1
|
Kissane RWP, Bates KT, Fagan MJ, Wang L, Watson PJ, Askew GN. The functional role of the rabbit digastric muscle during mastication. J Exp Biol 2024; 227:jeb249238. [PMID: 39297179 PMCID: PMC11449450 DOI: 10.1242/jeb.249238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
Muscle spindle abundance is highly variable in vertebrates, but the functional determinants of this variation are unclear. Recent work has shown that human leg muscles with the lowest abundance of muscle spindles primarily function to lengthen and absorb energy, while muscles with a greater spindle abundance perform active-stretch-shorten cycles with no net work, suggesting that muscle spindle abundance may be underpinned by muscle function. Compared with other mammalian muscles, the digastric muscle contains the lowest abundance of muscle spindles and, therefore, might be expected to generate substantial negative work. However, it is widely hypothesised that as a jaw-opener (anatomically) the digastric muscle would primarily function to depress the jaw, and consequently do positive work. Through a combination of X-ray reconstruction of moving morphology (XROMM), electromyography and fluoromicrometry, we characterised the 3D kinematics of the jaw and digastric muscle during feeding in rabbits. Subsequently, the work loop technique was used to simulate in vivo muscle behaviour in situ, enabling muscle force to be quantified in relation to muscle strain and hence determine the muscle's function during mastication. When functioning on either the working or balancing side, the digastric muscle generates a large amount of positive work during jaw opening, and a large amount of negative work during jaw closing, on average producing a relatively small amount of net negative work. Our data therefore further support the hypothesis that muscle spindle abundance is linked to muscle function; specifically, muscles that absorb a relatively large amount of negative work have a low spindle abundance.
Collapse
Affiliation(s)
- Roger W P Kissane
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, University of Liverpool, The William Henry Duncan Building, Liverpool L7 8TX, UK
| | | | - Linjie Wang
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Peter J Watson
- School of Engineering, University of Hull, Hull HU6 7RX, UK
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
3
|
Dickinson E, Fitton LC, Kupczik K. Ontogenetic changes to muscle architectural properties within the jaw-adductor musculature of Macaca fascicularis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:291-310. [PMID: 30168867 DOI: 10.1002/ajpa.23628] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Changes to soft- and hard-tissue components of the masticatory complex during development can impact functional performance by altering muscle excursion potential, maximum muscle forces, and the efficiency of force transfer to specific bitepoints. Within Macaca fascicularis, older individuals exploit larger, more mechanically resistant food items and more frequently utilize wide-gape jaw postures. We therefore predict that key architectural and biomechanical variables will scale during ontogeny to maximize bite force and gape potential within older, larger-bodied individuals. MATERIALS AND METHODS We analyzed 26 specimens of M. fascicularis, representing a full developmental spectrum. The temporalis, superficial masseter, and deep masseter were dissected to determine muscle mass, fiber length, and physiologic cross-sectional area (PCSA). Lever-arm lengths were also measured for each muscle, alongside the height of the temporomandibular joint (TMJ) and basicranial length. These variables were scaled against two biomechanical variables (jaw length and condyle-molar length) to determine relative developmental changes within these parameters. RESULTS During ontogeny, muscle mass, fiber length, and PCSA scaled with positive allometry relative to jaw length and condyle-molar length within all muscles. TMJ height also scaled with positive allometry, while muscle lever arms scaled with isometry relative to jaw length and with positive allometry (temporalis) or isometry (superficial and deep masseter) relative to condyle-molar length. CONCLUSION Larger individuals demonstrate adaptations during development towards maximizing gape potential and bite force potential at both an anterior and posterior bitepoint. These data provide anatomical evidence to support field observations of dietary and behavioral differences between juvenile and adult M. fascicularis.
Collapse
Affiliation(s)
- Edwin Dickinson
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Centre for Anatomical and Human Sciences Hull York Medical School, York, United Kingdom
| | - Laura C Fitton
- Centre for Anatomical and Human Sciences Hull York Medical School, York, United Kingdom
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
4
|
Daré LR, Dias DV, Rosa Junior GM, Bueno CRS, Buchaim RL, Rodrigues ADC, Andreo JC. Effect of β-hydroxy-β-methylbutyrate in masticatory muscles of rats. J Anat 2014; 226:40-6. [PMID: 25400135 DOI: 10.1111/joa.12256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg(-1) of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender.
