1
|
Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect 2019; 34:100622. [PMID: 31956419 PMCID: PMC6961714 DOI: 10.1016/j.nmni.2019.100622] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Microbiology has been largely developed thanks to the discovery and optimization of culture media. The first liquid artificial culture medium was created by Louis Pasteur in 1860. Previously, bacterial growth on daily materials such as some foods had been observed. These observations highlighted the importance of the bacteria's natural environment and their nutritional needs in the development of culture media for their isolation. A culture medium is essentially composed of basic elements (water, nutrients), to which must be added different growth factors that will be specific to each bacterium and necessary for their growth. The evolution of bacterial culture through the media used for their culture began with the development of the first solid culture medium by Koch, allowing not only the production of bacterial colonies, but also the possibility of purifying a bacterial clone. The main gelling agent used in solid culture media is agar. However, some limits have been observed in the use of agar because of some extremely oxygen-sensitive bacteria that do not grow on agar media, and other alternatives were proposed and tested. Then, the discovery of antimicrobial agents and their specific targets prompted the emergence of selective media. These inhibiting agents make it possible to eliminate undesirable bacteria from the microbiota and select the bacteria desired. Thanks to a better knowledge of the bacterial environment, it will be possible to develop new culture media and new culture conditions, better adapted to certain fastidious bacteria that are difficult to isolate.
Collapse
Affiliation(s)
- M Bonnet
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
| | - J C Lagier
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - D Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - S Khelaifia
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| |
Collapse
|
2
|
Abdallah RA, Beye M, Diop A, Bakour S, Raoult D, Fournier PE. The impact of culturomics on taxonomy in clinical microbiology. Antonie van Leeuwenhoek 2017; 110:1327-1337. [PMID: 28389704 DOI: 10.1007/s10482-017-0871-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Over the past decade, new culture methods coupled to genome and metagenome sequencing have enabled the number of isolated bacterial species with standing in nomenclature to rise to more than 15,000 whereas it was only 1791 in 1980. 'Culturomics', a new approach based on the diversification of culture conditions, has enabled the isolation of more than 1000 distinct human-associated bacterial species since 2012, including 247 new species. This strategy was demonstrated to be complementary to metagenome sequencing for the exhaustive study of the human microbiota and its roles in health and diseases. However, by identifying a large number of new bacterial species in a short time, culturomics has highlighted a need for taxonomic approaches adapted to clinical microbiology that would include the use of modern and reproducible tools, including high throughput genomic and proteomic analyses. Herein, we review the development of culturomics and genomics in the clinical microbiology field and their impact on bacterial taxonomy.
Collapse
Affiliation(s)
- Rita Abou Abdallah
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Mamadou Beye
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Awa Diop
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France.
| |
Collapse
|
3
|
Birgy A, Levy C, Bidet P, Thollot F, Derkx V, Béchet S, Mariani-Kurkdjian P, Cohen R, Bonacorsi S. ESBL-producingEscherichia coliST131 versus non-ST131: evolution and risk factors of carriage among French children in the community between 2010 and 2015. J Antimicrob Chemother 2016; 71:2949-56. [DOI: 10.1093/jac/dkw219] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/11/2016] [Indexed: 01/27/2023] Open
|
4
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
5
|
Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev 2015; 28:208-36. [PMID: 25567228 DOI: 10.1128/cmr.00110-14] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A pure bacterial culture remains essential for the study of its virulence, its antibiotic susceptibility, and its genome sequence in order to facilitate the understanding and treatment of caused diseases. The first culture conditions empirically varied incubation time, nutrients, atmosphere, and temperature; culture was then gradually abandoned in favor of molecular methods. The rebirth of culture in clinical microbiology was prompted by microbiologists specializing in intracellular bacteria. The shell vial procedure allowed the culture of new species of Rickettsia. The design of axenic media for growing fastidious bacteria such as Tropheryma whipplei and Coxiella burnetii and the ability of amoebal coculture to discover new bacteria constituted major advances. Strong efforts associating optimized culture media, detection methods, and a microaerophilic atmosphere allowed a dramatic decrease of the time of Mycobacterium tuberculosis culture. The use of a new versatile medium allowed an extension of the repertoire of archaea. Finally, to optimize the culture of anaerobes in routine bacteriology laboratories, the addition of antioxidants in culture media under an aerobic atmosphere allowed the growth of strictly anaerobic species. Nevertheless, among usual bacterial pathogens, the development of axenic media for the culture of Treponema pallidum or Mycobacterium leprae remains an important challenge that the patience and innovations of cultivators will enable them to overcome.
