1
|
Bulgarella M, Haywood J, Dowle EJ, Morgan-Richards M, Trewick SA. Standard metabolic rate variation among New Zealand Orthoptera. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100092. [PMID: 39224195 PMCID: PMC11367484 DOI: 10.1016/j.cris.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Eddy J. Dowle
- Anatomy Department, Otago University, PO Box 56, Dunedin 9054, New Zealand
| | - Mary Morgan-Richards
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Steven A. Trewick
- Ecology, College of Science, Massey University Manawatū, Private Bag 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
2
|
Chick LD, Waters JS, Diamond SE. Pedal to the metal: Cities power evolutionary divergence by accelerating metabolic rate and locomotor performance. Evol Appl 2021; 14:36-52. [PMID: 33519955 PMCID: PMC7819567 DOI: 10.1111/eva.13083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn-dwelling ants (Temnothorax curvispinosus) in response to urban heat island effects. We reared ant colonies within a laboratory common garden (25°C) to generate a laboratory-born cohort of workers and tested their acute plastic responses to temperature. Contrary to expectations, urban ants exhibited a higher metabolic rate compared with rural ants when tested at 25°C, suggesting a potentially maladaptive evolutionary response to urbanization. Urban and rural ants had similar metabolic rates when tested at 38°C, as a consequence of a diminished plastic response of the urban ants. Locomotor performance also evolved such that the running speed of urban ants was faster than rural ants under warmer test temperatures (32°C and 42°C) but slower under a cooler test temperature (22°C). The resulting specialist-generalist trade-off and higher thermal optimum for locomotor performance might compensate for evolved increases in metabolic rate by allowing workers to more quickly scout and retrieve resources.
Collapse
Affiliation(s)
- Lacy D. Chick
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
- Hawken SchoolGates MillsOHUSA
| | | | - Sarah E. Diamond
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
3
|
Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Parsons KJ. Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild. Funct Ecol 2020; 34:1205-1214. [PMID: 32612318 PMCID: PMC7318562 DOI: 10.1111/1365-2435.13538] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/20/2020] [Indexed: 01/06/2023]
Abstract
In light of global climate change, there is a pressing need to understand and predict the capacity of populations to respond to rising temperatures. Metabolic rate is a key trait that is likely to influence the ability to cope with climate change. Yet, empirical and theoretical work on metabolic rate responses to temperature changes has so far produced mixed results and conflicting predictions.Our study addresses this issue using a novel approach of comparing fish populations in geothermally warmed lakes and adjacent ambient-temperature lakes in Iceland. This unique 'natural experiment' provides repeated and independent examples of populations experiencing contrasting thermal environments for many generations over a small geographic scale, thereby avoiding the confounding factors associated with latitudinal or elevational comparisons. Using Icelandic sticklebacks from three warm and three cold habitats, we measured individual metabolic rates across a range of acclimation temperatures to obtain reaction norms for each population.We found a general pattern for a lower standard metabolic rate (SMR) in sticklebacks from warm habitats when measured at a common temperature, as predicted by Krogh's rule. Metabolic rate differences between warm- and cold-habitat sticklebacks were more pronounced at more extreme acclimation temperatures, suggesting the release of cryptic genetic variation upon exposure to novel conditions, which can reveal hidden evolutionary potential. We also found a stronger divergence in metabolic rate between thermal habitats in allopatry than sympatry, indicating that gene flow may constrain physiological adaptation when dispersal between warm and cold habitats is possible.In sum, our study suggests that fish may diverge toward a lower SMR in a warming world, but this might depend on connectivity and gene flow between different thermal habitats. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health, and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Plasman M, Bautista A, McCUE MD, DÍaz DE LA Vega-PÉrez AH. Resting metabolic rates increase with elevation in a mountain-dwelling lizard. Integr Zool 2020; 15:363-374. [PMID: 32306560 DOI: 10.1111/1749-4877.