Collapse
Affiliation(s)
- Leticia R Daré
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Mancilla-Leytón J, González-Redondo P, Vicente AM. Effects of rabbit gut passage on seed retrieval and germination of three shrub species. Basic Appl Ecol 2013. [DOI: 10.1016/j.baae.2013.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Denny M, McGowan RS. Implications of Peripheral Muscular and Anatomical Development for the Acquisition of Lingual Control for Speech Production: A Review. Folia Phoniatr Logop 2012; 64:105-15. [DOI: 10.1159/000338611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Ciena AP, de Almeida SRY, Dias FJ, Bolina CDS, Issa JPM, Iyomasa MM, Ogawa K, Watanabe IS. Fine structure of myotendinous junction between the anterior belly of the digastric muscle and intermediate tendon in adults rats. Micron 2011; 43:258-62. [PMID: 21967838 DOI: 10.1016/j.micron.2011.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
This study analyzed the ultrastructural characteristics of the myotendinous junction (MTJ) between anterior belly of digastrics muscle and the intermediate tendon in adult rats. Six male Wistar rats were used and were anesthetized with an overdose of urethane and sacrificed by intracardiac perfusion with modified Karnovsky solution, postfixed in 1% osmium tetroxide, dehydrated in increasing series of alcohols and embedded in Spurr resin for transmission electron microscopic analysis. Ultrastructural analysis showed conical shape of the fiber extremity in MTJ region, highlighting the presence of numerous mitochondria arranged in groups in the subsarcolemmal and intermyofibrillary regions. Atypical MTJ characteristics were seen interspersed with bundles of collagen fibers. Classic characteristics such as finger-like processes by means of sarcoplasmic projections were observed among interdigitations. Terminals and periphericals bundles of myofibrils showed close relationship with the adjacent muscle fiber's endomysium through lateral junctions. In the distal portion, it was observed that the communication region of microtendons forming the intermediate tendon of digastric muscle, and it can highlight the columns disposition of tenocytes. In conclusion, the MTJ ultrastructure between the anterior belly of digastric muscle and intermediate tendon of adult rats showed classical morphologic descriptions and presented an atypical region revealed by the subspecialization between the myofibrils bundles and collagen fibers in the MTJ region.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB, University of São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ciena AP, de Almeida SRY, Alves PHDM, Bolina-Matos RDS, Dias FJ, Issa JPM, Iyomasa MM, Watanabe IS. Histochemical and ultrastructural changes of sternomastoid muscle in aged Wistar rats. Micron 2011; 42:871-6. [PMID: 21767955 DOI: 10.1016/j.micron.2011.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 12/25/2022]
Abstract
The aim of this study was to evaluate histochemically and ultrastructurally the sternomastoid muscle (SM) of adults and aged rats, employing histochemic (NADH-TR reaction) and transmission electron microscopic methods. It was used 20 rats, divided into two groups: adults (n=10), animals with 4 months of age, and aged group (n=10), animals with 24 months of age. Five animals from each group were anesthetized with an overdose of urethane (3g/kg i.p.), and the muscles dissected after the samples processing for histochemical reaction (NADH-TR). Three types of fibers were identified by their metabolic characteristics: fibers with high oxidative capacity (O), intermediate oxidative capacity (OG) and low oxidative capacity (G). For transmission electron microscopic method, the animals were anesthetized and perfused by modified Karnovsky solution and the tissues were postfixed in 1% osmium tetroxide solution, dehydrated and embedded in Spurr resin. It was performed ultra-thin sections for transmission electron microscopic analysis. The SM showed heterogeneity in their composition according to the fiber types, with significant difference (p<0.05) when comparing the fibers types between the superficial and deep regions and between the adult and aged groups. It was observe a decrease between the comparison of the total fibers density and GO fiber, and an increase of the O fiber in aged group. Ultrastructural characteristics of muscle cells in aged group showed typical morphological changes, characterizing muscular atrophy. We conclude based on physiological ageing process, changes in muscle fibers classification, and ultrastructuraly, morphological alterations on muscle cells, characterizing a muscular atrophy.
Collapse
Affiliation(s)
- Adriano Polican Ciena
- Department of Anatomy, Institute of Biomedical Sciences-ICB, University of São Paulo, Av. Prof. Lineu Prestes, 2415 Butantã, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Grünheid T, Langenbach GEJ, Brugman P, Everts V, Zentner A. The masticatory system under varying functional load. Part 2: Effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible. Eur J Orthod 2010; 33:365-71. [PMID: 20923936 DOI: 10.1093/ejo/cjq084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A reduction in mechanical loading of the mandible brought about by mastication of soft food is assumed to decrease the remodelling rate of bone, which, in turn, might increase the degree of bone mineralization. The effect of a reduction in masticatory functional load on the degree and distribution of mineralization of mandibular bone was investigated in male juvenile New Zealand White rabbits. The experimental animals (n=8) had been raised on a diet of soft pellets from 8 to 20 weeks of age, while the controls (n=8) had been fed pellets of normal hardness. The degree of mineralization of bone (DMB) was assessed at the attachment sites of various jaw muscles, the condylar head, and the alveolar process. Differences between groups and among sites were tested for statistical significance using a Student's t-test and one-way analysis of variance, respectively. The DMB did not differ significantly between the experimental and control animals at any of the sites assessed. However, in the rabbits that had been fed soft pellets, both cortical bone at the attachment sites of the temporalis and digastric muscles and cortical bone in the alveolar process had a significantly higher DMB than cortical bone at the attachment site of the masseter muscle, while there were no significant differences among these sites in the control animals. The results suggest that a moderate reduction in masticatory functional load does not significantly affect the remodelling rate and the DMB in areas of the mandible that are loaded during mastication but might induce a more heterogeneous mineral distribution.
