1
|
Sence É, Billhot M, Gaspard W, Lorenzi JN, Dubourdieu AP, Foissaud V, Bernard C, Aletti M, Doutrelon C. Comparison of Tuberculosis Cases in Military Personnel Versus Civilians: A Retrospective Descriptive Study. Mil Med 2024:usae503. [PMID: 39471417 DOI: 10.1093/milmed/usae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Tuberculosis (TB) remains a leading cause of death from infectious diseases worldwide. Military personnel are particularly vulnerable to TB because of the factors like deployments to endemic regions and close-quarters living. This study aims to compare the characteristics and outcomes of symptomatic TB cases between military and civilian patients treated at 2 French military hospitals, with a specific focus on diagnostic delay. MATERIALS AND METHODS This retrospective observational study included patients over 18 years old with culture-confirmed symptomatic TB treated between 2008 and 2021. Military patients (Group A) were compared to civilian patients (Group B), matched by age and sex. Data collected included demographic details, diagnostic delay, clinical presentations, and treatment outcomes. Statistical analyses were performed using chi-squared tests and Mann-Whitney tests, with significance set at P < .05. RESULTS A total of 17 military and 38 civilian patients were included in the study. The median diagnostic delay was shorter for military patients at 49 days, compared to 64 days for civilians, although this difference was not statistically significant (P = .42). In the military group, 59% had been deployed to TB endemic regions, with 35% showing symptoms during operational missions. Clinical presentations and microbiological findings were similar between the two groups. Notably, two military patients were infected with Mycobacterium canettii, likely linked to deployments in Djibouti, where this strain is endemic. The military population showed a significant burden of physical sequelae, with 25% experiencing lasting physical impairments post-treatment. CONCLUSION Tuberculosis presentation and outcomes in military and civilian patients were generally comparable. Early diagnosis remains essential to minimize disease severity and operational impact, particularly in military settings.
Collapse
Affiliation(s)
- Étienne Sence
- Internal Medicine and Infectious Disease Department, Percy Military Training Hospital, Clamart 92140, France
| | - Magali Billhot
- Internal Medicine and Infectious Disease Department, Percy Military Training Hospital, Clamart 92140, France
| | - Wanda Gaspard
- Pulmonology Department, Percy Military Training Hospital, Clamart 92140, France
| | | | | | - Vincent Foissaud
- Biology Department, Percy Military Training Hospital, Clamart 92140, France
| | - Christine Bernard
- Biology Department, Percy Military Training Hospital, Clamart 92140, France
| | - Marc Aletti
- Internal Medicine and Infectious Disease Department, Percy Military Training Hospital, Clamart 92140, France
| | - Caroline Doutrelon
- Internal Medicine and Infectious Disease Department, Percy Military Training Hospital, Clamart 92140, France
| |
Collapse
|
2
|
Orgeur M, Sous C, Madacki J, Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol Rev 2024; 48:fuae006. [PMID: 38365982 PMCID: PMC10906988 DOI: 10.1093/femsre/fuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Camille Sous
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| | - Jan Madacki
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Unit for Human Evolutionary Genetics, 75015 Paris, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, 75015 Paris, France
| |
Collapse
|
3
|
Yenew B, Ghodousi A, Diriba G, Tesfaye E, Cabibbe AM, Amare M, Moga S, Alemu A, Dagne B, Sinshaw W, Mollalign H, Meaza A, Tadesse M, Gamtesa DF, Abebaw Y, Seid G, Zerihun B, Getu M, Chiacchiaretta M, Gaudin C, Marceau M, Didelot X, Tolera G, Abdella S, Kebede A, Getahun M, Mehammed Z, Supply P, Cirillo DM. A smooth tubercle bacillus from Ethiopia phylogenetically close to the Mycobacterium tuberculosis complex. Nat Commun 2023; 14:7519. [PMID: 37980337 PMCID: PMC10657438 DOI: 10.1038/s41467-023-42755-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.
Collapse
Affiliation(s)
- Bazezew Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Arash Ghodousi
- Vita-Salute San Raffaele University, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Getu Diriba
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ephrem Tesfaye
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Misikir Amare
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Shewki Moga
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Binyam Dagne
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Abyot Meaza
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | | | - Getachew Seid
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Melak Getu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Cyril Gaudin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, CV4 7AL, Coventry, UK
| | | | - Saro Abdella
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abebaw Kebede
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Daniela Maria Cirillo
- Vita-Salute San Raffaele University, Milan, Italy.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Faury H, Stanzelova A, Ferroni A, Belhous K, Morand P, Toubiana J, Bille E, Isnard P, Simon F, Lécuyer H. Mycobacterium canettii Tuberculosis Lymphadenopathy in a 3-Year-old Child. Pediatr Infect Dis J 2023; 42:e345-e347. [PMID: 37235762 DOI: 10.1097/inf.0000000000003983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A 3-year-old male originating from Djibouti presented with a cervical mass evolving for 2 months. Tuberculous lymphadenopathy was suspected based on biopsy results, and he improved quickly on standard antituberculous quadritherapy. Subsequently some features of the mycobacterium that grew in culture were unusual. The isolate was eventually identified as Mycobacterium canettii , a peculiar species of the Mycobacterium tuberculosis complex.
Collapse
Affiliation(s)
| | - Anna Stanzelova
- Department of General Pediatrics and Pediatric Infectious Diseases
| | | | - Kahina Belhous
- Department of Pediatric Radiology, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
| | - Philippe Morand
- Department of Bacteriology, AP-HP Centre, Hôpital Cochin, Paris, France
| | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases
| | - Emmanuelle Bille
- From the Department of Clinical Microbiology
- Université de Paris Cité, Institut Necker Enfants Malades, INSERM U1151 CNRS UMR8253, Paris, France
| | | | - François Simon
- Department of Pediatric Otolaryngology, AP-HP Centre, Hôpital Necker Enfants Malades, Paris, France
- Université de Paris Cité, Paris, France
| | - Hervé Lécuyer
- From the Department of Clinical Microbiology
- Université de Paris Cité, Institut Necker Enfants Malades, INSERM U1151 CNRS UMR8253, Paris, France
| |
Collapse
|
5
|
Malaga W, Payros D, Meunier E, Frigui W, Sayes F, Pawlik A, Orgeur M, Berrone C, Moreau F, Mazères S, Gonzalo-Asensio J, Rengel D, Martin C, Astarie-Dequeker C, Mourey L, Brosch R, Guilhot C. Natural mutations in the sensor kinase of the PhoPR two-component regulatory system modulate virulence of ancestor-like tuberculosis bacilli. PLoS Pathog 2023; 19:e1011437. [PMID: 37450466 PMCID: PMC10348564 DOI: 10.1371/journal.ppat.1011437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.