Collapse
|
6
|
López-Cerero L, Navarro MD, Bellido M, Martín-Peña A, Viñas L, Cisneros JM, Gómez-Langley SL, Sánchez-Monteseirín H, Morales I, Pascual A, Rodríguez-Baño J. Escherichia coli belonging to the worldwide emerging epidemic clonal group O25b/ST131: risk factors and clinical implications. J Antimicrob Chemother 2013; 69:809-14. [PMID: 24123431 DOI: 10.1093/jac/dkt405] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Escherichia coli belonging to clonal group ST131 has emerged as a significant contributor to infection caused by antibiotic-resistant E. coli worldwide. We investigated the risk factors for infections caused by ST131 E. coli and their clinical implications. METHODS One thousand and seventy-seven E. coli isolates were screened for ST131 by molecular methods. Risk factors for ST131 were investigated separately for patients with E. coli producing and not producing extended-spectrum β-lactamases (ESBLs) in the Seville area, Spain. Multivariate analysis using logistic regression was performed. Patients with infections caused by ST131 and non-ST131 isolates were prospectively followed. RESULTS Independent risk factors for non-ESBL-producing ST131 were female gender (OR: 1.94; 95% CI: 1.07-3.51), diabetes mellitus (OR: 2.17; 95% CI: 1.29-3.67), bedridden status (OR: 7.75; 95% CI: 0.70-85.07) and exposure to amoxicillin/clavulanate (OR: 2.07; 95% CI: 1.08-3.96) or fluoroquinolones (OR: 2.48; 95% CI: 1.41-4.34). For ESBL-producing ST131, male gender was an independent risk factor (OR: 2.20; 95% CI: 0.94-5.11), while healthcare-related acquisition and exposure to any previous antibiotic were protective (OR: 0.30; 95% CI: 0.13-0.71; and OR: 0.43; 95% CI: 0.19-1.00, respectively). Overall, the severity of sepsis, bacteraemia and mortality were similar among ST131 and non-ST131 groups. The presence of typical factors predisposing to E. coli infection was more frequent in non-ESBL-producing ST131 than in controls (76% versus 57.2%, P = 0.005). CONCLUSIONS Previous use of antibiotics selecting for ST131 isolates was the main modifiable risk factor for infections caused by these isolates. Our results also suggest that the clinical virulence of ST131 is not higher than that of other common E. coli causing infections.
Collapse
Affiliation(s)
- Lorena López-Cerero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Subramanyam B, Sivaramakrishnan G, Dusthackeer A, Kumar V. Phage lysin to control the overgrowth of normal flora in processed sputum samples for the rapid and sensitive detection of Mycobacterium tuberculosis by luciferase reporter phage assay. BMC Infect Dis 2013; 13:44. [PMID: 23356428 PMCID: PMC3570305 DOI: 10.1186/1471-2334-13-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/17/2013] [Indexed: 08/27/2023] Open
Abstract
Background Phage lysin, extracted from three bacteriophages was used in place of antibiotics to control the overgrowth of normal flora in processed sputum samples leading to the sensitive detection of Mycobacterium tuberculosis using diagnostic luciferase reporter phage assay (DLRPA). Methods A total of 129 sputum samples were processed by modified Petroff’s method. Two Lowenstein Jensen slopes were inoculated from the processed sputum deposit thus obtained. The remaining deposits were transferred to 7 ml of Middlebrook 7H9 complete medium supplemented with phage lysin and incubated at 37°C. DLRPA was done using phAE129 at days 7, 9, 14 and 21. At the end of day 21, the samples were centrifuged and the pellets were inoculated on to 2 more LJ slopes to validate DLRPA results. Results The sensitivity and specificity of DLRPA in detecting M. tuberculosis from sputum specimens was 90% and 81% respectively compared to conventional LJ culture. The agreement between the methods was 87%. The rate of contamination for DLRPA using phage lysin was 9.3%. Conclusion Phage lysin can be used to decontaminate sputum samples for the detection of M. tuberculosis by DLRPA directly from processed sputum specimens.
Collapse
Affiliation(s)
- Balaji Subramanyam
- Department of Bacteriology, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | | | | | | |
Collapse
|
8
|
Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. BACTERIOPHAGE 2012; 2:105-283. [PMID: 23050221 PMCID: PMC3442824 DOI: 10.4161/bact.19274] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteriophages (phages) have been utilized for decades as a means for uniquely identifying their target bacteria. Due to their inherent natural specificity, ease of use, and straightforward production, phage possess a number of desirable attributes which makes them particularly suited as bacterial detectors. As a result, extensive research has been conducted into the development of phage, or phage-derived products to expedite the detection of human pathogens. However, very few phage-based diagnostics have transitioned from the research lab into a clinical diagnostic tool. Herein we review the phage-based platforms that are currently used for the detection of Mycobacterium tuberculosis, Yersinia pestis, Bacillus anthracis and Staphylococcus aureus in the clinical field. We briefly describe the disease, the current diagnostic options, and the role phage diagnostics play in identifying the cause of infection, and determining antibiotic susceptibility.
Collapse
Affiliation(s)
| | | | - Caroline Westwater
- Department of Craniofacial Biology; Medical University of South Carolina; Charleston, SC USA
| |
Collapse
|