1
|
Williams NLR, Siboni N, Potts J, Scanes P, Johnson C, James M, McCann V, Reun NL, King WL, Seymour JR. Faecal contamination determines bacterial assemblages over natural environmental parameters within intermittently opened and closed lagoons (ICOLLs) during high rainfall. WATER RESEARCH 2024; 268:122670. [PMID: 39486150 DOI: 10.1016/j.watres.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Intermittently closed and opened lakes and lagoons (ICOLLs) provide important ecosystem services, including food provision and nutrient cycling. These ecosystems generally experience low watershed outflow, resulting in substantial fluctuations in physicochemical parameters that are often compounded by anthropogenic contamination, however, how this impacts the patterns in microbiology within these environments remains uncharacterised. Therefore, we aimed to determine how seasonal heterogeneity in the physicochemical parameters, in comparison to faecal contamination, alter the dynamics of bacterial communities inhabiting ICOLLs on the eastern Australian coast. To address these aims, we sampled four ICOLLs on a monthly basis for one year, using 16S rRNA gene amplicon sequencing to monitor patterns in bacterial diversity and qPCR-based methods to measure faecal contamination from humans (sewage), dogs, and birds. Additionally, we used qPCR to monitor patterns of a suite of antibiotic resistance genes (ARGs) including sulI, tetA, qnrS, dfrA1, and vanB. Differences in bacterial community composition were often associated with temporal shifts in salinity, temperature, pH, dissolved oxygen, and dissolved organic matter, but following periods of high rainfall, bacterial assemblages in two of four ICOLLs changed in direct response to sewage inputs. Within these ICOLLs, indicator taxa for stormwater identified using the 16S rRNA amplicon sequencing data, as well as markers for sewage and dog faeces, and levels of the antibiotic resistance genes (ARGs) sulI, tetA, and dfrA1 were significantly more abundant after rainfall. Notably many of the stormwater indicator taxa were potential human pathogens including Arcobacter and Aeromonas hydrophilia, which also displayed significant correlations, albeit weak to moderate, with levels of the ARGs sulI, tetA, and dfrA1. This broad-scale shift in the nature of the bacterial community following rainfall will likely lead to a substantial, and perhaps detrimental, divergence in the ecosystem services provided by the bacterial assemblages within these ICOLLs. We conclude that following rainfall events, sewage was a principal driver of shifts in the microbiology of ICOLLs exposed to stormwater, while natural seasonal shifts in the physicochemical parameters controlled bacterial communities at other times. Increased occurrence of intense precipitation events is predicted as a ramification of climate change, which will lead to increased impacts of stormwater and sewage contamination on important ICOLL ecosystems in the future.
Collapse
Affiliation(s)
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary and Environment, Lidcombe, NSW, Australia
| | - Melanie James
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street Wyong, NSW, Australia
| | - Nine Le Reun
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - William L King
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
2
|
Qiao K, Zhao T, Wang L, Zhang W, Meng W, Liu F, Gao X, Zhu J. Screening and identification of functional bacterial attachment genes in aerobic granular sludge. J Environ Sci (China) 2024; 141:205-214. [PMID: 38408821 DOI: 10.1016/j.jes.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 02/28/2024]
Abstract
The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level. It is helpful to the development of key culture technologies for aerobic granular sludge (AGS). In this study, genome-wide sequencing and gene editing were employed for the first time to investigate the effects and functions of attachment genes in AGS. With the help of whole-genome analysis, ten attachment genes were screened from thirteen genes, and the efficiency of gene screening was greatly improved. Then, two attachment genes were selected as examples to further confirm the gene functions by constructing gene-knockout recombinant mutants of Stenotrophomonas maltophilia; when the two attachment genes were knocked out, the attachment potential was reduced by 50.67% and 43.93%, respectively. The results provide a new theoretical principle and efficient method for the development of AGS from the perspective of attachment genes.
Collapse
Affiliation(s)
- Kai Qiao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Tingting Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Lei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Wei Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Meng
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fan Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xu Gao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China.
| |
Collapse
|
3
|
Gutiérrez J, González-Acuña D, Fuentes-Castillo D, Fierro K, Hernández C, Zapata L, Verdugo C. Antibiotic resistance in wildlife from Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170340. [PMID: 38278249 DOI: 10.1016/j.scitotenv.2024.170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Although considered one of the most pristine ecosystems, Antarctica has been largely influenced by human activities during the last 50 years, affecting its unique biodiversity. One of the major global threats to health is the emergence of antibiotic-resistant bacteria that may be actively transferred to wildlife. We cultured and tested for antibiotic resistance in 137 cloacal and fresh fecal samples of several avian and marine mammal species from the Antarctic Peninsula, the most impacted area in Antarctica. Alarmingly, 80 % of the isolates showed antibiotic resistance, either phenotypically or genotypically. Most of the resistant bacteria, such as Enterobacteriaceae and Enterococcus species, are part of local gastrointestinal microbiota. Penguins and pinnipeds harbored a great diversity of antibiotic resistance and must be eligible as sentinels for future studies. These results show that antibiotic resistance has rapidly transferred to bacteria in Antarctic wildlife, which is a global matter of concern.
Collapse
Affiliation(s)
- Josefina Gutiérrez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile
| | | | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Universidad de Concepción, Chillán, Chile
| | - Karina Fierro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Hernández
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Loreto Zapata
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Verdugo
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Center of Surveillance and Evolution of Infectious Diseases, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
4
|
Gütgemann F, Heuvelink A, Müller A, Churin Y, Buter R, Jung A, Feberwee A, Wiegel J, Kumm F, Braun AS, Yue M, Soriano-Vargas E, Swanepoel S, Botteldoorn N, Kirchner M, Kehrenberg C. Recommendation of a standardized broth microdilution method for antimicrobial susceptibility testing of Avibacterium paragallinarum and resistance monitoring. J Clin Microbiol 2024; 62:e0101123. [PMID: 38363142 PMCID: PMC10935639 DOI: 10.1128/jcm.01011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024] Open
Abstract
This study aimed to develop a method for standardized broth microdilution antimicrobial susceptibility testing (AST) of Avibacterium (Av.) paragallinarum, the causative agent of infectious coryza in chickens. For this, a total of 83 Av. paragallinarum isolates and strains were collected from 15 countries. To select unrelated isolates for method validation steps, macrorestriction analyses were performed with 15 Av. paragallinarum. The visible growth of Av. paragallinarum was examined in six broth media and growth curves were compiled. In Veterinary Fastidious Medium and cation-adjusted Mueller-Hinton broth (CAMHB) + 1% chicken serum + 0.0025% NADH (CAMHB + CS + NADH), visible growth of all isolates was detected and both media allowed adequate bacterial growth. Due to the better readability of Av. paragallinarum growth in microtiter plates, CAMHB + CS + NADH was chosen for AST. Repetitions of MIC testing with five epidemiologically unrelated isolates using a panel of 24 antimicrobial agents resulted in high essential MIC agreements of 96%-100% after 48-h incubation at 35 ± 2°C. Hence, the remaining 78 Av. paragallinarum were tested and demonstrated easily readable MICs with the proposed method. Differences in MICs were detected between isolates from different continents, with isolates from Africa showing lower MICs compared to isolates from America and Europe, which more often showed elevated MICs of aminoglycosides, quinolones, tetracyclines, and/or trimethoprim/sulfamethoxazole. PCR analyses of isolates used for method development revealed that isolates with elevated MICs of tetracyclines harbored the tetracycline resistance gene tet(B) but none of the other tested resistance genes were detected. Therefore, whole-genome sequencing data from 62 Av. paragallinarum were analyzed and revealed the presence of sequences showing nucleotide sequence identity to the genes aph(6)-Id, aph(3″)-Ib, blaTEM-1B, catA2, sul2, tet(B), tet(H), and mcr-like. Overall, the proposed method using CAMHB + CS + NADH for susceptibility testing with 48-h incubation time at 35 ± 2°C in ambient air was shown to be suitable for Av. paragallinarum. Due to a variety of resistance genes detected, the development of clinical breakpoints is highly recommended. IMPORTANCE Avibacterium paragallinarum is an important pathogen in veterinary medicine that causes infectious coryza in chickens. Since antibiotics are often used for treatment and resistance of the pathogen is known, targeted therapy should be given after resistance testing of the pathogen. Unfortunately, there is currently no accepted method in standards that allows susceptibility testing of this fastidious pathogen. Therefore, we have worked out a method that allows harmonized susceptibility testing of the pathogen. The method meets the requirements of the CLSI and could be used by diagnostic laboratories.