Collapse
Affiliation(s)
- Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Delphine Payros
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Eva Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Alexandre Pawlik
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Céline Berrone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Flavie Moreau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Jesus Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Departamento de Microbiologia, Pediatria, Radiologica y Salud Pùblica, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Institudo de Salud Carlos III, Madrid, Spain
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Facultad de Medicina, Departamento de Microbiologia, Pediatria, Radiologica y Salud Pùblica, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Institudo de Salud Carlos III, Madrid, Spain
- Servicio de Microbiologia, Hospital Universitario Miguel Servet, ISS Aragon, Zaragoza, Spain
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
6
|
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76:661-680. [PMID: 35709500 DOI: 10.1146/annurev-micro-121321-093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Division of Infectious Diseases, Department of Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
7
|
Sabin S, Morales-Arce AY, Pfeifer SP, Jensen JD. The impact of frequently neglected model violations on bacterial recombination rate estimation: a case study in Mycobacterium canettii and Mycobacterium tuberculosis. G3 (BETHESDA, MD.) 2022; 12:jkac055. [PMID: 35253851 PMCID: PMC9073693 DOI: 10.1093/g3journal/jkac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common approach of basing analyses on within-host consensus sequences.
Collapse
Affiliation(s)
- Susanna Sabin
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ana Y Morales-Arce
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Bohr LL, Youngblom MA, Eldholm V, Pepperell CS. Genome reorganization during emergence of host-associated Mycobacterium abscessus. Microb Genom 2021; 7. [PMID: 34874249 PMCID: PMC8767326 DOI: 10.1099/mgen.0.000706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.
Collapse
Affiliation(s)
- Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison A Youngblom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Parallel in vivo experimental evolution reveals that increased stress resistance was key for the emergence of persistent tuberculosis bacilli. Nat Microbiol 2021; 6:1082-1093. [PMID: 34294904 DOI: 10.1038/s41564-021-00938-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Pathogenomic evidence suggests that Mycobacterium tuberculosis (MTB) evolved from an environmental ancestor similar to Mycobacterium canettii, a rare human pathogen. Although the adaptations responsible for this transition are poorly characterized, the ability to persist in humans seems to be important. We set out to identify the adaptations contributing to the evolution of persistence in MTB. We performed an experimental evolution of eight M. canettii populations in mice; four populations were derived from the isolate STB-K (phylogenomically furthest from MTB) and four from STB-D (closest to MTB), which were monitored for 15 and 6 cycles, respectively. We selected M. canettii mutants with enhanced persistence in vivo compared with the parental strains, which were phenotypically closer to MTB. Genome sequencing of 140 mutants and complementation analysis revealed that mutations in two loci were responsible for enhanced persistence. Most of the tested mutants were more resistant than their parental strains to nitric oxide, an important effector of immunity. Modern MTB were similarly more resistant to nitric oxide than M. canettii. Our findings demonstrate phenotypic convergence during experimental evolution of M. canettii, which mirrors natural evolution of MTB. Furthermore, they indicate that the ability to withstand host-induced stresses was key for the emergence of persistent MTB.
Collapse
|
10
|
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res 2021; 246:126674. [PMID: 33549960 DOI: 10.1016/j.micres.2020.126674] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
Collapse
Affiliation(s)
- Renuga Devi Kanabalan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
| | - Le Jie Lee
- Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Rosnah Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia.
| | - Voon Kin Chin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia.
| |
Collapse
|
11
|
Briquet A, Vong R, Roseau JB, Javelle E, Cazes N, Rivière F, Aletti M, Otto MP, Ficko C, Duron S, Fabre M, Pourcel C, Simon F, Soler C. Clinical Features of Mycobacterium canettii Infection: A Retrospective Study of 20 Cases Among French Soldiers and Relatives. Clin Infect Dis 2020; 69:2003-2010. [PMID: 30753345 DOI: 10.1093/cid/ciz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mycobacterium canettii forms part of the Mycobacterium tuberculosis complex. Mycobacterium canettii infections are mainly described in the Horn of Africa. The permanent presence of French soldiers in Djibouti raises the question of the risk of being infected with M. canettii. Here, we describe M. canettii infections among French military and their families between 1998 and 2015. METHODS This retrospective study relied on 3 sources of data: the reference center for mycobacteria in the Biology Department at Percy Military Hospital in Paris, the French Military Center for Epidemiology and Public Health, and the scientific literature. After an exhaustive census of the strains, we studied the epidemiological data on 20 cases among French soldiers and their families. RESULTS Twenty cases of M. canettii infections are reported, including 5 unpublished cases. Adenitis predominates (n = 15), especially in the cervico facial area and among children; 1 case was observed 1 month after dental care in Djibouti. The pulmonary forms were less frequent (n = 6), and 3 atypical forms are described. All patients had stayed in Djibouti. CONCLUSIONS Cases of M. canettii infection among the French military consisted mainly of adenitis; disseminated forms were possible with immunodeficiency. Their evolution under specific treatments was comparable to that of tuberculosis. The presumed origin of the infection seemed to be environmental, possibly a water reservoir, and not due to human-to-human contagion.