Collapse
Affiliation(s)
- Thorsten Grünheid
- Division of Orthodontics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
10
|
Tanaka E, Sano R, Kawai N, Korfage JAM, Nakamura S, Izawa T, Langenbach GEJ, Tanne K. Regional differences in fiber characteristics in the rat temporalis muscle. J Anat 2009; 213:743-8. [PMID: 19094190 DOI: 10.1111/j.1469-7580.2008.00990.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The behavioral differences in muscle use are related to the fiber type composition of the muscles among other variables. The aim of this study was to examine the degree of heterogeneity in the fiber type composition in the rat temporalis muscle. The temporalis muscle was taken from 10-week-old Wistar strain male rats (n = 5). Fiber types were classified by immunohistochemical staining according to their myosin heavy chain content. The anterior temporalis revealed an obvious regional difference of the fiber type distribution, whereas the posterior temporalis was homogeneous. The deep anterior temporalis showed a predominant proportion of type IIA fibers and was the only muscle portion displaying slow type fibers (< 10%). The other two muscle portions, the superficial anterior and posterior temporalis, did not differ significantly from each other and contained mainly type IIB fibers. Moreover, the deep anterior temporalis was the only muscle portion showing slow type fibers (< 10%). In the deep portion, type IIX fibers revealed the largest cross-sectional area (1943.1 +/- 613.7 microm(2)), which was significantly (P < 0.01) larger than those of type IIA and I + IIA fibers. The cross-sectional area of type IIB fibers was the largest in the remaining two muscle portions and was significantly (P < 0.01) larger than that of type IIX fibers. In conclusion, temporalis muscle in rats showed an obvious heterogeneity of fiber type composition and fiber cross-sectional area, which suggests multiple functions of this muscle.
Collapse
Affiliation(s)
- E Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, The University of Tokushima, Graduate School of Oral Sciences, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Langenbach GEJ, van Wessel T, Brugman P, Korfage JAM, van Eijden TMGJ. Is fiber-type composition related to daily jaw muscle activity during postnatal development? Cells Tissues Organs 2007; 187:307-15. [PMID: 18089936 DOI: 10.1159/000112791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2007] [Indexed: 11/19/2022] Open
Abstract
AIM Muscles containing large numbers of slow-contracting fibers are generally more active than muscles largely composed of fast fibers. This relationship between muscle activity and phenotype suggests that (1) changes in fiber-type composition during postnatal development are accompanied by changes in daily activity and (2) individual variations in fiber-type composition are related to similar variations in daily muscle activity. METHODS The masseter and digastric muscles of 23 New Zealand White rabbits (young, juvenile and adult) were examined for their phenotype (myosin heavy chain content) and their daily activity (total daily number of activity bursts). RESULTS During development, the masseter showed a strong increase in the number of fast-type fibers compared to the number of slow-type fibers. During development, also the number of powerful bursts in the masseter increased. The digastric showed no significant changes in fiber types or burst numbers. Within each muscle, across individual animals, no significant correlations (R < 0.70) were found between any of the fiber types and daily burst numbers in any of the age groups. CONCLUSIONS The results suggest that activity-related influences are of relatively minor importance during development and that other factors are dominant in determining fiber-type composition.