Collapse
Affiliation(s)
- Franziska Gütgemann
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | | | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Yury Churin
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | | | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Franziska Kumm
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ann Sophie Braun
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Edgardo Soriano-Vargas
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | - Miranda Kirchner
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Badawy B, Moustafa S, Shata R, Sayed-Ahmed MZ, Alqahtani SS, Ali MS, Alam N, Ahmad S, Kasem N, Elbaz E, El-Bahkiry HS, Radwan RM, El-Gohary A, Elsayed MM. Prevalence of Multidrug-Resistant Pseudomonas aeruginosa Isolated from Dairy Cattle, Milk, Environment, and Workers' Hands. Microorganisms 2023; 11:2775. [PMID: 38004786 PMCID: PMC10672731 DOI: 10.3390/microorganisms11112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing severe infection in animals and humans. This study aimed to determine the ecological distribution and prevalence of multidrug-resistant (MDR) P. aeruginosa isolated from dairy cattle, the environment, and workers' hand swabs. Samples (n = 440) were collected from farms and households (n = 3, each). Rectal swabs, udder skin swabs, milk, workers' hand swabs, feed, water, water sources, and beddings were collected. Samples were subjected to the bacterial identification of P. aeruginosa via 16S rRNA. Antimicrobial resistance (AMR) was detected either phenotypically using an antibiotic susceptibility test or genotypically with AMR resistance genes (ARGs) such as drfA, sul1, and ermB. P. aeruginosa was detected on dairy farms and households (10.3-57.5%, respectively), with an average of 23.2%. The resistance of dairy farm strains was observed against sulfamethoxazole, imipenem, cefepime, piperacillin-tazobactam, and gentamycin (100%, 72.7%, 72.7%, 68.8%, and 63.3%, respectively). Meanwhile, the resistance of household strains was observed against sulfamethoxazole, imipenem, amoxicillin, gentamicin, cefepime, and erythromycin by 91.3%, 82.6%, 75.4%, 75.4%, 68.1%, and 63.8%, respectively. The susceptibility of farm strains was detected against norfloxacin, ciprofloxacin, and levofloxacin (90.9%, 84.8%, and 72.7%, respectively). Meanwhile, the susceptibility of household strains was detected against ciprofloxacin, amikacin, and norfloxacin (100%, 84.1%, and 72.5%, respectively). About 81.4% of P. aeruginosa strains were MDR. ARGs (drfA, sul1, and ermB) were detected in farm strains (48.5%, 72.7%, and 24.4%, respectively) and household strains (50.7%, 72.5%, and 47.8%, respectively). Almost all P. aeruginosa had MAR over 0.2, indicating repeated application of antibiotics. P. aeruginosa prevalence was fivefold higher in households than on farms. MDR strains were higher amongst household strains than farm strains.
Collapse
Affiliation(s)
- Basma Badawy
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Moustafa
- Department of Zoonoses, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt
| | - Radwa Shata
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Z Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
| | - Nahed Kasem
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elzahara Elbaz
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hesham S El-Bahkiry
- Department of Diagnostic Radiography Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 82722, Saudi Arabia
| | - Reda M Radwan
- Department of Diagnostic Radiography Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 82722, Saudi Arabia
| | - Adel El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
7
|
Mumbo MT, Nyaboga EN, Kinyua JK, Muge EK, Mathenge SGK, Rotich H, Muriira G, Njiraini B, Njiru JM. Antimicrobial resistance profiles of salmonella spp. and escherichia coli isolated from fresh nile tilapia (oreochromis niloticus) fish marketed for human consumption. BMC Microbiol 2023; 23:306. [PMID: 37880584 PMCID: PMC10601154 DOI: 10.1186/s12866-023-03049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Salmonella spp. and pathogenic strains of Escherichia coli are among the major foodborne zoonotic pathogens. These bacterial pathogens cause human illnesses characterized by hemorrhagic colitis, vomiting, nausea, and other agent-related symptoms. The increasing occurrence of antimicrobial resistance in these pathogens is also a serious public health concern globally. Regular surveillance of phenotypes and genotypes of Salmonella spp. and Escherichia coli from animal-derived foods is necessary for effective reduction and control of these foodborne pathogens. This study was conducted to assess the occurrence, antimicrobial resistance, virulence genes and genetic diversity of Salmonella spp. and E. coli isolates from fresh Nile tilapia obtained from retail markets in Nairobi, Kenya. METHODS A total of 68 fresh Nile tilapia fish samples were collected from retail markets and used for isolation of Salmonella spp. and E. coli. Antimicrobial susceptibilities of the isolates weretested by Kirby-Bauer agar disc diffusion method. According to the antimicrobial resistance profiles, the multi-drug resistant isolates were identified by 16 S rRNA sequencing and phylogenetic analysis using the Bayesian inference method. The MDR Salmonella spp. and E. coli isolates were subjected to PCR-based screening for the detection virulence and antibiotic resistance genes. RESULTS The prevalence of contamination of the fish samples with Salmonella spp. and E.coli was 26.47% and 35.29% respectively. Overall phenotypic resistance among the Salmonella spp. ranged from 5.5% for ceftazidime, chloramphenicol, meropenem, nitrofurantoin and streptomycin and 22.2% for penicillin-G. For E. coli phenotypic resistance ranged from 4.2% for ceftazidime and chloramphenicol and 25% for rifampicin. Multi-drug resistance was observed in three Salmonella spp. and two E. coli isolates. Results of 16 S rRNA sequences, sequence alignment and phylogenic trees confirmed the identified MDR isolates as S. typhymurium WES-09, S. typhymurium MAK-22, S. typhimurium EMB-32 and E. coli MAK-26 and E. coli LAN-35. The presence of antibiotic-resistance genes belonging to β-lactamases, tetracycline, sulfonamide, trimethoprim and aminoglycosides-resistant genes were detected in all the identified MDR isolates. CONCLUSIONS The findings from this study indicate that Nile tilapia (Oreochromis niloticus) sold in retail markets can acts as reservoirs of Salmonella spp. and E. coli pathogens linked to human disease, some of which were multidrug resistance to critically important antimicrobials. Both microorganisms are of zoonotic significance and represent a significant public health risk to the society.
Collapse
Affiliation(s)
- Millicent T Mumbo
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Evans N Nyaboga
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya.
| | - Johnson K Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Edward K Muge
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Henry Rotich
- Research and development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Geoffrey Muriira
- Research and development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Bernard Njiraini
- Research and development Department, Kenya Bureau of Standards, Nairobi, Kenya
| | - Joshua M Njiru
- Research and development Department, Kenya Bureau of Standards, Nairobi, Kenya
| |
Collapse
|
8
|
LIN T, NOMURA S, SOMENO S, ABE T, NISHIYAMA M, SHIKI S, HARIMA H, ISHIHARA K. Role of multidrug resistance and co-resistance on a high percentage of streptomycin resistance in Escherichia coli isolated from chicken meats in Japan. J Vet Med Sci 2023; 85:832-836. [PMID: 37344389 PMCID: PMC10466057 DOI: 10.1292/jvms.23-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
We focused on streptomycin resistance because of the high percentage of streptomycin-resistant Escherichia coli concerning the amount used of streptomycin. Antimicrobial resistance and horizontal transfer were identified in 117 isolates of coliform bacteria from chicken meat to identify the factors that increase streptomycin resistance. Escherichia (45 isolates) was the predominant genus. Most streptomycin-resistant Escherichia isolates were resistant to other antimicrobials (17/18), suggesting that using various antimicrobials could select streptomycin-resistant Escherichia isolates. Resistance was transferred from 7 out of the 18 streptomycin-resistant isolates. The transconjugants acquired strA/strB (7/7), blaTEM (5/7), aphA1 (5/7), tetB (3/7), dfrA14 (1/7) and/or dfrA17 (1/7). The co-resistance of streptomycin resistance with other resistances would also increase streptomycin resistance.
Collapse
Affiliation(s)
- Thein LIN
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- International Innovative Agricultural Science Course,
Department of Agriculture, Graduate School of Agriculture, Tokyo University of Agriculture
and Technology, Tokyo, Japan
| | - Shizuka NOMURA
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Suzuka SOMENO
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takahiro ABE
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Miyuki NISHIYAMA
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunya SHIKI
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hayato HARIMA
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kanako ISHIHARA
- Laboratory of Veterinary Public Health, Faculty of
Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Alajmi RZ, Alfouzan WA, Mustafa AS. The Prevalence of Multidrug-Resistant Enterobacteriaceae among Neonates in Kuwait. Diagnostics (Basel) 2023; 13:diagnostics13081505. [PMID: 37189605 DOI: 10.3390/diagnostics13081505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Increasing numbers of neonates with serious bacterial infections, due to resistant bacteria, are associated with considerable morbidity and mortality rates. The aim of this study was to evaluate the prevalence of drug-resistant Enterobacteriaceae in the neonatal population and their mothers in Farwaniya Hospital in Kuwait and to determine the basis of resistance. Rectal screening swabs were taken from 242 mothers and 242 neonates in labor rooms and wards. Identification and sensitivity testing were performed using the VITEK® 2 system. Each isolate flagged with any resistance was subjected to the E-test susceptibility method. The detection of resistance genes was performed by PCR, and the Sanger sequencing method was used to identify mutations. Among 168 samples tested by the E-test method, no MDR Enterobacteriaceae were detected among the neonates, while 12 (13.6%) isolates from the mothers' samples were MDR. ESBL, aminoglycosides, fluoroquinolones, and folate pathway inhibitor resistance genes were detected, while beta-lactam-beta-lactamase inhibitor combinations, carbapenems, and tigecycline resistance genes were not. Our results showed that the prevalence of antibiotic resistance in Enterobacteriaceae obtained from neonates in Kuwait is low, and this is encouraging. Furthermore, it is possible to conclude that neonates are acquiring resistance mostly from the environment and after birth but not from their mothers.