Collapse
Affiliation(s)
- Anaïs Briquet
- Respiratory Department, Laveran Military Teaching Hospital, Marseille
| | - Rithy Vong
- Department of Biology, Percy Military Teaching Hospital, Clamart
| | | | - Emilie Javelle
- Department of Infectious Diseases, Laveran Military Teaching Hospital
| | - Nicolas Cazes
- Emergency Medical Department, Prehospital Emergency Medical Services of Marine Fire Battalion, Marseille
| | - Fréderic Rivière
- Respiratory Department, Percy Military Teaching Hospital, Clamart
| | - Marc Aletti
- Department of Infectious Diseases, Percy Military Teaching Hospital, Clamart
| | - Marie-Pierre Otto
- Department of Biology, Sainte-Anne Military Teaching Hospital, Toulon
| | - Cécile Ficko
- Department of Infectious Diseases, Bégin Military Teaching Hospital, Saint-Mandé l'Énergie Atomique, Centre National de la Recherche Scientifique, Univ. Paris Sud, Orsay, France
| | - Sandrine Duron
- French Military Center for Epidemiology and Public Health, Marseille
| | - Michel Fabre
- Department of Biology, Percy Military Teaching Hospital, Clamart
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), Commissariat á ľÉnergie Atomique, Centre National de la Recherche Scientifique, Univ. Paris Sud, Orsay, France
| | - Fabrice Simon
- Department of Infectious Diseases, Laveran Military Teaching Hospital
| | - Charles Soler
- Department of Biology, Percy Military Teaching Hospital, Clamart
| |
Collapse
|
12
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
Loukil A, Bouzid F, Osman DA, Drancourt M. Decrypting the environmental sources of Mycobacterium canettii by high-throughput biochemical profiling. PLoS One 2019; 14:e0222078. [PMID: 31479485 PMCID: PMC6719871 DOI: 10.1371/journal.pone.0222078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium canettii is a smooth bacillus related to the Mycobacterium tuberculosis complex. It causes lymph nodes and pulmonary tuberculosis in patients living in countries of the Horn of Africa, including Djibouti. The environmental reservoirs of M. canettii are still unknown. We aimed to further decrypt these potential reservoirs by using an original approach of High-Throughput Carbon and Azote Substrate Profiling. The Biolog Phenotype profiling was performed on six clinical strains of M. canettii and one M. tuberculosis strain was used as a positive control. The experiments were duplicated and authenticated by negative controls. While M. tuberculosis metabolized 22/190 (11%) carbon substrates and 3/95 (3%) nitrogen substrates, 17/190 (8.9%) carbon substrates and three nitrogen substrates were metabolized by the six M. canettii strains forming the so-called corebiologome. A total at 16 carbon substrates and three nitrogen substrates were metabolized in common by M. tuberculosis and the six M. canettii strains. Moreover, at least one M. canettii strain metabolized 36/190 (19%) carbon substrates and 3/95 (3%) nitrogen substrates for a total of 39/285 (13%) substrates. Classifying these carbon and nitrogen substrates into ten potential environmental sources (plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and inanimate environment) significantly associated carbon and nitrogen substrates metabolized by at least one M. canettii strain with plants (p = 0.006). These results suggest that some plants endemic in the Horn of Africa may serve as ecological niches for M. canettii. Further ethnobotanical studies will indicate plant usages by local populations, then guiding field microbiological investigations in order to prove the definite environmental reservoirs of this opportunistic tuberculous pathogen.
Collapse
Affiliation(s)
- Ahmed Loukil
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée-Infection, Marseille, France
| | - Fériel Bouzid
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée-Infection, Marseille, France
- Université de Gafsa, Faculté des Sciences de Gafsa, Gafsa, Tunisia
| | - Djaltou Aboubaker Osman
- Institut de Recherche Médicinale, Centre d’Etudes et de Recherche de Djibouti (CERD), Djibouti, République de Djibouti
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée-Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Chiner-Oms Á, Comas I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. INFECTION GENETICS AND EVOLUTION 2019; 72:10-15. [DOI: 10.1016/j.meegid.2019.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023]
|
15
|
Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR, Young D, González-Candelas F, Comas I. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. SCIENCE ADVANCES 2019; 5:eaaw3307. [PMID: 31448322 PMCID: PMC6691555 DOI: 10.1126/sciadv.aaw3307] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Models on how bacterial lineages differentiate increase our understanding of early bacterial speciation events and the genetic loci involved. Here, we analyze the population genomics events leading to the emergence of the tuberculosis pathogen. The emergence is characterized by a combination of recombination events involving core pathogenesis functions and purifying selection on early diverging loci. We identify the phoR gene, the sensor kinase of a two-component system involved in virulence, as a key functional player subject to pervasive positive selection after the divergence of the Mycobacterium tuberculosis complex from its ancestor. Previous evidence showed that phoR mutations played a central role in the adaptation of the pathogen to different host species. Now, we show that phoR mutations have been under selection during the early spread of human tuberculosis, during later expansions, and in ongoing transmission events. Our results show that linking pathogen evolution across evolutionary and epidemiological time scales points to past and present virulence determinants.
Collapse
Affiliation(s)
- Á. Chiner-Oms
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
| | - L. Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - J. Corander
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
- Helsinki Institute of Information Technology (HIIT), Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - S. Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - S. R. Harris
- Microbiotica, BioData Innovation Centre, Wellcome Genome Campus, Cambridge CB10 1DR, UK
| | - D. Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - F. González-Candelas
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - I. Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| |
Collapse
|
16
|
Revised Interpretation of the Hain Lifescience GenoType MTBC To Differentiate Mycobacterium canettii and Members of the Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 2019; 63:AAC.00159-19. [PMID: 30962348 DOI: 10.1128/aac.00159-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
Using 894 phylogenetically diverse genomes of the Mycobacterium tuberculosis complex (MTBC), we simulated in silico the ability of the Hain Lifescience GenoType MTBC assay to differentiate the causative agents of tuberculosis. Here, we propose a revised interpretation of this assay to reflect its strengths (e.g., it can distinguish some strains of Mycobacterium canettii and variants of Mycobacterium bovis that are not intrinsically resistant to pyrazinamide) and limitations (e.g., Mycobacterium orygis cannot be differentiated from Mycobacterium africanum).
Collapse
|
17
|
The arms race between man and Mycobacterium tuberculosis: Time to regroup. INFECTION GENETICS AND EVOLUTION 2018; 66:361-375. [DOI: 10.1016/j.meegid.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
|
18
|
Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R, Dippenaar A, Parsons SDC, Beisel C, Behr MA, Fyfe JA, Coscolla M, Gagneux S. A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex. Front Microbiol 2018; 9:2820. [PMID: 30538680 PMCID: PMC6277475 DOI: 10.3389/fmicb.2018.02820] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely related to the human-adapted Mycobacterium africanum Lineage 6 than to other animal-adapted strains. Furthermore, we identified four main animal-adapted MTBC clades that might correspond to four main host shifts; two of these clades are hypothesized to reflect independent cattle domestication events. Contrary to what would be expected from an obligate pathogen, MTBC nucleotide diversity was not positively correlated with host phylogenetic distances, suggesting that host tropism in the animal-adapted MTBC seems to be driven by contact rates and demographic aspects of the host population rather by than host relatedness. By combining phylogenomics with ecological data, we propose an evolutionary scenario in which the ancestor of Lineage 6 and all animal-adapted MTBC ecotypes was a generalist pathogen that subsequently adapted to different host species. This study provides a new phylogenetic framework to better understand the evolution of the different ecotypes of the MTBC and guide future work aimed at elucidating the molecular mechanisms underlying host range.
