is limited by the complexity of the interactions between pathogens and potential hosts, and in the methods used to assess impact of these strategies. Because the factors that affect transmission of the pathogens are complex and transcend disciplines, a collaborative approach among the key stakeholders in healthcare facility design should be actively pursued from planning to completion of construction and in rigorous research to best determine how design can reduce HAIs.
Collapse
|
18
|
Stanzani M, Lewis RE, Fiacchini M, Ricci P, Tumietto F, Viale P, Ambretti S, Baccarani M, Cavo M, Vianelli N. A risk prediction score for invasive mold disease in patients with hematological malignancies. PLoS One 2013; 8:e75531. [PMID: 24086555 PMCID: PMC3784450 DOI: 10.1371/journal.pone.0075531] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A risk score for invasive mold disease (IMD) in patients with hematological malignancies could facilitate patient screening and improve the targeted use of antifungal prophylaxis. METHODS We retrospectively analyzed 1,709 hospital admissions of 840 patients with hematological malignancies (2005-2008) to collect data on 17 epidemiological and treatment-related risk factors for IMD. Multivariate regression was used to develop a weighted risk score based on independent risk factors associated with proven or probable IMD, which was prospectively validated during 1,746 hospital admissions of 855 patients from 2009-2012. RESULTS Of the 17 candidate variables analyzed, 11 correlated with IMD by univariate analysis, but only 4 risk factors (neutropenia, lymphocytopenia or lymphocyte dysfunction in allogeneic hematopoietic stem cell transplant recipients, malignancy status, and prior IMD) were retained in the final multivariate model, resulting in a weighted risk score 0-13. A risk score of < 6 discriminated patients with low (< 1%) versus higher incidence rates (> 5%) of IMD, with a negative predictive value (NPV) of 0.99, (95% CI 0.98-0.99). During 2009-2012, patients with a calculated risk score at admission of < 6 had significantly lower 90-day incidence rates of IMD compared to patients with scores > 6 (0.9% vs. 10.6%, P <0.001). CONCLUSION An objective, weighted risk score for IMD can accurately discriminate patients with hematological malignancies at low risk for developing mold disease, and could possibly facilitate "screening-out" of low risk patients less likely to benefit from intensive diagnostic monitoring or mold-directed antifungal prophylaxis.
Collapse
Affiliation(s)
- Marta Stanzani
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
- * E-mail:
| | - Russell E. Lewis
- Clinic of Infectious Diseases, Department of Internal Medicine, Geriatrics and Nephrologic Diseases, S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Mauro Fiacchini
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Paolo Ricci
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fabio Tumietto
- Clinic of Infectious Diseases, Department of Internal Medicine, Geriatrics and Nephrologic Diseases, S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Clinic of Infectious Diseases, Department of Internal Medicine, Geriatrics and Nephrologic Diseases, S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Microbiology, Department of Hematology, Oncology and Laboratory Medicine, S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michele Baccarani
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michele Cavo
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Nicola Vianelli
- Institute of Hematology, Department of Hematology and Clinical Oncology, “Lorenzo e Ariosto Seràgnoli” S’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Severe cutaneous aspergillosis in a premature neonate linked to nonsterile disposable glove contamination? Am J Infect Control 2012; 40:465-7. [PMID: 21885159 DOI: 10.1016/j.ajic.2011.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022]
Abstract
After having eliminated a dysfunction of the hospital's ventilation system and any other possible environmental reservoir, the investigation of a fatal case of primary cutaneous aspergillosis in a neonate with extremely low birth weight led to the conclusion that nonsterile disposable gloves kept stored in their native packages were the likely source of contamination.
Collapse
|
20
|
[Quantitative assessment of fungal risk in the case of construction works in healthcare establishments: Proposed indicators for the determination of the impact of management precautions on the risk of fungal infection]. J Mycol Med 2012. [PMID: 23177816 DOI: 10.1016/j.mycmed.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Construction works in healthcare establishments produce airborne fungal spores and considerably increase the risk of exposure of immunosuppressed patients. It is necessary to reinforce protective measures, or even to implement specific precautions, during this critical phase. The aim of these precautions is to protect both those areas, which are susceptible to dust, and patients at risk of a fungal infection particularly invasive aspergillosis. When construction works are planned in healthcare establishments, the first step consists in the characterisation of the environmental fungal risk and the second one in proposing risk management methods. It is then essential to establish impact indicators in order to evaluate the risk management precautions applied. The working group promoted by the French societies of medical mycology and hospital hygiene (SFMM & SF2H) details here both environmental and epidemiological impact indicators that can be used.