Collapse
Affiliation(s)
- Rehab Zafer Alajmi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | - Wadha Ahmed Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
- Microbiology Unit, Department of Laboratory Medicine, Farwaniya Hospital, Ministry of Health, Farwaniya 80000, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
10
|
Williams NLR, Siboni N, McLellan SL, Potts J, Scanes P, Johnson C, James M, McCann V, Seymour JR. Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119456. [PMID: 35561796 DOI: 10.1016/j.envpol.2022.119456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Collapse
Affiliation(s)
- Nathan L R Williams
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sandra L McLellan
- University of Wisconsin-Milwaukee, School of Freshwater Sciences, 600 E Greenfield Ave, Milwaukee, WI, USA
| | - Jaimie Potts
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Peter Scanes
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Colin Johnson
- Waters, Wetlands, Coasts Science Branch, NSW Department of Primary Industries and Environment, Lidcombe, NSW, 2141, Australia
| | - Melanie James
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Vanessa McCann
- Central Coast Council, Hely Street, Wyong, NSW, 2259, Australia
| | - Justin R Seymour
- Climate Change Cluster Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
12
|
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin
E. coli
and whole‐genome sequencing analysis of a multidrug‐resistant
E. coli
O100:H25 strain. J Food Saf 2022. [DOI: 10.1111/jfs.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gorkem Cengiz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Bahar Onaran Acar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Busra Yesilkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gizem Levent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- School of Veterinary Medicine Texas Tech University Amarillo Texas USA
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
13
|
Somorin YM, Weir NJM, Pattison SH, Crockard MA, Hughes CM, Tunney MM, Gilpin DF. Antimicrobial resistance in urinary pathogens and culture-independent detection of trimethoprim resistance in urine from patients with urinary tract infection. BMC Microbiol 2022; 22:144. [PMID: 35610571 PMCID: PMC9128081 DOI: 10.1186/s12866-022-02551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the susceptibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes (dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary pathogens and from urine without culture. Methods Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, ciprofloxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94). Results Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an MIC90 > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Klebsiella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; NPV = 86.1%). Conclusions This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim resistance without the need for culture and susceptibility testing. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02551-9.
Collapse
Affiliation(s)
- Yinka M Somorin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Nichola-Jane M Weir
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Sally H Pattison
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road,, Belfast, Northern Ireland
| | - Martin A Crockard
- Randox Laboratories Ltd, 55 The Diamond Road, Crumlin, Northern Ireland
| | - Carmel M Hughes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Michael M Tunney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
| | - Deirdre F Gilpin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland.
| |
Collapse
|
14
|
Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Sci Rep 2022; 12:6062. [PMID: 35410349 PMCID: PMC9001716 DOI: 10.1038/s41598-022-09996-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
A global increase in the populations of drug resistant bacteria exerts negative effects on animal production and human health. Our study has been focused on the assessment of resistance determinants in relation to phenotypic resistance of the 74 commensal E. coli isolates present in different ecological environments. The samples were collected from poultry litter, feces, and neck skin. Among the microorganisms isolated from the poultry litter (group A), the highest resistance was noted against AMP and DOX (100%). In the E. coli extracts from the cloacal swabs (group B), the highest resistance was observed against AMP (100%) and CIP (92%). The meat samples (group C) were characterized by resistance to AMP (100%) and STX (94.7%). Genes encoding resistance to β-lactams (blaTEM, blaCTX-M), fluoroquinolones (qnrA, qnrB, qnrS), aminoglycosides (strA-strB, aphA1, aac(3)-II), sulfonamides (sul1, sul2, sul3), trimethoprim (dfr1, dfr5, dfr7/17) and tetracyclines (tetA, tetB) were detected in the studied bacterial isolates. The presence of class 1 and 2 integrons was confirmed in 75% of the MDR E. coli isolates (plasmid DNA), of which 60% contained class 1 integrons, 15% contained class 2 integrons, and 11.7% carried integrons of both classes. Thus, it may be concluded that integrons are the common mediators of antimicrobial resistance among commensal multidrug resistant Escherichia coli at important stages of poultry production.
Collapse
|
15
|
Virulence Profiles and Antibiotic Susceptibility of Escherichia coli Strains from Pet Reptiles. Pathogens 2022; 11:pathogens11020127. [PMID: 35215071 PMCID: PMC8880193 DOI: 10.3390/pathogens11020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Exotic reptiles are increasingly being bred as pets in many countries around the world, including Poland. However, the close contact between reptiles and their owners provides favourable conditions for the transmission of zoonotic pathogens. In this work, we examined E. coli isolates from 67 captive reptiles regarding their virulence, antibiotic susceptibility, phylogenetic affiliation, and genetic diversity. The incidence of E. coli was highest in snakes (51.6%, 16 isolates/31 samples), and slightly lower in turtles (44.4%, 8/18) and lizards (44.4%, 8/18). Genes encoding virulence factors were confirmed in 50% of isolates and the most common were the traT (37.5%, n = 12), fyuA (21.87%, n = 7), and irp-2 (15.62%, n = 5). The majority (71.87%, n = 23) of E. coli isolates were susceptible to all of the antimicrobial substances used in the study. Streptomycin resistance (21.87%, n = 7) was the most frequent, while resistance to other antimicrobial substances was sporadic. One strain (3.12%) was classified as multidrug-resistant. The presence of resistance genes (aadA, tetA, tetB, tetM, and blaTEM) was confirmed in 12.5% (n = 4) of the isolates. The majority (65.6%, n = 21) of E. coli isolates represented the B1 phylogenetic group. (GTG)5-PCR fingerprinting showed considerable genetic variation in the pool of tested isolates. The frequency of E. coli in reptiles is much lower than in mammals or birds. Due to the presence of virulence genes, characteristic of both intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC), reptilian strains of E. coli have pathogenic potential, and therefore people in contact with these animals should follow good hygiene practices.
Collapse
|
16
|
Sacher-Pirklbauer A, Klein-Jöbstl D, Sofka D, Blanc-Potard AB, Hilbert F. Phylogenetic Groups and Antimicrobial Resistance Genes in Escherichia coli from Different Meat Species. Antibiotics (Basel) 2021; 10:antibiotics10121543. [PMID: 34943755 PMCID: PMC8698590 DOI: 10.3390/antibiotics10121543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli isolated from meat of different animal species may harbour antimicrobial resistance genes and may thus be a threat to human health. The objectives of this study were to define antimicrobial resistance genes in E. coli isolates from pork, beef, chicken- and turkey meat and analyse whether their resistance genotypes associated with phylogenetic groups or meat species. A total number of 313 E. coli samples were isolated using standard cultural techniques. In 98% of resistant isolates, a dedicated resistance gene could be identified by PCR. Resistance genes detected were tet(A) and tet(B) for tetracycline resistance, strA and aadA1 for streptomycin resistance, sulI and sulII for resistance against sulphonamides, dfr and aphA for kanamycin resistance and blaTEM for ampicillin resistance. One stx1 harbouring E. coli isolated from pork harboured the tet(A) gene and belonged to phylogenetic group B2, whilst another stx1 positive isolate from beef was multi-resistant and tested positive for blaTEM,aphA, strA–B, sulII, and tet(A) and belonged to phylogenetic group A. In conclusion, the distribution of resistance elements was almost identical and statistically indifferent in isolates of different meat species. Phylogenetic groups did not associate with the distribution of resistance genes and a rather low number of diverse resistance genes were detected. Most E. coli populations with different resistance genes against one drug often revealed statistically significant different MIC values.
Collapse
Affiliation(s)
- Angelika Sacher-Pirklbauer
- Institute of Food Safety, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.-P.); (D.S.)
| | - Daniela Klein-Jöbstl
- Section of Herd Management, Clinic for Ruminats, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Dmitrij Sofka
- Institute of Food Safety, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.-P.); (D.S.)
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, 34095 Montpellier, France;
- CNRS, UMR 5235, 34095 Montpellier, France
| | - Friederike Hilbert
- Institute of Food Safety, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (A.S.-P.); (D.S.)
- Correspondence: ; Tel.: +43-125-0773-316
| |
Collapse
|
17
|
Rameshkumar MR, Arunagirinathan N, Senthamilselvan B, Swathirajan CR, Solomon SS, Vignesh R, Balakrishnan P, Aljowaie RM, Almaary KS, Chen TW. Occurrence of extended-spectrum β-lactamase, AmpC, and carbapenemase-producing genes in gram-negative bacterial isolates from human immunodeficiency virus infected patients. J Infect Public Health 2021; 14:1881-1886. [PMID: 34810142 DOI: 10.1016/j.jiph.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Progressive decline of immune response in HIV patients makes them susceptible to frequent bacterial infections. High usage of antibiotics influences the emergence of multidrug-resistant bacteria and worsens the clinical outcomes. In this study, the occurrence of drug-resistant genes in Gram-negative bacterial isolates from HIV patients in South India was analyzed. METHODS A total of 173 Gram-negative bacterial (GNB) isolates from HIV patients were screened for antibiotic susceptibility profile using the Kirby-Bauer diskdiffusion method. Positivity of drug-resistant genes was analyzed using polymerase chain reaction method. RESULTS In this study, 72.8% of bacterial isolates were obtained from urine specimens, and Escherichia coli (47.4%) was the predominantly isolated bacterium. Overall, 87.3% and 83.2% of GNB were resistant to 3rd generation cephalosporin antibiotics such as cefotaxime and ceftazidime, respectively, 56.6% were resistant to cephamycin (cefoxitin) and 43% to carbapenem (imipenem) antibiotics. Extended-spectrum β-lactamases (ESBL) production was noted among 79.5% of GNB isolates, followed by AmpC (57.1%) and Metallo β-lactamases (37.3%). Molecular analysis revealed that ESBL genes such as blaTEM (94.1%), blaCTX-M (89.2%), and blaSHV (24.2%) were detected at higher levels among GNB isolates. Carbapenemase-producing genes such as blaOXA-48 (20%), blaOXA-23 (2.6%), and both blaOXA-23 and blaOXA-51 like genes (2.6%) and AmpC producing genes such as blaCIT (26.7%), blaDHA (3.6%), and blaACC (1.8%) were detected at low-level. CONCLUSIONS This study concludes that ESBL producing genes are detected at high level among gram-negative bacterial isolates from HIV patients in South India.