Collapse
Affiliation(s)
- Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna: Centro Nazionale di Referenza per la Tubercolosi Bovina, Brescia, Italy
| | - Robin Warren
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anzaan Dippenaar
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Sven David Charles Parsons
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marcel A Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health, McGill University Health Centre and Research Institute, Montréal, QC, Canada
| | - Janet A Fyfe
- Mycobacterium Reference Laboratory, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, VIC, Australia
| | - Mireia Coscolla
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Conan P, Charton F, Le Floch H, Grand B, Soler C, Aletti M, Margery J, Rivière F. Mycobacterium canettii pulmonary tuberculosis in an immunocompetent patient. Med Mal Infect 2018; 48:300-302. [DOI: 10.1016/j.medmal.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
20
|
|
21
|
Evolution of virulence in the Mycobacterium tuberculosis complex. Curr Opin Microbiol 2018; 41:68-75. [DOI: 10.1016/j.mib.2017.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
22
|
Comprehensive profiling of functional attributes, virulence potential and evolutionary dynamics in mycobacterial secretomes. World J Microbiol Biotechnol 2017; 34:5. [DOI: 10.1007/s11274-017-2388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
|
23
|
Horizontal acquisition of a hypoxia-responsive molybdenum cofactor biosynthesis pathway contributed to Mycobacterium tuberculosis pathoadaptation. PLoS Pathog 2017; 13:e1006752. [PMID: 29176894 PMCID: PMC5720804 DOI: 10.1371/journal.ppat.1006752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
The unique ability of the tuberculosis (TB) bacillus, Mycobacterium tuberculosis, to persist for long periods of time in lung hypoxic lesions chiefly contributes to the global burden of latent TB. We and others previously reported that the M. tuberculosis ancestor underwent massive episodes of horizontal gene transfer (HGT), mostly from environmental species. Here, we sought to explore whether such ancient HGT played a part in M. tuberculosis evolution towards pathogenicity. We were interested by a HGT-acquired M. tuberculosis-specific gene set, namely moaA1-D1, which is involved in the biosynthesis of the molybdenum cofactor. Horizontal acquisition of this gene set was striking because homologues of these moa genes are present all across the Mycobacterium genus, including in M. tuberculosis. Here, we discovered that, unlike their paralogues, the moaA1-D1 genes are strongly induced under hypoxia. In vitro, a M. tuberculosis moaA1-D1-null mutant has an impaired ability to respire nitrate, to enter dormancy and to survive in oxygen-limiting conditions. Conversely, heterologous expression of moaA1-D1 in the phylogenetically closest non-TB mycobacterium, Mycobacterium kansasii, which lacks these genes, improves its capacity to respire nitrate and grants it with a marked ability to survive oxygen depletion. In vivo, the M. tuberculosis moaA1-D1-null mutant shows impaired survival in hypoxic granulomas in C3HeB/FeJ mice, but not in normoxic lesions in C57BL/6 animals. Collectively, our results identify a novel pathway required for M. tuberculosis resistance to host-imposed stress, namely hypoxia, and provide evidence that ancient HGT bolstered M. tuberculosis evolution from an environmental species towards a pervasive human-adapted pathogen. Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), can persist for years and even decades in the lungs of its human host. Here we report that a unique M. tuberculosis gene cluster involved in the synthesis of the molybdenum cofactor, a cofactor for several oxidoreductases including the nitrate reductase, allows this major pathogen to respire nitrate and to persist in a dormant state under hypoxia, a stress condition encountered in lung TB lesions. Strikingly the M. tuberculosis ancestor, which most likely was an environmental harmless bacterium, acquired this gene cluster, together with its hypoxia-responsive transcriptional regulator, horizontally from neighboring bacteria. Our results uncover a key step in M. tuberculosis evolution towards pathogenicity.
Collapse
|
24
|
Ready Experimental Translocation of Mycobacterium canettii Yields Pulmonary Tuberculosis. Infect Immun 2017; 85:IAI.00507-17. [PMID: 28923895 DOI: 10.1128/iai.00507-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium canettii, which has a smooth colony morphology, is the tuberculous organism retaining the most genetic traits from the putative last common ancestor of the rough-morphology Mycobacterium tuberculosis complex. To explore whether M. canettii can infect individuals by the oral route, mice were fed phosphate-buffered saline or 106M. canettii mycobacteria and sacrificed over a 28-day experiment. While no M. canettii was detected in negative controls, M. canettii-infected mice yielded granuloma-like lesions for 4/4 lungs at days 14 and 28 postinoculation (p.i.) and positive PCR detection of M. canettii for 5/8 mesenteric lymph nodes at days 1 and 3 p.i. and 5/6 pooled stools collected from day 1 to day 28 p.i. Smooth M. canettii colonies grew from 68% of lungs and 36% of spleens and cervical lymph nodes but fewer than 20% of axillary lymph nodes, livers, brown fat samples, kidneys, or blood samples throughout the 28-day experiment. Ready translocation in mice after digestive tract challenge demonstrates the potential of ingested M. canettii organisms to relocate to distant organs and lungs. The demonstration of this relocation supports the possibility that populations may be infected by environmental M. canettii.
Collapse
|
25
|
Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:1-26. [DOI: 10.1007/978-3-319-64371-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Abstract
The tuberculosis agent Mycobacterium tuberculosis has undergone a long and selective evolution toward human infection and represents one of the most widely spread pathogens due to its efficient aerosol-mediated human-to-human transmission. With the availability of more and more genome sequences, the evolutionary trajectory of this obligate pathogen becomes visible, which provides us with new insights into the molecular events governing evolution of the bacterium and its ability to accumulate drug-resistance mutations. In this review, we summarize recent developments in mycobacterial research related to this matter that are important for a better understanding of the current situation and future trends and developments in the global epidemiology of tuberculosis, as well as for possible public health intervention possibilities.