Collapse
Affiliation(s)
- G E J Langenbach
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Sano R, Tanaka E, Korfage JAM, Langenbach GEJ, Kawai N, van Eijden TMGJ, Tanne K. Heterogeneity of fiber characteristics in the rat masseter and digastric muscles. J Anat 2007; 211:464-70. [PMID: 17692082 PMCID: PMC2375825 DOI: 10.1111/j.1469-7580.2007.00783.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional requirements in muscle use are related to the fiber type composition of the muscles and the cross-sectional area of the individual fibers. We investigated the heterogeneity in the fiber type composition and fiber cross-sectional area in two muscles with an opposing function, namely the digastric and masseter muscles (n = 5 for each muscle) of adult male rats, by means of immunohistochemical staining according to their myosin heavy chain (MyHC) content. The digastric and masseter muscles were taken from Wistar strain male rats 10 weeks old. In the masseter six predefined sample locations were examined; in the digastric four. Most regions showed dominant proportions of type IIA and IIX fibers. However, both muscles also revealed a regional heterogeneity in their fiber type distribution. In the digastric, type I fibers were detected only at the central and deep areas of the anterior and posterior belly, respectively. Meanwhile, the peripheral area of the anterior belly contained a higher proportion of type IIB fibers. In the masseter, the type I fibers were absent. In the superficial masseter the distribution of IIA and IIB fibers was significantly different between the superior and inferior regions. In the deep masseter, regional differences were observed among all four examined areas, of which the posterolateral region contained the highest proportion of type IIB fibers. The cross-sectional areas of type IIB fibers were always the largest, followed by the type IIX and IIA fibers. Only a few differences in cross-sectional area of corresponding fiber types were detected between the various sites. In conclusion, the masseter and digastric muscles showed an obvious heterogeneity of fiber type composition and fiber cross-sectional area. Their heterogeneity reflects the complex role of the both muscles during function. This detailed description of the fiber type composition can serve as a reference for future studies examining the muscular adaptations after the onset of various diseases in the masticatory system.
Collapse
Affiliation(s)
- R Sano
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sato I, Miyado M, Miwa Y, Sunohara M. Expression of nuclear and mitochondrial thyroid hormone receptors in postnatal rat tongue muscle. Cells Tissues Organs 2007; 183:195-205. [PMID: 17159345 DOI: 10.1159/000096510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2006] [Indexed: 11/19/2022] Open
Abstract
In this quantitative study, a competitive RT-PCR analysis was used to measure the level of the thyroid hormone receptors (TRs) in rat tongue muscle during the development of male Wistar rats aged 0, 5, 10, 15 and 21 postnatal days. There were differences between the expression of TR-alpha1 mRNA and the mRNAs for TR-beta1 and TR-beta2 in rat tongue muscle. Using Western blot analysis, a difference in expression between TR-alpha1 protein (c-ErbAalpha1 protein) and 43-kD c-ErbAalpha1 protein (T(3)-binding 43-kD mitochondrial protein) was detected during the development of the rat tongue muscle. Immunohistochemical examination using electron microscopy showed that TR-alpha1 was found in the mitochondria and nuclei in contrast to TR-beta1 detected in rat tongue muscle. In mitochondrial fractions from rat tongue muscle, the expression of 43-kD c-ErbAalpha1 protein was increased dramatically at 15 and 21 days, and a similar tendency was seen in cytochrome c proteins using Western blot analysis. We presume that the 43-kD c-ErbAalpha1 protein plays a role in regulating mitochondrial RNA synthesis during the postnatal development of rat tongue. The mRNA and protein myosin heavy chain isoforms of muscle also had a different expression during development. The slow myosin isoform protein was not found from day 10 in contrast to fast myosin isoforms. It is likely that the expression of TR-alpha1 mRNA from the rat tongue muscle may be related to a specific phase in muscle phenotype during the development.
Collapse
Affiliation(s)
- Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
14
|
Korfage JAM, Van Wessel T, Langenbach GEJ, Van Eijden TMGJ. Heterogeneous postnatal transitions in myosin heavy chain isoforms within the rabbit temporalis muscle. ACTA ACUST UNITED AC 2006; 288:1095-104. [PMID: 16952169 DOI: 10.1002/ar.a.20375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postnatal changes in the fiber type composition and fiber cross-sectional area were investigated in the superficial (TEM1) and deep (TEM23) temporalis of male rabbits. It was hypothesized that, due to the transition from suckling to chewing during early postnatal development, the proportion of fast fiber types would decrease, while the proportion of fibers positive for myosin heavy chain (MyHC) cardiac alpha would increase, and that, due to the influence of testosterone during late postnatal development, the proportion of these alpha fibers would decrease again. Classification of the fibers types was performed by immunohistochemistry according to their MyHC content. The proportion of alpha fiber types significantly increased in both muscle portions from 2% and 8% for TEM1 and TEM23 at week 1 to 29% and 54% at week 8, respectively,. While in TEM1 the proportion of this fiber type did not change thereafter, it decreased again to 27% in TEM23 at week 20. The change for the fast fiber types was opposite to that of the alpha fiber types. Significantly more MyHC IIX fibers were found in TEM1 than in TEM23 in adult rabbits. In the first 8 weeks, the cross-sectional areas of all fibers increased. After this period, only MyHC cardiac alpha + I fibers continued to increase significantly. It was concluded that there are developmental differences in the myosin heavy chain transitions of the two portions of the temporalis muscle.
Collapse
Affiliation(s)
- Joannes A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|