Collapse
Affiliation(s)
- Marimuthu Ragavan Rameshkumar
- Department of Microbiology and Biotechnology, Presidency College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, India
| | - Narasingam Arunagirinathan
- Department of Microbiology and Biotechnology, Presidency College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, India; Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, India.
| | - Balasubramanian Senthamilselvan
- Department of Microbiology and Biotechnology, Presidency College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, India
| | | | - Sunil Suhas Solomon
- HIV Clinic, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ramachandran Vignesh
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India; Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak (RCMP UniKL), Ipoh, Malaysia
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, Y.R. Gaitonde Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
The Molecular Epidemiology of Resistance to Antibiotics among Klebsiella pneumoniae Isolates in Azerbaijan, Iran. J Trop Med 2021; 2021:9195184. [PMID: 34335793 PMCID: PMC8294964 DOI: 10.1155/2021/9195184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Klebsiella pneumoniae (K. pneumoniae) is one of the leading causes of hospital-acquired and community-acquired infections in the world. This study was conducted to investigate the molecular epidemiology of drug resistance in clinical isolates of K. pneumoniae in Azerbaijan, Iran. Materials and Methods A total of 100 nonduplicated isolates were obtained from the different wards of Azerbaijan state hospitals, Iran, from 2019 to 2020. Antibiotic susceptibility testing was done. The DNA was extracted, and the PCR for evaluation of the resistance genes was carried out. Results The highest antibiotic resistance was shown to ampicillin (96%), and the highest susceptibility was shown to tigecycline (9%), and 85% of isolates were multidrug resistant. The most frequent ESBL gene in the tested isolates was bla SHV-1 in 58%, followed by bla CTXM-15 (55%) and bla SHV-11 (42%). The qepA, oqxB, and oqxA genes were found to be 95%, 87.5%, and 70%, respectively. We detected tetB in 42%, tetA in 32%, tetD in 21%, and tetC in 16%. Seventy isolates were resistant to co-trimoxazole, and the rate of resistance genes was sul1 in 71%, followed by sul2 (43%), dfr (29%), and sul3 (7%). The most common aminoglycoside resistance genes were ant3Ia, aac6Ib, aph3Ib, and APHs in 44%, 32%, 32%, and 31.4%, respectively. The most frequent resistance gene to fosfomycin was fosA (40%) and fosX (40%) followed by fosC (20%). Conclusion The results of this study indicate the high frequency of drug resistance among K. pneumoniae isolated from hospitals of Azerbaijan state. The present study shows the presence of high levels of drug-resistant genes in various antibiotics, which are usually used in the treatment of infections due to K. pneumoniae.
Collapse
|
19
|
Navedo JG, Araya V, Verdugo C. Upraising a silent pollution: Antibiotic resistance at coastal environments and transference to long-distance migratory shorebirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146004. [PMID: 33689894 DOI: 10.1016/j.scitotenv.2021.146004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of antibiotics from different sources have been released into coastal environments, especially in high human-populated areas, but comprehensive studies of antibiotic footprint in wildlife are scarce. Here we assess occurrence of antibiotic resistant bacteria (ARB) and antibiotic resistance gene (ARG) both in sediments and gut microbiota of a long-distance migratory shorebird species in two coastal wetlands at a sparsely-populated area in Pacific Patagonian coasts with contrasting potential antibiotic sources, especially from aquaculture. We found 62% of sediment samples showing ARB, and ARGs similarly occurring in sediments at both bays. However multi-resistant ARB were found only at sediments in the bay surrounding aquaculture operations. An 87% of cloacal bird samples showed at least one ARB, with 63% being multi-resistant and some of them with a high potential pathogenicity. ARGs were present in 46% of the samples from birds, with similar multi-resistant frequencies among bays. Besides specific differences mainly associated to antibiotics used in salmon aquaculture that boosted ARB in sediments, ARB and ARGs occurrence was overall similar at two bays with contrasting main human activities, in spite of being a comparatively low human-populated area. Therefore, our results reinforce the idea that the antibiotic footprint may be widespread at a global scale and can extend beyond the geographical influence of antibiotic sources, especially at coastal environments where migratory shorebirds act both as reservoirs and potential spreaders of antibiotic resistance.
Collapse
Affiliation(s)
- Juan G Navedo
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Chile; Estación Experimental Quempillén (Chiloé), Facultad de Ciencias, Universidad Austral de Chile, Chile.
| | - Valeria Araya
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Chile
| | - Claudio Verdugo
- Ecology and Evolution of Infectious Diseases Lab, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| |
Collapse
|
20
|
Abd El-Aziz NK, Ammar AM, El Damaty HM, Abd Elkader RA, Saad HA, El-Kazzaz W, Khalifa E. Environmental Streptococcus uberis Associated with Clinical Mastitis in Dairy Cows: Virulence Traits, Antimicrobial and Biocide Resistance, and Epidemiological Typing. Animals (Basel) 2021; 11:1849. [PMID: 34206268 PMCID: PMC8300258 DOI: 10.3390/ani11071849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Mastitis remains a serious problem for dairy animals. The misappropriation of antimicrobial agents helps accelerate resistance, which poses a serious challenge in controlling environmental S. uberis infection. Here, we study the virulence attributes, antimicrobial and biocide resistance, and epidemiological typing of S. uberis recovered from bovine clinical mastitis in dairy farms of diverse hygienic interventions in Egypt. The overall S. uberis infection rate was 20.59%; all were multidrug-resistant (MDR). The sua gene was the most frequent virulence gene (42.02%), followed by pauA (40.57%), cfu (21.73%), skc (20.28%), and opp (11.59%). The erm(B) gene served as the predominant antimicrobial-resistant gene (75.36%), followed by fexA (52.63%) and tet(M), blaZ, and aac(6')aph(2″) genes (46.38% each). Of note, 79.71%, 78.26%, and 18.84% of S. uberis isolates harbored qacED1, qacC/D, and qacA/B genes, respectively. All analyzed isolates were S. uberis type I by their unique RFLP-PCR pattern. In conclusion, the sustained presence of pauA and sua genes throughout the investigated farms contributes to a better understanding of the bacterium's pathogenicity. Furthermore, MDR coupled with the existence of biocide resistance genes indicates the importance of S. uberis surveillance and the prudent use of antimicrobials in veterinary clinical medicine to avoid the dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Hend M El Damaty
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rehab A Abd Elkader
- Belbies Veterinary Organization, Ministry of Agriculture, Belbies 44974, Egypt
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed El-Kazzaz
- Molecular Microbiology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| |
Collapse
|
21
|
Lemay-St-Denis C, Diwan SS, Pelletier JN. The Bacterial Genomic Context of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases Highlights an Emerging Threat to Public Health. Antibiotics (Basel) 2021; 10:433. [PMID: 33924456 PMCID: PMC8103504 DOI: 10.3390/antibiotics10040433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Type B dihydrofolate reductase (dfrb) genes were identified following the introduction of trimethoprim in the 1960s. Although they intrinsically confer resistance to trimethoprim (TMP) that is orders of magnitude greater than through other mechanisms, the distribution and prevalence of these short (237 bp) genes is unknown. Indeed, this knowledge has been hampered by systematic biases in search methodologies. Here, we investigate the genomic context of dfrbs to gain information on their current distribution in bacterial genomes. Upon searching publicly available databases, we identified 61 sequences containing dfrbs within an analyzable genomic context. The majority (70%) of those sequences also harbor virulence genes and 97% of the dfrbs are found near a mobile genetic element, representing a potential risk for antibiotic resistance genes. We further identified and confirmed the TMP-resistant phenotype of two new members of the family, dfrb10 and dfrb11. Dfrbs are found both in Betaproteobacteria and Gammaproteobacteria, a majority (59%) being in Pseudomonas aeruginosa. Previously labelled as strictly plasmid-borne, we found 69% of dfrbs in the chromosome of pathogenic bacteria. Our results demonstrate that the intrinsically TMP-resistant dfrbs are a potential emerging threat to public health and justify closer surveillance of these genes.
Collapse
Affiliation(s)
- Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Sarah-Slim Diwan
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
| | - Joelle N. Pelletier
- Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; (C.L.-S.-D.); (S.-S.D.)
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC H3A 0B8, Canada
- Chemistry Department, Université de Montréal, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
22
|
Genetic characterization, mechanisms and dissemination risk of antibiotic resistance of multidrug-resistant Rothia nasimurium. INFECTION GENETICS AND EVOLUTION 2021; 90:104770. [PMID: 33588066 DOI: 10.1016/j.meegid.2021.104770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Rothia nasimurium is part of the commensal flora of humans and other animals and has recently received increasing attention for its multidrug-resistance (MDR) and pathogenicity. Currently, no systematic reports characterize the genetics, mechanisms, and dissemination risks of antibiotic resistance in MDR R. nasimurium. Here, we present the first report outlining a MDR strain of R. nasimurium, E1706032a, isolated from ducks exhibiting clinical sickness. Phylogenetic analysis indicates that E1706032a mostly likely originated in the commensal bacteria of Amazona aestiva in Florida. E1706032a is resistant to beta-lactams, aminoglycosides, macrolides, sulfonamides, fluoroquinolones, rifamycins, tetracyclines, lincosamides and chloramphenicol. Genetic sequences related to drug resistance were detected, including resistance genes (aac(6')-Ib, ant(3″)-Ia, sul1, dfrA7, erm(X)), efflux pumps (tetZ, qacEΔ1, cmx, phosphate ABC transporter ATP-binding protein), and resistance-related proteins (hydrolase of the metallo-beta-lactamase (MBLs), mycinamicin resistance protein (myrA), DNA-directed RNA polymerase subunit beta (rpoB) variants, etc). E1706032a carries an IS481-like element, IS5564 and IS6-like elements, and IS6100 along with several novel transposases of the IS3 family. E1706032a also carries the class 1 integron gene IntI1, which is downstream adjacent to the gene cassettes aac(6')-Ib, tetZ, dfrA27, ant(3″)-Ia, qacEΔ1, sul1, cmx and upstream adjacent to gene tnpA of IS6100. Genetic analysis suggests that E1706032a carries wide antibiotic resistance and dissemination potential through movable elements and thus has the potential to cause difficult-to-treat infections in animals and humans. The dissemination of E1706032a from parrots in Florida to ducks in eastern China indicates a cross-regional public health infection risk that should be evaluated for risk of global spreading.