Collapse
|
27
|
Abstract
Tuberculosis (TB) remains the most deadly bacterial infectious disease worldwide. Its treatment and control are threatened by increasing numbers of multidrug-resistant (MDR) or nearly untreatable extensively drug-resistant (XDR) strains. New concepts are therefore urgently needed to understand the factors driving the TB epidemics and the spread of different strain populations, especially in association with drug resistance. Classical genotyping and, more recently, whole-genome sequencing (WGS) revealed that the world population of tubercle bacilli is more diverse than previously thought. Several major phylogenetic lineages can be distinguished, which are associated with their sympatric host population. Distinct clonal (sub)populations can even coexist within infected patients. WGS is now used as the ultimate approach for differentiating clinical isolates and for linking phenotypic to genomic variation from lineage to strain levels. Multiple lines of evidence indicate that the genetic diversity of TB strains translates into pathobiological consequences, and key molecular mechanisms probably involved in differential pathoadaptation of some main lineages have recently been identified. Evidence also accumulates on molecular mechanisms putatively fostering the emergence and rapid expansion of particular MDR and XDR strain groups in some world regions. However, further integrative studies will be needed for complete elucidation of the mechanisms that allow the pathogen to infect its host, acquire multidrug resistance, and transmit so efficiently. Such knowledge will be key for the development of the most effective new diagnostics, drugs, and vaccination strategies.
Collapse
|
28
|
Chisholm RH, Tanaka MM. The emergence of latent infection in the early evolution of Mycobacterium tuberculosis. Proc Biol Sci 2017; 283:rspb.2016.0499. [PMID: 27194699 DOI: 10.1098/rspb.2016.0499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis has an unusual natural history in that the vast majority of its human hosts enter a latent state that is both non-infectious and devoid of any symptoms of disease. From the pathogen perspective, it seems counterproductive to relinquish reproductive opportunities to achieve a détente with the host immune response. However, a small fraction of latent infections reactivate to the disease state. Thus, latency has been argued to provide a safe harbour for future infections which optimizes the persistence of M. tuberculosis in human populations. Yet, if a pathogen begins interactions with humans as an active disease without latency, how could it begin to evolve latency properties without incurring an immediate reproductive disadvantage? We address this question with a mathematical model. Results suggest that the emergence of tuberculosis latency may have been enabled by a mechanism akin to cryptic genetic variation in that detrimental latency properties were hidden from natural selection until their expression became evolutionarily favoured.
Collapse
Affiliation(s)
- Rebecca H Chisholm
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia Evolution and Ecology Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia Evolution and Ecology Research Centre, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
29
|
Abstract
Since its discovery by Theobald Smith, Mycobacterium bovis has been a human pathogen closely related to animal disease. At present, M. bovis tuberculosis is still a problem of importance in many countries and is considered the main cause of zoonotic tuberculosis throughout the world. Recent development of molecular epidemiological tools has helped us to improve our knowledge about transmission patterns of this organism, which causes a disease indistinguishable from that caused by Mycobacterium tuberculosis. Diagnosis and treatment of this mycobacterium are similar to those for conventional tuberculosis, with the important exceptions of constitutive resistance to pyrazinamide and the fact that multidrug-resistant and extremely drug-resistant M. bovis strains have been described. Among other members of this complex, Mycobacterium africanum is the cause of many cases of tuberculosis in West Africa and can be found in other areas mainly in association with immigration. M. bovis BCG is the currently available vaccine for tuberculosis, but it can cause disease in some patients. Other members of the M. tuberculosis complex are mainly animal pathogens with only exceptional cases of human disease, and there are even some strains, like "Mycobacterium canettii," which is a rare human pathogen that could have an important role in the knowledge of the evolution of tuberculosis in the history.
Collapse
|
30
|
Aboubaker Osman D, Garnotel E, Drancourt M. Dry-heat inactivation of "Mycobacterium canettii". BMC Res Notes 2017; 10:201. [PMID: 28599677 PMCID: PMC5466745 DOI: 10.1186/s13104-017-2522-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2017] [Indexed: 12/27/2022] Open
Abstract
Objective “Mycobacterium canettii” is responsible for non-transmissible lymph node and pulmonary tuberculosis in persons exposed in the Horn of Africa. In the absence of direct human transmission, contaminated water and foodstuffs could be sources of contamination. We investigated the dry-heat inactivation of “M. canettii” alone and mixed into mock-infected foodstuffs by inoculating agar cylinders and milk with 104 colony-forming units of “M. canettii” CIPT140010059 and two “M. canettii” clinical strains with Mycobacterium tuberculosis H37Rv as a control. Results Exposed to 35 °C, M. tuberculosis H37Rv, “M canettii” CIPT140010059 and “M. canettii” 157 exhibited a survival rate of 108, 95 and 81%, which is significantly higher than that of “M. canettii” 173. However, all tested mycobacteria tolerated a 90-min exposure at 45 °C. In the foodstuff models set at 70 °C, no growing mycobacteria were visualized. This study supports the premise that “M. canettii” may survive up to 45 °C; and suggests that contaminated raw drinks and foodstuffs but not cooked ones may be sources of infection for populations.
Collapse
Affiliation(s)
- Djaltou Aboubaker Osman
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. IHU Méditerranée Infection, 13005, Marseille, France.,Institut de Recherche Médicinale (IRM), Centre d'Études et de Recherche de Djibouti (CERD), Djibouti, Djibouti
| | - Eric Garnotel
- Hopital d'Instruction des Armées LAVERAN, 34 Boulevard Laveran, 13384, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. IHU Méditerranée Infection, 13005, Marseille, France.
| |
Collapse
|
31
|
Bouzid F, Brégeon F, Poncin I, Weber P, Drancourt M, Canaan S. Mycobacterium canettii Infection of Adipose Tissues. Front Cell Infect Microbiol 2017; 7:189. [PMID: 28567368 PMCID: PMC5434109 DOI: 10.3389/fcimb.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023] Open
Abstract
Adipose tissues were shown to host Mycobacterium tuberculosis which is persisting inside mature adipocytes. It remains unknown whether this holds true for Mycobacterium canettii, a rare representative of the M. tuberculosis complex responsible for lymphatic and pulmonary tuberculosis. Here, we infected primary murine white and brown pre-adipocytes and murine 3T3-L1 pre-adipocytes and mature adipocytes with M. canettii and M. tuberculosis as a positive control. Both mycobacteria were able to infect 18–22% of challenged primary murine pre-adipocytes; and to replicate within these cells during a 7-day experiment with the intracellular inoculums being significantly higher in brown than in white pre-adipocytes for M. canettii (p = 0.02) and M. tuberculosis (p = 0.03). Further in-vitro infection of 3T3-L1 mature adipocytes yielded 9% of infected cells by M. canettii and 17% of infected cells by M. tuberculosis (p = 0.001). Interestingly, M. canettii replicated and accumulated intra-cytosolic lipid inclusions within mature adipocytes over a 12-day experiment; while M. tuberculosis stopped replicating at day 3 post-infection. These results indicate that brown pre-adipocytes could be one of the potential targets for M. tuberculosis complex mycobacteria; and illustrate differential outcome of M. tuberculosis complex mycobacteria into adipose tissues. While white adipose tissue is an unlikely sanctuary for M. canettii, it is still an open question whether M. canettii and M. tuberculosis could persist in brown adipose tissues.