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Individuals that inhabit broad elevational ranges may experience unique environmental challenges. Because temperature decreases with increased elevation, the ectotherms living at high elevations have to manage limited activity time and high thermoregulatory effort. The resting metabolic rate (RMR) of a postabsorptive animal is related to its total energy requirements as well as many other fitness traits. Mesquite lizards (Sceloporus grammicus) living on La Malinche Volcano, Mexico, inhabit a wide elevational range with some populations apparently thriving above the tree line. We measured the RMR of lizards from different elevations (i.e., 2,600, 3,200, and 4,100 m) at four ecologically relevant temperatures (i.e., 15, 25, 30, and 35 °C) and found that RMR of mesquite lizards increased with temperature and body mass. More importantly, lizards from the high-elevation population had mass specific RMR that was higher at all temperatures. While the higher RMRs of high-elevation populations imply higher metabolic costs at a given temperature these lizards were also smaller. Both of these traits may allow these high elevation populations to thrive in the face of the thermal challenges imposed by their environment.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | | | - Aníbal H DÍaz DE LA Vega-PÉrez
- Consejo Nacional de Ciencia y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
5
|
Günter F, Beaulieu M, Freiberg KF, Welzel I, Toshkova N, Žagar A, Simčič T, Fischer K. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J Evol Biol 2020; 33:920-929. [PMID: 32243031 DOI: 10.1111/jeb.13623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
Understanding how organisms adapt to complex environments is a central goal of evolutionary biology and ecology. This issue is of special interest in the current era of rapidly changing climatic conditions. Here, we investigate clinal variation and plastic responses in life history, morphology and physiology in the butterfly Pieris napi along a pan-European gradient by exposing butterflies raised in captivity to different temperatures. We found clinal variation in body size, growth rates and concomitant development time, wing aspect ratio, wing melanization and heat tolerance. Individuals from warmer environments were more heat-tolerant and had less melanised wings and a shorter development, but still they were larger than individuals from cooler environments. These findings suggest selection for rapid growth in the warmth and for wing melanization in the cold, and thus fine-tuned genetic adaptation to local climates. Irrespective of the origin of butterflies, the effects of higher developmental temperature were largely as expected, speeding up development; reducing body size, potential metabolic activity and wing melanization; while increasing heat tolerance. At least in part, these patterns likely reflect adaptive phenotypic plasticity. In summary, our study revealed pronounced plastic and genetic responses, which may indicate high adaptive capacities in our study organism. Whether this may help such species, though, to deal with current climate change needs further investigation, as clinal patterns have typically evolved over long periods.
Collapse
Affiliation(s)
- Franziska Günter
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Kasimir F Freiberg
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Ines Welzel
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | | | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
6
|
Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 2020; 192:1085-1098. [PMID: 32270268 PMCID: PMC7165148 DOI: 10.1007/s00442-020-04632-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
Abstract
Climate change has shifted geographical ranges of species northwards or to higher altitudes on elevational gradients. These changes have been associated with increases in ambient temperatures. For ectotherms in seasonal environments, however, life history theory relies largely on the length of summer, which varies somewhat independently of ambient temperature per se. Extension of summer reduces seasonal time constraints and enables species to establish in new areas as a result of over-wintering stage reaching in due time. The reduction of time constraints is also predicted to prolong organisms’ breeding season when reproductive potential is under selection. We studied temporal change in the summer length and its effect on species’ performance by combining long-term data on the occurrence and abundance of nocturnal moths with weather conditions in a boreal location at Värriötunturi fell in NE Finland. We found that summers have lengthened on average 5 days per decade from the late 1970s, profoundly due to increasing delays in the onset of winters. Moth abundance increased with increasing season length a year before. Most of the species occurrences expanded upwards in elevation. Moth communities in low elevation pine heath forest and middle elevation mountain birch forest have become inseparable. Yet, the flight periods have remained unchanged, probably due to unpredictable variation in proximate conditions (weather) that hinders life histories from selection. We conclude that climate change-driven changes in the season length have potential to affect species’ ranges and affect the structure of insect assemblages, which may contribute to alteration of ecosystem-level processes.