Collapse
|
23
|
Kraupner N, Ebmeyer S, Hutinel M, Fick J, Flach CF, Larsson DGJ. Selective concentrations for trimethoprim resistance in aquatic environments. ENVIRONMENT INTERNATIONAL 2020; 144:106083. [PMID: 32890888 DOI: 10.1016/j.envint.2020.106083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 05/14/2023]
Abstract
Antibiotic resistance presents a serious and still growing threat to human health. Environmental exposure levels required to select for resistance are unknown for most antibiotics. Here, we evaluated different experimental approaches and ways to interpret effect measures, in order to identify what concentration of trimethoprim that are likely to select for resistance in aquatic environments. When grown in complex biofilms, selection for resistant E. coli increased at 100 µg/L, whereas there was only a non-significant trend with regards to changes in taxonomic composition within the tested range (0-100 µg/L). Planktonic co-culturing of 149 different E. coli strains isolated from sewage again confirmed selection at 100 µg/L. Finally, pairwise competition experiments were performed with engineered E. coli strains carrying different trimethoprim resistance genes (dfr) and their sensitive counterparts. While strains with introduced resistance genes grew slower than the sensitive ones at 0 and 10 µg/L, a significant reduction in cost was found already at 10 µg/L. Defining lowest effect concentrations by comparing proportion of resistant strains to sensitive ones at the same time point, rather than to their initial ratios, will reflect the advantage a resistance factor can bring, while ignoring exposure-independent fitness costs. As costs are likely to be highly dependent on the specific environmental and genetic contexts, the former approach might be more suitable as a basis for defining exposure limits with the intention to prevent selection for resistance. Based on the present and other studies, we propose that 1 µg/L would be a reasonably protective exposure limit for trimethoprim in aquatic environments.
Collapse
Affiliation(s)
- Nadine Kraupner
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marion Hutinel
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
24
|
El Latif AMA, Elabd H, Amin A, Eldeen AIN, Shaheen AA. High mortalities caused by Aeromonas veronii:identification, pathogenicity, and histopathologicalstudies in Oreochromis niloticus. AQUACULTURE INTERNATIONAL 2019; 27:1725-1737. [DOI: 10.1007/s10499-019-00429-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 09/02/2023]
|
25
|
Use of synthesized double-stranded gene fragments as qPCR standards for the quantification of antibiotic resistance genes. J Microbiol Methods 2019; 164:105670. [PMID: 31325465 DOI: 10.1016/j.mimet.2019.105670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
Abstract
Pollution of various environmental matrices by antibiotic resistance genes (ARGs) has become a growing threat to human health. For the quantitative analysis of the presence of ARGs, there is a need for sensitive and robust qPCR assays which can detect various genes from different types of DNA extracts. Fourteen ARGs were selected as target genes in this study including: blaTEM, blaOXA-1 and blaCTX-M coded for resistance to β-lactams; ermB for macrolides; tetA, tetG, tetM, tetQ, tetW and tetX for tetracyclines; sul I and sul II for sulfonamides; drfA1 and drfA12 d for trimethoprim; and integron gene intI 1 and intI 2. Chemically synthesized double-stranded gene fragments were modified using molecular biology methods and used as real-time PCR standards as well as to establish in-house qPCR assays. The ermB gene from a naturally occurring plasmid was used to compare the performance of qPCR assay with the chemically synthesized ermB. Additionally, environmental water, soil and faeces samples were used to validate the established qPCR assays. Importantly, the study proves the usefulness of rapidly synthesized oligonucleotides serving as qPCR standards for ARG analysis and provides comparable sensitivity and reliability to a traditional amplicon standard.
Collapse
|
26
|
Joshi PR, Thummeepak R, Paudel S, Acharya M, Pradhan S, Banjara MR, Leungtongkam U, Sitthisak S. Molecular Characterization of Colistin-Resistant Escherichia coli Isolated from Chickens: First Report from Nepal. Microb Drug Resist 2019; 25:846-854. [PMID: 30874473 DOI: 10.1089/mdr.2018.0326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dissemination of mcr-1 encoding colistin resistance in Gram-negative bacteria has created critical situation in poultry, livestock farming, and public health. In Nepal, for the first time, we initiated surveillance of colistin-resistant Escherichia coli in broilers from seven different chicken farms. A total of 324 cloacal swabs were collected and 118 E. coli were isolated, of which 27 (22.8%) were colistin resistance all harboring mcr-1 gene, but lacking ISApI1. Colistin-resistant isolates were characterized by antibiotic susceptibility testing, detecting antibiotic resistance genes, phylogenetic analysis, and plasmid replicon typing. These isolates belonged to the phylo-group A (70.37%) and phylo-group D (29.63%). In addition, most isolates (>80%) were resistant to ciprofloxacin, tetracycline, and sulfamethoxazole-trimethoprim. As much as 3 of the 27 mcr-1 encoding isolates were confirmed as extended-spectrum β-lactamase (ESBL) producer, all 3 isolates carrying blaCTX-M gene. We performed the conjugation experiment to check transferability of mcr-1, tet, and blaCTX-M genes, and only two donors were found to have transferred resistance to ticarcillin. The transfer of colistin and tetracycline resistance was not detected, which suggests the chromosomal location of mcr-1 and tet genes. The prevalence of Inc K/B and Inc I1 was 96.3% and 81.48%, respectively. This study shows the co-existence of mcr-1 with tet, sul, qnr, dfr, and blaCTX-M genes and dissemination of these resistant isolates in Nepalese chicken farms, which may pose huge threat to the livestock, especially chickens, and public health in Nepal.
Collapse
Affiliation(s)
| | - Rapee Thummeepak
- 2 Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sriju Pradhan
- 3 Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Megha Raj Banjara
- 3 Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Udomluk Leungtongkam
- 2 Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- 2 Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,4 Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
27
|
Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS One 2018; 13:e0208269. [PMID: 30496274 PMCID: PMC6264143 DOI: 10.1371/journal.pone.0208269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
There is little information about environmental contamination with antibiotic resistance genes (ARG) in Sub-Saharan Africa, home to about 1 billion people. In this study we measured the abundance of three genes (sul1, sul2, and intI1) used as indicators of environmental contamination with ARGs in the sediments of four urban wetlands in southwestern Nigeria by qPCR. In addition, we characterised the variable regions of class 1 integrons in sulfamethoxazole/trimethoprim (SMX/TRI)-resistant bacteria isolated from the wetlands by PCR and DNA sequencing. The indicator ARGs were present in all wetlands with mean absolute copy numbers/gram of sediment ranging between 4.7x106 and 1.2x108 for sul1, 1.1x107 and 1x108 for sul2, and 5.3x105 and 1.9x107 for intI1. The relative abundances (ARG/16S rRNA copy number) ranged from about 10-3 to 10-1. These levels of ARG contamination were similar to those previously reported for polluted environments in other parts of the world. The integrase genes intI1 and intI2 were detected in 72% and 11.4% SMX/TRI-resistant isolates, respectively. Five different cassette array types (dfrA7; aadA2; aadA1|dfrA1; acc(6')lb-cr|arr3|dfrA27; arr3|acc(6')lb-cr|dfrA27) were detected among 34 (59.6%) intI1-positive isolates. No gene cassettes were found in the nine intI2-positive isolates. These results show that African urban ecosystems impacted by anthropogenic activities are reservoirs of bacteria harbouring transferable ARG.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Therese Helbig
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Biology/Microbiology Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
- Institute of Instrumental & Environmental Technology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Franziska Reincke
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Ines Mäusezahl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| |
Collapse
|
28
|
Rameshkumar MR, Arunagirinathan N, Swathirajan CR, Vignesh R, Balakrishnan P, Solomon SS. Do the clonally different Escherichia coli isolates causing different infections in a HIV positive patient affect the selection of antibiotics for their treatment? Indian J Med Res 2018; 148:341-344. [PMID: 30425226 PMCID: PMC6251270 DOI: 10.4103/ijmr.ijmr_730_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Marimuthu Ragavan Rameshkumar
- Department of Microbiology and Biotechnology, Presidency College (Autonomous); Infectious Diseases Laboratory, YRG Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Narasingam Arunagirinathan
- Department of Microbiology and Biotechnology, Presidency College (Autonomous); Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, India
| | | | - Ramachandran Vignesh
- Infectious Diseases Laboratory, YRG Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India; Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, YRG Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India
| | - Sunil Suhas Solomon
- Infectious Diseases Laboratory, YRG Centre for AIDS Research and Education, Voluntary Health Services Hospital Campus, Chennai, India; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
29
|
Mazurek J, Bok E, Baldy-Chudzik K. Complexity of Antibiotic Resistance in Commensal Escherichia coli Derived from Pigs from an Intensive-Production Farm. Microbes Environ 2018; 33:242-248. [PMID: 30210140 PMCID: PMC6167118 DOI: 10.1264/jsme2.me17041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antibiotics in animal husbandry are used to maintain welfare, but lead to the generation of resistant strains. We analyzed commensal multidrug-resistant Escherichia coli from pigs at the beginning and end of the production cycle in a farm with a farrow-to-finish system in order to investigate whether clonal spread or horizontal gene transfer constitutes the main factor responsible for the prevalence of resistance in this environment. Among 380 isolates, 56 multidrug-resistant E. coli with a similar resistant phenotype were selected for more detailed investigations including a genomic similarity analysis and the detection of mobile elements. Isolates carried blaTEM-1, aadA1, strA/B, tetA, tetB, tetC, dfrA1, dfrA5, dfrA7, dfrA12, sul1, sul2, sul3, and qnrS resistance genes, with the common co-occurrence of genes encoding the same resistance phenotype. A pulse-field gel electrophoresis analysis of the genomic similarity of multidrug-resistant E. coli showed ≤65% similarity of most of the tested strains and did not reveal a dominant clone responsible for the prevalence of resistance. Class 1 and 2 integrons and transposons 7 and 21 were detected among mobile elements; however, some were truncated. Plasmids were represented by 11 different incompatibility groups (K, FIB, I1, FIIA, FIC, FIA, Y, P, HI1, B/O, and T). Genetic resistance traits were unevenly spread in the clonal groups and suggested the major rearrangement of genetic material by horizontal gene transfer. The present results revealed that in commensal E. coli from pigs in a homogeneous farm environment, there was no dominant clone responsible for the spread of resistance and persistence in the population.