Collapse
Affiliation(s)
- Fériel Bouzid
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France.,Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Fabienne Brégeon
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France.,Service des Explorations Fonctionnelles Respiratoires, Centre Hospitalo-Universitaire Nord, Pôle Cardio-Vasculaire et Thoracique, Assistance Publique Hôpitaux de MarseilleMarseille, France
| | - Isabelle Poncin
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France
| | - Pascal Weber
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée InfectionMarseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, EIPL IMM FR3479Marseille, France
| |
Collapse
|
32
|
Jankute M, Nataraj V, Lee OYC, Wu HHT, Ridell M, Garton NJ, Barer MR, Minnikin DE, Bhatt A, Besra GS. The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci Rep 2017; 7:1315. [PMID: 28465507 PMCID: PMC5431016 DOI: 10.1038/s41598-017-01501-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
The evolution of tubercle bacilli parallels a route from environmental Mycobacterium kansasii, through intermediate "Mycobacterium canettii", to the modern Mycobacterium tuberculosis complex. Cell envelope outer membrane lipids change systematically from hydrophilic lipooligosaccharides and phenolic glycolipids to hydrophobic phthiocerol dimycocerosates, di- and pentaacyl trehaloses and sulfoglycolipids. Such lipid changes point to a hydrophobic phenotype for M. tuberculosis sensu stricto. Using Congo Red staining and hexadecane-aqueous buffer partitioning, the hydrophobicity of rough morphology M. tuberculosis and Mycobacterium bovis strains was greater than smooth "M. canettii" and M. kansasii. Killed mycobacteria maintained differential hydrophobicity but defatted cells were similar, indicating that outer membrane lipids govern overall hydrophobicity. A rough M. tuberculosis H37Rv ΔpapA1 sulfoglycolipid-deficient mutant had significantly diminished Congo Red uptake though hexadecane-aqueous buffer partitioning was similar to H37Rv. An M. kansasii, ΔMKAN27435 partially lipooligosaccharide-deficient mutant absorbed marginally more Congo Red dye than the parent strain but was comparable in partition experiments. In evolving from ancestral mycobacteria, related to "M. canettii" and M. kansasii, modern M. tuberculosis probably became more hydrophobic by increasing the proportion of less polar lipids in the outer membrane. Importantly, such a change would enhance the capability for aerosol transmission, affecting virulence and pathogenicity.
Collapse
Affiliation(s)
- Monika Jankute
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vijayashankar Nataraj
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Malin Ridell
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Natalie J Garton
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
33
|
Supply P, Brosch R. The Biology and Epidemiology of Mycobacterium canettii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:27-41. [PMID: 29116628 DOI: 10.1007/978-3-319-64371-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Genome-based insights into the evolution of Mycobacterium tuberculosis and other tuberculosis-causing mycobacteria are constantly increasing. In particular, the recent genomic and functional characterization of several Myocbacterium canettii strains, which are thought to resemble in many aspects the putative common ancestor of the members of the M. tuberculosis complex (MTBC), has consolidated a plausible scenario of the early evolution of tuberculosis-causing mycobacteria, in which the clonal MTBC, comprising numerous key pathogens of mammalian hosts, has evolved from a generalist mycobacterium living in the environment. These studies also have considerably enriched our knowledge on selected molecular events that likely have contributed to the incursion, maintenance and spread of the MTBC members in diverse mammalian hosts. Here, we summarize and discuss recently revealed molecular and evolutionary aspects and emphasize the vast utility of M. canettii strains for identifying the mechanisms that contributed to the global emergence of M. tuberculosis as one of the most important human pathogens.
Collapse
Affiliation(s)
- Philip Supply
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France.
| |
Collapse
|
34
|
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen Ø, Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2016; 23:2-22. [PMID: 27890457 DOI: 10.1016/j.cmi.2016.11.012] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Whole genome sequencing (WGS) offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee on Antimicrobial Susceptibility Testing established a subcommittee to review the current development status of WGS for bacterial antimicrobial susceptibility testing (AST). The published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately is currently either poor or non-existent and the evidence / knowledge base requires significant expansion. The primary comparators for assessing genotypic-phenotypic concordance from WGS data should be changed to epidemiological cut-off values in order to improve differentiation of wild-type from non-wild-type isolates (harbouring an acquired resistance). Clinical breakpoints should be a secondary comparator. This assessment will reveal whether genetic predictions could also be used to guide clinical decision making. Internationally agreed principles and quality control (QC) metrics will facilitate early harmonization of analytical approaches and interpretive criteria for WGS-based predictive AST. Only data sets that pass agreed QC metrics should be used in AST predictions. Minimum performance standards should exist and comparative accuracies across different WGS laboratories and processes should be measured. To facilitate comparisons, a single public database of all known resistance loci should be established, regularly updated and strictly curated using minimum standards for the inclusion of resistance loci. For most bacterial species the major limitations to widespread adoption for WGS-based AST in clinical laboratories remain the current high-cost and limited speed of inferring antimicrobial susceptibility from WGS data as well as the dependency on previous culture because analysis directly on specimens remains challenging. For most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making. WGS-AST should be a funding priority if it is to become a rival to phenotypic AST. This report will be updated as the available evidence increases.
Collapse
Affiliation(s)
- M J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - O Ekelund
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - R Canton
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - C Giske
- Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - H Grundman
- University Medical Centre Freiburg, Infection Prevention and Hospital Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Hasman
- Statens Serum Institute, Department of Microbiology and Infection Control, Copenhagen, Denmark
| | - M T G Holden
- School of Medicine, Medical & Biological Sciences, North Haugh, University of St Andrews, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - J Iredell
- Westmead Institute for Medical Research, University of Sydney and Marie Bashir Institute, Sydney, NSW, Australia
| | - G Kahlmeter
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - C U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - A MacGowan
- Department of Medical Microbiology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - D Mevius
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - M Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - T Naas
- French National Reference Centre for Antibiotic Resistance, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, LabEx LERMIT, University Paris Sud, Le Kremlin-Bicêtre, France
| | - T Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - J-M Rolain
- PU-PH des Disciplines Pharmaceutiques, 1-URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Valorization and Transfer, Aix Marseille Université, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Ø Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| |
Collapse
|
35
|
Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 2016; 113:9876-81. [PMID: 27528665 DOI: 10.1073/pnas.1604921113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.