Collapse
|
7
|
Shik JZ, Arnan X, Oms CS, Cerdá X, Boulay R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J Anim Ecol 2019; 88:1240-1249. [DOI: 10.1111/1365-2656.13007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Zvi Shik
- Section for Ecology and Evolution, Department of Biology University of Copenhagen Copenhagen Denmark
| | | | | | - Xim Cerdá
- Estación Biológica Doñana (CSIC) Sevilla Spain
| | - Raphaël Boulay
- Institute of Insect Biology Tours University Tours France
| |
Collapse
|
8
|
Friedline CJ, Faske TM, Lind BM, Hobson EM, Parry D, Dyer RJ, Johnson DM, Thompson LM, Grayson KL, Eckert AJ. Evolutionary genomics of gypsy moth populations sampled along a latitudinal gradient. Mol Ecol 2019; 28:2206-2223. [PMID: 30834645 DOI: 10.1111/mec.15069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023]
Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.
Collapse
Affiliation(s)
| | - Trevor M Faske
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon M Lind
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia
| | - Erin M Hobson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Parry
- Department of Environmental & Forest Biology, State University of New York, Syracuse, New York
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Enriquez T, Renault D, Charrier M, Colinet H. Cold Acclimation Favors Metabolic Stability in Drosophila suzukii. Front Physiol 2018; 9:1506. [PMID: 30443218 PMCID: PMC6221910 DOI: 10.3389/fphys.2018.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022] Open
Abstract
The invasive fruit fly pest, Drosophila suzukii, is a chill susceptible species, yet it is capable of overwintering in rather cold climates, such as North America and North Europe, probably thanks to a high cold tolerance plasticity. Little is known about the mechanisms underlying cold tolerance acquisition in D. suzukii. In this study, we compared the effect of different forms of cold acclimation (at juvenile or at adult stage) on subsequent cold tolerance. Combining developmental and adult cold acclimation resulted in a particularly high expression of cold tolerance. As found in other species, we expected that cold-acclimated flies would accumulate cryoprotectants and would be able to maintain metabolic homeostasis following cold stress. We used quantitative target GC-MS profiling to explore metabolic changes in four different phenotypes: control, cold acclimated during development or at adult stage or during both phases. We also performed a time-series GC-MS analysis to monitor metabolic homeostasis status during stress and recovery. The different thermal treatments resulted in highly distinct metabolic phenotypes. Flies submitted to both developmental and adult acclimation were characterized by accumulation of cryoprotectants (carbohydrates and amino acids), although concentrations changes remained of low magnitude. After cold shock, non-acclimated chill-susceptible phenotype displayed a symptomatic loss of metabolic homeostasis, correlated with erratic changes in the amino acids pool. On the other hand, the most cold-tolerant phenotype was able to maintain metabolic homeostasis after cold stress. These results indicate that cold tolerance acquisition of D. suzukii depends on physiological strategies similar to other drosophilids: moderate changes in cryoprotective substances and metabolic robustness. In addition, the results add to the body of evidence supporting that mechanisms underlying the different forms of acclimation are distinct.