Collapse
Affiliation(s)
- Justyna Mazurek
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Góra
| | - Ewa Bok
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Góra
| | - Katarzyna Baldy-Chudzik
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Góra
| |
Collapse
|
30
|
Elkenany RM, Eladl AH, El-Shafei RA. Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. J Glob Antimicrob Resist 2018; 14:202-208. [DOI: 10.1016/j.jgar.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022] Open
|
31
|
Kim A, Lim Y, Kim N, Luan Nguyen T, Roh HJ, Park CI, Han HJ, Jung SH, Cho MY, Kim DH, Smith P. A Comparison of Genotypic and Phenotypic Methods for Analyzing the Susceptibility to Sulfamethoxazole and Trimethoprim in Edwardsiella piscicida. Microb Drug Resist 2018; 24:1226-1235. [PMID: 29437540 DOI: 10.1089/mdr.2017.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a study of 39 isolates of Edwardsiella piscicida made from Korean aquaculture sites, sul genes were detected in 16 isolates and dfr genes in 19. Ten isolates were shown to contain both sul and dfr genes. MIC and disc diffusion zones assays were performed to measure the phenotypic susceptibilities of the 39 isolates. Normalized resistance interpretation was applied to these data to categorize isolates as either fully susceptible or as manifesting reduced susceptibility. The standard CLSI protocols specify the use of a mixture of sulfamethoxazole/trimethoprim (20:1) in both MIC and disc diffusion tests. Using the CLSI MIC protocol, 100% of the isolates containing dfr genes, but only 75% of the isolates containing sul genes, were categorized as manifesting reduced susceptibility. Using the CLSI disc diffusion protocol, only 58% of the isolates containing dfr genes and 69% of those containing sul genes were categorized as manifesting reduced susceptibility. When the single agent trimethoprim was substituted for the combined mixture in both the MIC and disc diffusion protocols, 100% of the dfr-positive isolates were categorized as NWT. When the single-agent sulfamethoxazole was substituted, the analysis of the MIC characterized 100% and the disc zone data 94% of the sul-positive isolates as manifesting reduced susceptibility. It is argued that the use of trimethoprim and sulfamethoxazole as single agents in phenotypic susceptibility tests would provide more meaningful data than the currently recommended use of these two agents combined.
Collapse
Affiliation(s)
- Ahran Kim
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Yunjin Lim
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Nameun Kim
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Thanh Luan Nguyen
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Heyong Jin Roh
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Chan-Il Park
- 2 Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University , Tongyeong, Republic of Korea
| | - Hyun-Ja Han
- 3 Pathology Research Division, National Institute of Fisheries Science , Busan, Republic of Korea
| | - Sung-Hee Jung
- 3 Pathology Research Division, National Institute of Fisheries Science , Busan, Republic of Korea
| | - Mi-Young Cho
- 3 Pathology Research Division, National Institute of Fisheries Science , Busan, Republic of Korea
| | - Do-Hyung Kim
- 1 Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University , Busan, Republic of Korea
| | - Peter Smith
- 4 Department of Microbiology, School of Natural Sciences, National University of Ireland , Galway, Ireland
| |
Collapse
|
32
|
Yousfi K, Touati A, Lefebvre B, Fournier É, Côté JC, Soualhine H, Walker M, Bougdour D, Tremblay C, Bekal S. A Novel Plasmid, pSx1, Harboring a New Tn1696 Derivative from Extensively Drug-Resistant Shewanella xiamenensis Encoding OXA-416. Microb Drug Resist 2017; 23:429-436. [DOI: 10.1089/mdr.2016.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Khadidja Yousfi
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Abdelaziz Touati
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
| | - Brigitte Lefebvre
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Éric Fournier
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Jean-Charles Côté
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Hafid Soualhine
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Djamila Bougdour
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
| | - Cécile Tremblay
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
33
|
Ramesh Kumar MR, Arunagirinathan N, Srivani S, Dhanasezhian A, Vijaykanth N, Manikandan N, Balakrishnan S, Vignesh R, Balakrishnan P, Solomon S, Solomon SS. Dissemination of Trimethoprim-Sulfamethoxazole Drug Resistance Genes Associated with Class 1 and Class 2 Integrons Among Gram-Negative Bacteria from HIV Patients in South India. Microb Drug Resist 2016; 23:602-608. [PMID: 27854149 DOI: 10.1089/mdr.2016.0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The antibiotic, trimethoprim-sulfamethoxazole (TMP-SMX), is generally used for prophylaxis in HIV individuals to protect them from Pneumocystis jiroveci infection. Long-term use of TMP-SMX develops drug resistance among bacteria in HIV patients. The study was aimed to detect the TMP-SMX resistance genes among gram-negative bacteria from HIV patients. TMP-SMX-resistant isolates were detected by the Kirby-Bauer disc diffusion method. While TMP resistance genes such as dfrA1, dfrA5, dfrA7, and dfrA17 and SMX resistance genes such as sul1 and sul2 were detected by multiplex PCR, class 1 and class 2 integrons were detected by standard monoplex PCR. Of the 151 TMP-SMX-resistant bacterial isolates, 3 were positive for sul1 alone, 48 for sul2 alone, 11 for dfrA7 alone, 21 for sul1 and sul2, 1 for sul1 and dfrA7, 23 for sul2 and dfrA7, 2 for sul2 and dfrA5, 41 for sul1, sul2, and dfrA7, and 1 for sul2, dfrA5, and dfrA7. Of 60 TMP-SMX-resistant isolates positive for integrons, 44 had class 1 and 16 had class 2 integrons. It was found that the prevalence of sul genes (n = 202; p < 0.001) was higher compared with dfr genes (n = 80; p < 0.001), and 87.4% (n = 132; p < 0.001) of TMP-SMX-resistant isolates also were positive for β-lactamase production. This type of study is reported for the first time from HIV patients in India. Therefore, this study indicates that dissemination of TMP-SMX resistance genes and class 1 and class 2 integrons along with β-lactamase production among gram-negative bacteria in HIV patients will certainly make their treatment to bacterial infections more complicated in clinical settings.
Collapse
Affiliation(s)
- Marimuthu Ragavan Ramesh Kumar
- 1 Post Graduate and Research Department of Microbiology and Biotechnology, Presidency College (Autonomous) , Chennai, India
| | - Narasingam Arunagirinathan
- 1 Post Graduate and Research Department of Microbiology and Biotechnology, Presidency College (Autonomous) , Chennai, India
| | - Seetharaman Srivani
- 2 Department of Microbiology, Dr. ALM PGIBMS, University of Madras , Chennai, India
| | - Aridoss Dhanasezhian
- 2 Department of Microbiology, Dr. ALM PGIBMS, University of Madras , Chennai, India
| | - Nallusamy Vijaykanth
- 1 Post Graduate and Research Department of Microbiology and Biotechnology, Presidency College (Autonomous) , Chennai, India
| | - Natesan Manikandan
- 1 Post Graduate and Research Department of Microbiology and Biotechnology, Presidency College (Autonomous) , Chennai, India
| | - Sethuramalingam Balakrishnan
- 1 Post Graduate and Research Department of Microbiology and Biotechnology, Presidency College (Autonomous) , Chennai, India
| | - Ramachandran Vignesh
- 3 YRG Centre for AIDS Research and Education (YRG CARE), Voluntary Health Services Hospital Campus , Chennai, India .,4 Laboratory-Based Department, Faculty of Medicine, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL RCMP) , Ipoh, Malaysia
| | - Pachamuthu Balakrishnan
- 3 YRG Centre for AIDS Research and Education (YRG CARE), Voluntary Health Services Hospital Campus , Chennai, India
| | - Suniti Solomon
- 3 YRG Centre for AIDS Research and Education (YRG CARE), Voluntary Health Services Hospital Campus , Chennai, India
| | - Sunil S Solomon
- 3 YRG Centre for AIDS Research and Education (YRG CARE), Voluntary Health Services Hospital Campus , Chennai, India
| |
Collapse
|
34
|
Le Devendec L, Mourand G, Bougeard S, Léaustic J, Jouy E, Keita A, Couet W, Rousset N, Kempf I. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure. Vet Microbiol 2016; 194:98-106. [DOI: 10.1016/j.vetmic.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
|
35
|
Agga GE, Schmidt JW, Arthur TM. Antimicrobial-Resistant Fecal Bacteria from Ceftiofur-Treated and Nonantimicrobial-Treated Comingled Beef Cows at a Cow–Calf Operation. Microb Drug Resist 2016; 22:598-608. [DOI: 10.1089/mdr.2015.0259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Getahun E. Agga
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - John W. Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Terrance M. Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska
| |
Collapse
|
36
|
Manyahi J, Tellevik MG, Ndugulile F, Moyo SJ, Langeland N, Blomberg B. Molecular Characterization of Cotrimoxazole Resistance Genes and Their Associated Integrons in Clinical Isolates of Gram-Negative Bacteria from Tanzania. Microb Drug Resist 2016; 23:37-43. [PMID: 27533639 DOI: 10.1089/mdr.2016.0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cotrimoxazole is widely used, particularly as a prophylactic drug in HIV patients. We assessed resistance mechanisms among cotrimoxazole resistant-Gram negative bacterial isolates (n = 123) obtained from blood (n = 69) and urine (n = 54) from Tanzanian patients. sul genes were detected in 98% (121/123) of the isolates. Coexistence of sul1 and sul2 was common (49/123). The dfr genes were found in 63% (77/123) of all isolates. sul1, dfrA15, and dfrA5 genes predominated among Klebsiella pneumoniae, while sul2 and dfrA1 genes were frequent in Escherichia coli isolates. Two isolates, both K. pneumoniae, carried sul3. Integrons were detected in 81.3% (100/123) of all isolates. Class 1 integrons were found in 95% (42/44), 53% (23/43), and 80.6% (25/31) of K. pneumoniae, E. coli, and other Enterobacteriaceae isolates, respectively. Class 2 integrons were found in 14% of E. coli, but not in K. pneumoniae. All sul1 genes in K. pneumoniae were carried in class 1 integrons. Gene cassette arrays dfrA5 and dfrA15-aadA1 were most frequently associated with class 1 integrons, while class 2 integrons contained only dfrA1-sat2-aadA1 gene cassettes. This is the first report of sul3 gene in K. pneumoniae from human sources. The finding that mechanisms differ between E. coli and K. pneumoniae may broaden our understanding of cotrimoxazole resistance.