Collapse
|
36
|
Destruction parenchymateuse sévère et tuberculose à Mycobacterium canetii : à propos d’une observation. Rev Med Interne 2016. [DOI: 10.1016/j.revmed.2016.04.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out. Trends Microbiol 2016; 24:637-648. [PMID: 27068531 DOI: 10.1016/j.tim.2016.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/13/2016] [Accepted: 03/15/2016] [Indexed: 01/29/2023]
Abstract
Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs.
Collapse
|
38
|
pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol 2016; 1:15019. [PMID: 27571976 DOI: 10.1038/nmicrobiol.2015.19] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host-pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.
Collapse
|
39
|
Winglee K, Manson McGuire A, Maiga M, Abeel T, Shea T, Desjardins CA, Diarra B, Baya B, Sanogo M, Diallo S, Earl AM, Bishai WR. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction. PLoS Negl Trop Dis 2016; 10:e0004332. [PMID: 26751217 PMCID: PMC4713829 DOI: 10.1371/journal.pntd.0004332] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. Methodology/Principal Findings We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. Conclusions This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity. Mycobacterium africanum consists of two lineages, lineages 5 and 6, within the Mycobacterium tuberculosis complex (MTC) that cause human tuberculosis in West Africa, but are found rarely outside of this region. Our analysis of the whole genome sequences of 26 lineage 5 and 6 isolates, and 66 isolates from other lineages within the MTC, reveal that M. africanum does not meet modern criteria to be considered an independent species. We analyzed drug resistance-associated genes and found that drug resistance evolves within these lineages through similar mechanisms as observed for the rest of the MTC in Mali. Though we did not see an elevated number of mutations in virulence-associated genes in these two lineages, we identified a number of lineage-specific mutations, pseudogenes and changes in gene content that may impact virulence and host specificity, and improve, overall, our understanding of what make these lineages unique.
Collapse
Affiliation(s)
- Kathryn Winglee
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Abigail Manson McGuire
- Genome Sequencing and Analysis Program, The Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Mamoudou Maiga
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Project SEREFO (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose)/University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Thomas Abeel
- Genome Sequencing and Analysis Program, The Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Terrance Shea
- Genome Sequencing and Analysis Program, The Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Christopher A. Desjardins
- Genome Sequencing and Analysis Program, The Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
| | - Bassirou Diarra
- Project SEREFO (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose)/University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bocar Baya
- Project SEREFO (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose)/University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Moumine Sanogo
- Project SEREFO (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose)/University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diallo
- Project SEREFO (Centre de Recherche et de Formation sur le VIH/Sida et la Tuberculose)/University of Sciences, Technics and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ashlee M. Earl
- Genome Sequencing and Analysis Program, The Broad Institute of MIT & Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (AME); (WRB)
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (AME); (WRB)
| |
Collapse
|
40
|
Aboubaker Osman D, Bouzid F, Canaan S, Drancourt M. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Front Public Health 2016; 3:283. [PMID: 26793699 PMCID: PMC4707939 DOI: 10.3389/fpubh.2015.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tuberculosis in human. This group comprises <100 isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.
Collapse
Affiliation(s)
- Djaltou Aboubaker Osman
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Centre d'Études et de Recherche de Djibouti (CERD), Institut de Recherche Médicinale (IRM), Djibouti, Republic of Djibouti
| | - Feriel Bouzid
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France
| | - Stéphane Canaan
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université , Marseille , France
| | - Michel Drancourt
- Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 , Marseille , France
| |
Collapse
|
41
|
Abstract
Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.
Collapse
|
42
|
Abstract
The causative agent of human tuberculosis (TB), Mycobacterium tuberculosis, is an obligate pathogen that evolved to exclusively persist in human populations. For M. tuberculosis to transmit from person to person, it has to cause pulmonary disease. Therefore, M. tuberculosis virulence has likely been a significant determinant of the association between M. tuberculosis and humans. Indeed, the evolutionary success of some M. tuberculosis genotypes seems at least partially attributable to their increased virulence. The latter possibly evolved as a consequence of human demographic expansions. If co-evolution occurred, humans would have counteracted to minimize the deleterious effects of M. tuberculosis virulence. The fact that human resistance to infection has a strong genetic basis is a likely consequence of such a counter-response. The genetic architecture underlying human resistance to M. tuberculosis remains largely elusive. However, interactions between human genetic polymorphisms and M. tuberculosis genotypes have been reported. Such interactions are consistent with local adaptation and allow for a better understanding of protective immunity in TB. Future 'genome-to-genome' studies, in which locally associated human and M. tuberculosis genotypes are interrogated in conjunction, will help identify new protective antigens for the development of better TB vaccines.
Collapse
Affiliation(s)
- Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | | |
Collapse
|
43
|
den Hertog AL, Sengstake S, Anthony RM. Pyrazinamide resistance in Mycobacterium tuberculosis fails to bite? Pathog Dis 2015; 73:ftv037. [PMID: 25994506 DOI: 10.1093/femspd/ftv037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
In contrast to most other antimycobacterial drugs where--particularly in multidrug-resistant (MDR) strains--a limited number of resistance mutations dominate, pyrazinamide (PZA) resistance associated mutations remain highly diverse with limited clustering. This apparent lack of evolutionary selection for successful PZA resistance mechanisms deserves attention. A clear understanding of the epidemiology of PZA resistance acquisition and spread would be expected to result in important insights into how PZA might be better exploited in treatment regimens to minimize the amplification of Mycobacterium tuberculosis (MTB) drug resistance. We propose that PZA resistance typically induces a fitness cost that impairs MTB transmission. This would explain the lack of extensive clustering for PZA-resistant mutants. Our hypothesis also leads to a series of testable predictions which we outline that could confirm or refute our ideas.