Collapse
|
21
|
Menotti J, Porcher R, Ribaud P, Lacroix C, Jolivet V, Hamane S, Derouin F. Monitoring of nosocomial invasive aspergillosis and early evidence of an outbreak using cumulative sum tests (CUSUM). Clin Microbiol Infect 2010. [DOI: 10.1111/j.1469-0691.2010.03150.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Chabrol A, Cuzin L, Huguet F, Alvarez M, Verdeil X, Linas MD, Cassaing S, Giron J, Tetu L, Attal M, Récher C. Prophylaxis of invasive aspergillosis with voriconazole or caspofungin during building work in patients with acute leukemia. Haematologica 2010; 95:996-1003. [PMID: 20007135 PMCID: PMC2878800 DOI: 10.3324/haematol.2009.012633] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/03/2009] [Accepted: 11/19/2009] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Invasive aspergillosis is a common life-threatening infection in patients with acute leukemia. The presence of building work near to hospital wards in which these patients are cared for is an important risk factor for the development of invasive aspergillosis. This study assessed the impact of voriconazole or caspofungin prophylaxis in patients undergoing induction chemotherapy for acute leukemia in a hematology unit exposed to building work. DESIGN AND METHODS This retrospective cohort study was carried out between June 2003 and January 2006 during which building work exposed patients to a persistently increased risk of invasive aspergillosis. This study compared the cumulative incidence of invasive aspergillosis in patients who did or did not receive primary antifungal prophylaxis. The diagnosis of invasive aspergillosis was based on the European Organization for Research and Treatment of Cancer/Mycosis Study Group criteria. RESULTS Two-hundred and fifty-seven patients (213 with acute myeloid leukemia, 44 with acute lymphocytic leukemia) were included. The mean age of the patients was 54 years and the mean duration of their neutropenia was 21 days. Eighty-eight received antifungal prophylaxis, most with voriconazole (n=74). The characteristics of the patients who did or did not receive prophylaxis were similar except that pulmonary antecedents (chronic bronchopulmonary disorders or active tobacco use) were more frequent in the prophylaxis group. Invasive aspergillosis was diagnosed in 21 patients (12%) in the non-prophylaxis group and four (4.5%) in the prophylaxis group (P=0.04). Pulmonary antecedents, neutropenia at diagnosis and acute myeloid leukemia with high-risk cytogenetics were positively correlated with invasive aspergillosis, whereas primary prophylaxis was negatively correlated. Survival was similar in both groups. No case of zygomycosis was observed. The 3-month mortality rate was 28% in patients with invasive aspergillosis. CONCLUSIONS This study suggests that antifungal prophylaxis with voriconazole could be useful in acute leukemia patients undergoing first remission-induction chemotherapy in settings in which there is a high-risk of invasive aspergillosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurent Tetu
- Department of Pulmonary Diseases, Toulouse University Hospital, Toulouse, France
| | | | | |
Collapse
|
23
|
Stock C, Veyrier M, Magnin-Verschelde S, Duband S, Lavocat MP, Teyssier G, Berthelot P. [Primary cutaneous aspergillosis complicated with invasive aspergillosis in an extremely preterm infant: case report and literature review]. Arch Pediatr 2010; 17:1455-9. [PMID: 20488684 DOI: 10.1016/j.arcped.2010.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 07/22/2009] [Accepted: 04/08/2010] [Indexed: 11/30/2022]
Abstract
Aspergillus is a ubiquitous fungus that can cause primary cutaneous aspergillosis in extremely low-birth-weight (ELBW) neonates, then be invasive and lead to death. ELBW neonates are particularly at risk because of decreased qualitative immune defenses and defects in the skin barrier. Broad-spectrum antimicrobial therapy and corticosteroids, often used in these patients, contribute to increased risk. We present a fatal case of primary cutaneous aspergillosis complicated with invasive aspergillosis, confirmed by autopsy, in an ELBW infant. The source of contamination was probably non-sterile disposable latex gloves used for neonatal care. The early recognition of this source led to its eviction for other hospitalized ELBW infants and no outbreak was observed.