Collapse
Affiliation(s)
- Thomas Enriquez
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | - David Renault
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France.,Institut Universitaire de France, Paris, France
| | | | - Hervé Colinet
- ECOBIO - UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| |
Collapse
|
10
|
Horne CR, Hirst AG, Atkinson D. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Curtis R. Horne
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
- Centre for Ocean LifeNational Institute for Aquatic ResourcesTechnical University of Denmark Charlottenlund Denmark
| | - David Atkinson
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
| |
Collapse
|
11
|
Auer SK, Killen SS, Rezende EL. Resting vs. active: a meta-analysis of the intra- and inter-specific associations between minimum, sustained, and maximum metabolic rates in vertebrates. Funct Ecol 2017; 31:1728-1738. [PMID: 28979057 PMCID: PMC5600087 DOI: 10.1111/1365-2435.12879] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/24/2017] [Indexed: 11/30/2022]
Abstract
Variation in aerobic capacity has far reaching consequences for the physiology, ecology, and evolution of vertebrates. Whether at rest or active, animals are constrained to operate within the energetic bounds determined by their minimum (minMR) and sustained or maximum metabolic rates (upperMR). MinMR and upperMR can differ considerably among individuals and species but are often presumed to be mechanistically linked to one another. Specifically, minMR is thought to reflect the idling cost of the machinery needed to support upperMR. However, previous analyses based on limited datasets have come to conflicting conclusions regarding the generality and strength of their association. Here we conduct the first comprehensive assessment of their relationship, based on a large number of published estimates of both the intra‐specific (n = 176) and inter‐specific (n = 41) phenotypic correlations between minMR and upperMR, estimated as either exercise‐induced maximum metabolic rate (VO2max), cold‐induced summit metabolic rate (Msum), or daily energy expenditure (DEE). Our meta‐analysis shows that there is a general positive association between minMR and upperMR that is shared among vertebrate taxonomic classes. However, there was stronger evidence for intra‐specific correlations between minMR and Msum and between minMR and DEE than there was for a correlation between minMR and VO2max across different taxa. As expected, inter‐specific correlation estimates were consistently higher than intra‐specific estimates across all traits and vertebrate classes. An interesting exception to this general trend was observed in mammals, which contrast with birds and exhibit no correlation between minMR and Msum. We speculate that this is due to the evolution and recruitment of brown fat as a thermogenic tissue, which illustrates how some species and lineages might circumvent this seemingly general association. We conclude that, in spite of some variability across taxa and traits, the contention that minMR and upperMR are positively correlated generally holds true both within and across vertebrate species. Ecological and comparative studies should therefore take into consideration the possibility that variation in any one of these traits might partly reflect correlated responses to selection on other metabolic parameters.
A lay summary is available for this article.
Collapse
Affiliation(s)
- Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Enrico L Rezende
- Facultad de Ecología y Recursos Naturales Universidad Andres Bello Santiago Chile
| |
Collapse
|
12
|
Alton LA, Condon C, White CR, Angilletta MJ. Colder environments did not select for a faster metabolism during experimental evolution of
Drosophila melanogaster. Evolution 2016; 71:145-152. [DOI: 10.1111/evo.13094] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Lesley A. Alton
- School of Biological Sciences The University of Queensland Brisbane QLD 4072 Australia
- Current Address: School of Biological Sciences Monash University Clayton VIC 3800 Australia
| | - Catriona Condon
- School of Life Sciences Arizona State University Tempe Arizona 85287
| | - Craig R. White
- School of Biological Sciences The University of Queensland Brisbane QLD 4072 Australia
- Current Address: School of Biological Sciences Monash University Clayton VIC 3800 Australia
| | | |
Collapse
|
13
|
Ryan MJ, Latella IM, Giermakowski JT, Snell H, Poe S, Pangle RE, Gehres N, Pockman WT, McDowell NG. Too dry for lizards: short‐term rainfall influence on lizard microhabitat use in an experimental rainfall manipulation within a piñon‐juniper. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mason J. Ryan
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
- Museum of Southwestern Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Ian M. Latella
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
- Museum of Southwestern Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - J. Tomasz Giermakowski
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
- Museum of Southwestern Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Howard Snell
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
- Museum of Southwestern Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Steven Poe
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
- Museum of Southwestern Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Robert E. Pangle
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Nathan Gehres
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - William T. Pockman
- Department of Biology University of New Mexico MSC03‐2020 Albuquerque New Mexico 87131 USA
| | - Nate G. McDowell
- Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
14
|
Hoiss B, Krauss J, Potts SG, Roberts S, Steffan-Dewenter I. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc Biol Sci 2012; 279:4447-56. [PMID: 22933374 DOI: 10.1098/rspb.2012.1581] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.
Collapse
Affiliation(s)
- Bernhard Hoiss
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Estay SA, Clavijo-Baquet S, Lima M, Bozinovic F. Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0216-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|