Collapse
Affiliation(s)
- Alice L den Hertog
- KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - Sarah Sengstake
- KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - Richard M Anthony
- KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| |
Collapse
|
44
|
|
45
|
Minnikin DE, Lee OYC, Wu HHT, Besra GS, Bhatt A, Nataraj V, Rothschild BM, Spigelman M, Donoghue HD. Ancient mycobacterial lipids: Key reference biomarkers in charting the evolution of tuberculosis. Tuberculosis (Edinb) 2015; 95 Suppl 1:S133-9. [PMID: 25736170 DOI: 10.1016/j.tube.2015.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis has a cell envelope incorporating a peptidoglycan-linked arabinogalactan esterified by long-chain mycolic acids. A range of "free" lipids are associated with the "bound" mycolic acids, producing an effective envelope outer membrane. The distribution of these lipids is discontinuous among mycobacteria and such lipids have proven potential for biomarker use in tracing the evolution of tuberculosis. A plausible evolutionary scenario involves progression from an environmental organism, such as Mycobacterium kansasii, through intermediate "smooth" tubercle bacilli, labelled "Mycobacterium canettii"; cell envelope lipid composition possibly correlates with such a progression. M. kansasii and "M. canettii" have characteristic lipooligosaccharides, associated with motility and biofilms, and glycosyl phenolphthiocerol dimycocerosates ("phenolic glycolipids"). Both these lipid classes are absent in modern M. tuberculosis sensu stricto, though simplified phenolic glycolipids remain in certain current biotypes. Dimycocerosates of the phthiocerol family are restricted to smaller phthiodiolone diesters in M. kansasii. Diacyl and pentaacyl trehaloses are present in "M. canettii" and M. tuberculosis, accompanied in the latter by related sulfated acyl trehaloses. In comparison with environmental mycobacteria, subtle modifications in mycolic acid structures in "M. canettii" and M. tuberculosis are notable. The probability of essential tuberculosis evolution taking place in Pleistocene megafauna, rather than Homo sapiens, is reemphasised.
Collapse
Affiliation(s)
- David E Minnikin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Oona Y-C Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Houdini H T Wu
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Apoorva Bhatt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Vijayashankar Nataraj
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Bruce M Rothschild
- Biodiversity Institute and Departments of Anthropology and Geology, University of Kansas, Lawrence, KS 66045, USA.
| | - Mark Spigelman
- Kuvin Center for the Study of Infectious and Tropical Diseases and Ancient DNA, Hadassah Medical School, Hebrew University, Jerusalem, Israel.
| | - Helen D Donoghue
- Centres for Clinical Microbiology and the History of Medicine, University College London, London, UK.
| |
Collapse
|
46
|
Bañuls AL, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol 2015; 64:1261-1269. [PMID: 26385049 DOI: 10.1099/jmm.0.000171] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Some species of the Mycobacterium tuberculosis complex (MTBC), particularly Mycobacterium tuberculosis, which causes human tuberculosis (TB), are the first cause of death linked to a single pathogen worldwide. In the last decades, evolutionary studies have much improved our knowledge on MTBC history and have highlighted its long co-evolution with humans. Its ability to remain latent in humans, the extraordinary proportion of asymptomatic carriers (one-third of the entire human population), the deadly epidemics and the observed increasing level of resistance to antibiotics are proof of its evolutionary success. Many MTBC molecular signatures show not only that these bacteria are a model of adaptation to humans but also that they have influenced human evolution. Owing to the unbalance between the number of asymptomatic carriers and the number of patients with active TB, some authors suggest that infection by MTBC could have a protective role against active TB disease and also against other pathologies. However, it would be inappropriate to consider these infectious pathogens as commensals or symbionts, given the level of morbidity and mortality caused by TB.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- MIVEGEC, UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France.,Laboratory of Tuberculosis, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Adama Sanou
- MIVEGEC, UMR CNRS 5290-IRD 224-Université de Montpellier, Montpellier, France
| | - Nguyen Thi Van Anh
- Laboratory of Tuberculosis, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sylvain Godreuil
- INSERM U 1058, Infection by HIV and by Agents with Mucocutaneous Tropism: from Pathogenesis to Prevention, Montpellier, France.,Université Montpellier 1, Montpellier, France.,Centre Hospitalier Régional Universitaire (CHRU) de Montpellier, Département de Bactériologie - Virologie, Montpellier, France
| |
Collapse
|
47
|
Mortimer TD, Pepperell CS. Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol Evol 2014; 6:2489-500. [PMID: 25173757 PMCID: PMC4202316 DOI: 10.1093/gbe/evu175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Distributive conjugal transfer (DCT) is a newly described mechanism of lateral gene transfer (LGT) that results in a mosaic transconjugant structure, similar to the products of meiosis. We have tested popular LGT detection methods on whole-genome sequence data from experimental DCT transconjugants and used the best performing methods to compare genomic signatures of DCT with those of LGT through natural transformation, conjugative plasmids, and mobile genetic elements (MGE). We found that DCT results in transfer of larger chromosomal segments, that these segments are distributed more broadly around the chromosome, and that a greater proportion of the chromosome is affected by DCT than by other mechanisms of LGT. We used the best performing methods to characterize LGT in Mycobacterium canettii, the mycobacterial species most closely related to Mycobacterium tuberculosis. Patterns of LGT among M. canettii were highly distinctive. Gene flow appeared unidirectional, from lineages with minimal evidence of LGT to isolates with a substantial proportion (6–13%) of sites identified as recombinant. Among M. canettii isolates with evidence of LGT, recombinant fragments were larger and more evenly distributed relative to bacteria that undergo LGT through natural transformation, conjugative plasmids, and MGE. Spatial bias in M. canettii was also unusual in that patterns of recombinant fragment sharing mirrored overall phylogenetic structure. Based on the proportion of recombinant sites, the size of recombinant fragments, their spatial distribution and lack of association with MGE, as well as unidirectionality of DNA transfer, we conclude that DCT is the predominant mechanism of LGT among M. canettii.
Collapse
Affiliation(s)
- Tatum D Mortimer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Microbiology Doctoral Training Program, University of Wisconsin-Madison
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison
| |
Collapse
|
48
|
Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin É, Pourcel C, Vergnaud G. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 2014; 20:21-8. [PMID: 24520560 PMCID: PMC3884719 DOI: 10.3201/eid2001.130652] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two outbreaks among expatriate children were caused by an epidemic clone from the Horn of Africa. “Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.
Collapse
|
49
|
Boritsch EC, Supply P, Honoré N, Seeman T, Stinear TP, Brosch R. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 2014; 93:835-52. [DOI: 10.1111/mmi.12720] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Eva C. Boritsch
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Philip Supply
- INSERM U1019; Lille France
- CNRS UMR 8204; Lille France
- University of Lille Nord de France; Lille France
- Institut Pasteur de Lille; Center for Infection and Immunity of Lille; Lille France
| | - Nadine Honoré
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Torsten Seeman
- Victorian Bioinformatics Consortium; Monash University; Clayton Victoria Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology; University of Melbourne; Parkville Victoria Australia
| | - Roland Brosch
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| |
Collapse
|
50
|
|