Collapse
Affiliation(s)
- Joel Manyahi
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,2 Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS) , Dar es Salaam, Tanzania
| | - Marit Gjerde Tellevik
- 3 Department of Medicine, National Centre for Tropical Infectious Diseases, Haukeland University Hospital , Bergen, Norway
| | - Faustine Ndugulile
- 2 Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS) , Dar es Salaam, Tanzania .,4 Parliament of Tanzania, United Republic of Tanzania , Dodoma, Tanzania
| | - Sabrina J Moyo
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,2 Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences (MUHAS) , Dar es Salaam, Tanzania
| | - Nina Langeland
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,3 Department of Medicine, National Centre for Tropical Infectious Diseases, Haukeland University Hospital , Bergen, Norway
| | - Bjørn Blomberg
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,3 Department of Medicine, National Centre for Tropical Infectious Diseases, Haukeland University Hospital , Bergen, Norway
| |
Collapse
|
37
|
Mazurek J, Bok E, Stosik M, Baldy-Chudzik K. Antimicrobial resistance in commensal Escherichia coli from pigs during metaphylactic trimethoprim and sulfamethoxazole treatment and in the post-exposure period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2150-63. [PMID: 25689993 PMCID: PMC4344717 DOI: 10.3390/ijerph120202150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
The prevalence of trimethoprim (TMP) and sulfamethoxazole (SMX) resistance in commensal E. coli from pigs was tested in this study. E. coli was derived from three groups of piglets in successive stages of metaphylactic therapy and from two groups of sows 10 and 18 weeks after the treatment. MIC values of TMP and SMX were determined for a total of 352 strains. The presence of resistance genes (dfrA1, dfrA5, dfrA7, dfrA12, dfrA17, sul1, sul2, sul3) and class 1 and 2 integron-associated dfrA gene cassettes was tested. Resistance to TMP was very high during the administration of the antimicrobial (from 97 to 100%) and amounted to 86% and 69% in the post-exposure period; MIC > 32 mg/L. The isolates from all groups of pigs were resistant to sulfamethoxazole, with MIC > 1028 mg/L. The dfrA1 and sul1 genes (as part of integrons) dominated in E. coli from piglets, but the dfrA12 and sul1 genes were prevalent in E. coli from sows. Coexistence of the different dfrA genes was detected in 71 isolates from all groups of swine. Transcription analysis revealed that most of these genes were not transcribed, particularly gene cassettes of class 1 integrons. The research revealed a high level of resistance associated with the metaphylactic treatment, persistence and circulation of resistance in bacterial populations. Diverse genetic background with multiple and not transcribed resistance genes was observed.
Collapse
Affiliation(s)
- Justyna Mazurek
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino 21b, 65-561 Zielona Góra, Poland.
| | - Ewa Bok
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino 21b, 65-561 Zielona Góra, Poland.
| | - Michał Stosik
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino 21b, 65-561 Zielona Góra, Poland.
| | - Katarzyna Baldy-Chudzik
- Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Monte Cassino 21b, 65-561 Zielona Góra, Poland.
| |
Collapse
|
38
|
Schmidt JW, Agga GE, Bosilevac JM, Brichta-Harhay DM, Shackelford SD, Wang R, Wheeler TL, Arthur TM. Occurrence of Antimicrobial-Resistant Escherichia coli and Salmonella enterica in the Beef Cattle Production and Processing Continuum. Appl Environ Microbiol 2015; 81:713-25. [PMID: 25398858 PMCID: PMC4277590 DOI: 10.1128/aem.03079-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/06/2014] [Indexed: 01/22/2023] Open
Abstract
Specific concerns have been raised that third-generation cephalosporin-resistant (3GC(r)) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COT(r)) E. coli, 3GC(r) Salmonella enterica, and nalidixic acid-resistant (NAL(r)) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GC(r) Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NAL(r) S. enterica was detected on only one hide. 3GC(r) E. coli and COT(r) E. coli were detected on 100.0% of hides during processing. Concentrations of 3GC(r) E. coli and COT(r) E. coli on hides were correlated with pre-evisceration carcass contamination. 3GC(r) E. coli and COT(r) E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COT(r) E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Getahun E Agga
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Dayna M Brichta-Harhay
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Steven D Shackelford
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| |
Collapse
|
39
|
Omar KB, Barnard TG. Detection of diarrhoeagenic Escherichia coli in clinical and environmental water sources in South Africa using single-step 11-gene m-PCR. World J Microbiol Biotechnol 2014; 30:2663-71. [PMID: 24969140 PMCID: PMC4150989 DOI: 10.1007/s11274-014-1690-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
Abstract
Escherichia coli (E. coli) consists of commensal (ComEC) and diarrhoeagenic (DEC) groups. ComEC are detected using traditional culture methods. Conformational steps are performed after culturing if it is required to test for the presence of DEC, increasing cost and time in obtaining the results. The aim of this study was to develop a single-step multiplex polymerase chain reaction (m-PCR) that can simultaneously amplify genes associated with DEC and ComEC, with the inclusion of controls to monitor inhibition. A total of 701 samples, taken from clinical and environmental water sources in South Africa, were analysed with the optimised m-PCR which targeted the eaeA, stx1, stx2, lt, st, ial, eagg, astA and bfp virulence genes. The mdh and gapdh genes were included as an internal and external control, respectively. The presence of the external control gapdh gene in all samples excluded any possible PCR inhibition. The internal control mdh gene was detected in 100 % of the environmental and 85 % of the clinical isolates, confirming the classification of isolates as E. coli PCR positive samples. All DEC types were detected in varying degrees from the mdh positive environmental and clinical isolates. Important gene code combinations were detected for clinical isolates of 0.4 % lt and eagg. However, 2.3 % of eaeA and ial, and 8.7 % of eaeA and eagg were reported for environmental water samples. The E. coli astA toxin was detected as positive at 35 and 17 % in environmental isolates and clinical isolates, respectively. Interestingly, 25 % of the E. coli astA toxin detected in environmental isolates and 17 % in clinical isolates did not contain any of the other virulence genes tested. In conclusion, the optimised single-step 11-gene m-PCR reactions could be successfully used for the identification of pathogenic and non-pathogenic E. coli types. The m-PCR was also successful in showing monitoring for PCR inhibition to ensure correct reporting of the results.
Collapse
Affiliation(s)
- K. B. Omar
- Faculty of Health Sciences, Water and Health Research Centre, University of Johannesburg, Doornfontein, PO Box 17011, Johannesburg, 2028 South Africa
| | - T. G. Barnard
- Faculty of Health Sciences, Water and Health Research Centre, University of Johannesburg, Doornfontein, PO Box 17011, Johannesburg, 2028 South Africa
| |
Collapse
|
40
|
Shah SQA, Cabello FC, L'abée-Lund TM, Tomova A, Godfrey HP, Buschmann AH, Sørum H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ Microbiol 2014; 16:1310-20. [PMID: 24612265 DOI: 10.1111/1462-2920.12421] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/29/2022]
Abstract
Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.
Collapse
Affiliation(s)
- Syed Q A Shah
- Norwegian University of Life Sciences, Ullevålsvein 72, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
41
|
Berglund B, Khan GA, Weisner SEB, Ehde PM, Fick J, Lindgren PE. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:29-37. [PMID: 24448029 DOI: 10.1016/j.scitotenv.2013.12.128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.