Collapse
Affiliation(s)
- C Stock
- Service de réanimation néonatale et pédiatrique, centre hospitalier universitaire de Saint-Étienne, hopital Nord, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, Wingard JR, Young JAH, Boeckh MJ, Boeckh MA. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 2009; 15:1143-238. [PMID: 19747629 PMCID: PMC3103296 DOI: 10.1016/j.bbmt.2009.06.019] [Citation(s) in RCA: 1213] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 02/07/2023]
|
25
|
|
26
|
Maschmeyer G, Neuburger S, Fritz L, Böhme A, Penack O, Schwerdtfeger R, Buchheidt D, Ludwig WD. A prospective, randomised study on the use of well-fitting masks for prevention of invasive aspergillosis in high-risk patients. Ann Oncol 2009; 20:1560-1564. [DOI: 10.1093/annonc/mdp034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Etancelin P, Silly S, Merle V, Bonmarchand G, Richard JC, Vannier JP, Nouvellon M. Efficacité des mesures environnementales dans la prévention de l’aspergillose invasive nosocomiale liée aux travaux : bilan de cinq années d’expérience. ACTA ACUST UNITED AC 2009; 57:71-5. [DOI: 10.1016/j.patbio.2008.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
28
|
Araujo R, Carneiro A, Costa‐Oliveira S, Pina‐Vaz C, Rodrigues AG, Guimaraes JE. Fungal infections after haematology unit renovation: evidence of clinical, environmental and economical impact. Eur J Haematol 2008; 80:436-443. [PMID: 18194476 DOI: 10.1111/j.1600-0609.2008.01034.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractObjective and methods: The Haemato‐Oncology Unit, Hospital S. Joao, suffered extensive refurbishing intervention in order to adapt for autotransplant patients. Eight new individual rooms with central HEPA filtration system were built. All patients admitted in the department during 14 months prior to and 14 months after renovation works were enrolled. A total of 403 admissions were considered and a detailed analysis of all patients with fungal infections, air quality and antifungal consumption were evaluated in order to study clinical, environmental and economical impact after unit renovation.Results: Patients with acute myeloid leukaemia submitted to induction treatment were the most susceptible to acquisition of fungal infections. Fungal infections were reduced after installation of HEPA filters in individual rooms, particularly proven and probable fungal infections. No patients were diagnosed with proven or probable mould infection in the period after the unit renovation and no deaths were registered among patients with the diagnosis of possible fungal infection. Considering the group of patients diagnosed with fungal infection, the average of hospitalization was reduced 3 d in the latter period. The new high‐protected rooms showed a reduction of 50% and 95% of airborne fungi, respectively in the first week and after the second week. The consumption of voriconazole and caspofungin was reduced, respectively, 66% and 59% and the final cost with antifungal therapy was reduced by 17.4%.Conclusions: Autotransplant patients may be under higher risk of infection, however, the installation of high‐protective measures may efficiently prevent fungal infections in these patients. Renovation of haematology unit resulted in major clinical, environmental and economical improvements. The definition of reference values for airborne agents in hospital facilities remains urgent.
Collapse
|
29
|
Nihtinen A, Anttila VJ, Richardson M, Meri T, Volin L, Ruutu T. The utility of intensified environmental surveillance for pathogenic moulds in a stem cell transplantation ward during construction work to monitor the efficacy of HEPA filtration. Bone Marrow Transplant 2007; 40:457-60. [PMID: 17589532 DOI: 10.1038/sj.bmt.1705749] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 12-week environmental study was performed to ensure that the patient rooms of an SCT ward with high-efficiency particulate air (HEPA) filtration remained uncontaminated by moulds during close-by construction work. The sampling included measuring the ventilation channel pressure, particle count measurements, air sampling, settled dust analysis and fungal cultures from the oral and nasal cavities of the patients. No changes in the air pressure occurred. Median particle counts in patient rooms were 63-420 particles/l. The mean particle count of the outside air was 173,659 particles/l. Patient room air samples were negative for aspergilli in 32 of 33 cases. All samples of the outside air were positive for moulds. Aspergillus fumigatus was isolated at the beginning of excavation works at the construction area and in two of 33 dust samples from patient rooms. All 70 nasal samples were negative. Of 35 mouth samples, one sample was positive for A. niger in a patient with a previously diagnosed aspergillus infection. During a median follow-up of 214 days, no invasive aspergillus infections were diagnosed in the 55 patients treated during the construction period. In conclusion, the HEPA filters seemed to have performed well in preventing an aspergillosis outbreak.
Collapse
Affiliation(s)
- A Nihtinen
- Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|