Collapse
Affiliation(s)
- Björn Berglund
- Linköping University, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, SE-581 85 Linköping, Sweden.
| | | | - Stefan E B Weisner
- Wetland Research Centre, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden
| | - Per Magnus Ehde
- Wetland Research Centre, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Per-Eric Lindgren
- Linköping University, Division of Medical Microbiology, Department of Clinical and Experimental Medicine, SE-581 85 Linköping, Sweden; Department of Microbiology, Medical Services, County Hospital Ryhov, SE-551 85 Jönköping, Sweden
| |
Collapse
|
42
|
Al-Assil B, Mahfoud M, Hamzeh AR. First report on class 1 integrons and Trimethoprim-resistance genes from dfrA group in uropathogenic E. coli (UPEC) from the Aleppo area in Syria. Mob Genet Elements 2013; 3:e25204. [PMID: 23956949 PMCID: PMC3742597 DOI: 10.4161/mge.25204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer (HGT) introduces advantageous genetic elements into pathogenic bacteria using tools such as class1 integrons. This study aimed at investigating the distribution of these integrons among uropathogenic E. coli (UPEC) isolated from patients in Aleppo, Syria. It also set to uncover the frequencies of the clinically relevant DfrA1 and DfrA17,7, as well as various associations leading to reduced susceptibility. This study involved 75 Trimethoprim-resistant E. coli isolates from in- and outpatients with urinary tract infections (UTIs) from 3 major hospitals in Aleppo. Bacterial identification, resistance and extended-spectrum-β-lactamase (ESBL) production testing were performed according to Clinical Laboratory Standards Institute guidelines. Detection of integrons and DfrA genes was done using PCR and statistical significance was inferred through χ2 (Fisher’s) test. Class1 integrons were detected in 54.6% of isolates while DfrA1 and DfrA17,7 were found in 16% and 70.6% of tested samples respectively. Furthermore, only DfrA17,7 were strongly associated with class1 integrons, as were reduced susceptibility to the majority of individual antibiotics, multidrug resistance and ESBL production. This study demonstrated the high prevalence of class1 integrons among UPEC strains in Aleppo, Syria, as well as their significant associations with MDR. This data give information for local healthcare provision using antibiotic chemotherapy.
Collapse
Affiliation(s)
- Bodour Al-Assil
- Department of Biochemistry and Microbiology; Faculty of Pharmacy; University of Aleppo; Aleppo, Syria
| | | | | |
Collapse
|
43
|
Djordjevic SP, Stokes HW, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86. [PMID: 23641238 PMCID: PMC3639385 DOI: 10.3389/fmicb.2013.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security.
Collapse
|
44
|
Outbreak investigation using high-throughput genome sequencing within a diagnostic microbiology laboratory. J Clin Microbiol 2013; 51:1396-401. [PMID: 23408689 DOI: 10.1128/jcm.03332-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the bla(CTX-M-15) extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications.
Collapse
|
45
|
Shah SQA, Colquhoun DJ, Nikuli HL, Sørum H. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8672-8679. [PMID: 22823142 DOI: 10.1021/es3018607] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied.
Collapse
Affiliation(s)
- Syed Q A Shah
- Department of Food Safety & Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep, Oslo N-0033, Norway.
| | | | | | | |
Collapse
|
46
|
Szmolka A, Fortini D, Villa L, Carattoli A, Anjum MF, Nagy B. First Report on IncN Plasmid-Mediated Quinolone Resistance GeneqnrS1in PorcineEscherichia coliin Europe. Microb Drug Resist 2011; 17:567-73. [DOI: 10.1089/mdr.2011.0068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ama Szmolka
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniela Fortini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Villa
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carattoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Muna F. Anjum
- Technology Transfer Unit, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Béla Nagy
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
47
|
Khan SA, Sung K, Nawaz MS. Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen(®) and SYBR(®) Green I dyes. Mol Cell Probes 2011; 25:78-86. [PMID: 21256956 DOI: 10.1016/j.mcp.2011.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/07/2011] [Accepted: 01/13/2011] [Indexed: 11/18/2022]
Abstract
We have developed multiplex real-time PCR assays that utilize DNA-intercalating dyes, SYBR Green I (SG) and EvaGreen (EG), with two primer sets (set 1=qacEδ1, tetA and aacA-aphD; set 2=tetA, marA, and floR) to simultaneously amplify the qacEδ1, tetA, aacA-aphD, marA, and floR genes. Validity of the multiplex PCR assays was confirmed by testing 83 bacterial isolates, including Staphylococcus aureus (28 isolates), Enterococcus spp. (17 isolates), Salmonella enterica serovar Typhimurium (8 isolates), Citrobacter spp. (9 isolates), Escherichia coli (14 isolates) and Aeromonas veronii (7 isolates), and performing sequence analysis of representative PCR products. Agarose gel analysis revealed the presence of correct size PCR products, and the differences in their thermal melting (T(m)) curves were used to distinguish various PCR products. Although T(m) peaks of different amplicons after EG-based singleplex and multiplex PCR assays were resolved nicely, only one or two peaks were seen for SG-bound amplicons. EG-based multiplex real-time PCR assays provided better peak resolution. There was a good correlation with a better linear relationship between the C(t) and log input DNA concentration for the set 1 and set 2 genes in EG-based assays (R(EG)(2)=0.9813and0.9803) than in SG-based assays (R(SG)(2)=0.5276and0.6255). The sensitivities of detection were 2.5-25fg and 25-250fg of template DNA in EG and SG-based singleplex and multiplex PCR assays, respectively. The assays, which could be completed in less than 45min, offer sensitive and rapid detection of qacEδ1, aacA-aphD, marA, floR, and tetA genes from a diverse group of multiple antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | | | | |
Collapse
|
48
|
Brolund A, Sundqvist M, Kahlmeter G, Grape M. Molecular characterisation of trimethoprim resistance in Escherichia coli and Klebsiella pneumoniae during a two year intervention on trimethoprim use. PLoS One 2010; 5:e9233. [PMID: 20169085 PMCID: PMC2821933 DOI: 10.1371/journal.pone.0009233] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/28/2010] [Indexed: 11/26/2022] Open
Abstract
Background Trimethoprim resistance is increasing in Enterobacteriaceae. In 2004-2006 an intervention on trimethoprim use was conducted in Kronoberg County, Sweden, resulting in 85% reduction in trimethoprim prescriptions. We investigated the distribution of dihydrofolate reductase (dfr)-genes and integrons in Escherichia coli and Klebsiella pneumoniae and the effect of the intervention on this distribution. Methodology/Principal Findings Consecutively isolated E. coli (n = 320) and K. pneumoniae (n = 54) isolates phenotypicaly resistant to trimethoprim were studied. All were investigated for the presence of dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA14, dfrA17 and integrons class I and II. Isolates negative for the seven dfr-genes (n = 12) were also screened for dfr2d, dfrA3, dfrA9, dfrA10, dfrA24 and dfrA26. These genes accounted for 96% of trimethoprim resistance in E. coli and 69% in K. pneumoniae. The most prevalent was dfrA1 in both species. This was followed by dfrA17 in E. coli which was only found in one K. pneumoniae isolate. Class I and II Integrons were more common in E. coli (85%) than in K. pneumoniae (57%). The distribution of dfr-genes did not change during the course of the 2-year intervention. Conclusions/Significance The differences observed between the studied species in terms of dfr-gene and integron prevalence indicated a low rate of dfr-gene transfer between these two species and highlighted the possible role of narrow host range plasmids in the spread of trimethoprim resistance. The stability of dfr-genes, despite large changes in the selective pressure, indirectly suggests a low fitness cost of dfr-gene carriage.
Collapse
Affiliation(s)
- Alma Brolund
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
49
|
Šeputienė V, Povilonis J, Ružauskas M, Pavilonis A, Sužiedėlienė E. Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania. J Med Microbiol 2009; 59:315-322. [PMID: 20007760 DOI: 10.1099/jmm.0.015008-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 456 non-repetitive Escherichia coli isolates from human clinical specimens (urinary, n=134; cervix, vagina and prostate, n=52; blood, pus and wounds, n=45), healthy animals (cattle, n=45; poultry, n=20) and diseased animals (cattle, n=53; swine, n=64; poultry, n=43) obtained in Lithuania during the period 2005-2008 were studied for trimethoprim (TMP) resistance and the prevalence of dfr genes. A TMP resistance rate in the range of 18-26 % respective to the origin was found in clinical isolates, 23-40 % in isolates from diseased animals and 9-20 % in isolates from healthy animals. Of 112 TMP-resistant isolates, 103 carried at least one of the six dfrA genes (dfrA1, dfrA5, dfrA8, dfrA12, dfrA14 and dfrA17) as determined by multiplex PCR and RFLP. The dfrA1 and dfrA17 genes were found most frequently in clinical isolates (17 and 19 isolates, respectively), whilst dfrA1 and dfrA14 genes dominated in isolates of animal origin (25 and 13 isolates, respectively). The dfrA5, dfrA12 and dfrA8 genes were detected at lower frequencies. The association with class 1/class 2 integrons was confirmed for 73-100 % of dfr genes found in most groups of isolates, except for the isolates from diseased swine. In this group, the majority of dfr-positive isolates (67 %, 8/12) carried dfrA8 (6/12) or dfrA14 genes (2/12) that were not associated with integrons. Non-integron location was also confirmed for the remaining dfrA8 genes (six clinical isolates and one isolate from diseased cattle) and for dfrA14 genes (two isolates from diseased cattle and swine each). All cassette-independent dfrA14 genes were found to be located within the strA gene. This study on the prevalence and distribution of TMP resistance genes among E. coli isolates of human and animal origin in Lithuania demonstrates that dfr genes are carried most frequently as gene cassettes within class 1 and/or class 2 integrons. However, TMP resistance in some of the isolates was found to be mediated by non-integron-associated dfrA8 and dfrA14 genes, indicating the existence of alternative sources for the spread of resistance.
Collapse
Affiliation(s)
- Vaida Šeputienė
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| | - Justas Povilonis
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| | - Modestas Ružauskas
- Veterinary Institute of Lithuania Veterinary Academy, Instituto 2, LT-56115 Kaišiadorys, Lithuania
| | - Alvydas Pavilonis
- Department of Microbiology, Kaunas University of Medicine, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|