1
|
Reid RAG, Davies C, Cunningham C. The developing juvenile talus: Radiographic identification of distinct ontogenetic phases and structural trajectories. J Anat 2024; 244:75-95. [PMID: 37559440 PMCID: PMC10734662 DOI: 10.1111/joa.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Trabecular bone architecture in the developing skeleton is a widely researched area of bone biomechanics; however, despite its significance in weight-bearing locomotion, the developing talus has received limited examination. This study investigates the talus with the purpose of identifying ontogenetic phases and developmental patterns that contribute to the growing understanding of the developing juvenile skeleton. Colour gradient mapping and radiographic absorptiometry were utilised to investigate 62 human tali from 38 individuals, ranging in age-at-death from 28 weeks intrauterine to 20 years of age. The perinatal talus exhibited a rudimentary pattern comparable to the structural organisation observed within the late adolescent talus. This early internal organisation is hypothesised to be related to the vascular pattern of the talus. After 2 years of age, the talus demonstrated refinement, where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation, which are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the talus.
Collapse
Affiliation(s)
- Rebecca A. G. Reid
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Catriona Davies
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| | - Craig Cunningham
- Centre for Anatomy and Human Identification, School of Science and EngineeringUniversity of DundeeDundeeUK
| |
Collapse
|
2
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Higgins OA, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Festa A, Hajdu T, Mateovics‐László O, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Morphologies in-between: The impact of the first steps on the human talus. Anat Rec (Hoboken) 2023; 306:124-142. [PMID: 35656925 PMCID: PMC10083965 DOI: 10.1002/ar.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)IMF, CSI0CBarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Owen A. Higgins
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Ildiko Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
3
|
Reid RAG, Davies C, Cunningham C. The developing juvenile distal tibia: Radiographic identification of distinct ontogenetic phases and structural trajectories. J Anat 2022; 242:191-212. [PMID: 36219719 PMCID: PMC9877483 DOI: 10.1111/joa.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023] Open
Abstract
A novel combination of radiographic colour gradient mapping and radiographic absorptiometry was utilised to examine 96 human distal tibiae from 54 individuals ranging in age-at-death from the foetal to 23 years. The purpose of this was to identify previously undocumented changes in the internal organisation during the development of the distal tibia and determine whether these changes could be described as distinct phases. Previous studies have demonstrated a rudimentary structural organisation in other skeletal elements that mirror more mature patterns of bone organisation. Results showed that the perinatal tibia did not exhibit a rudimentary structural pattern similar to the architecture observed within the late adolescent tibia. This lack of early internal organisation is hypothesised to be related to the rudimentary ossification process that is being laid down around a pre-existing vascular template which will be subsequently modified by locomotive forces. Between birth and 2 years of age, the tibia exhibited a period of regression where radiodensity decreased in comparison to the perinatal tibia. This period of regression was postulated to be due to a combination of factors including changing locomotive forces, weaning and growth resulting in a stage of development which is extremely demanding on calcium liberation from the skeleton. After 2 years of age, the distal tibia demonstrated refinement where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation. These trajectories are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the distal tibia.
Collapse
Affiliation(s)
| | - Catriona Davies
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| | - Craig Cunningham
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| |
Collapse
|
4
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Erjavec I, Festa A, Hajdu T, Mateovics‐László O, Novak M, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:211-228. [PMCID: PMC9804293 DOI: 10.1002/ajpa.24596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 08/11/2023]
Abstract
Objectives The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. Materials and Methods The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. Results During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. Discussion The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)BarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
5
|
Swan KR, Ives R, Wilson LAB, Humphrey LT. Ontogenetic changes in femoral cross-sectional geometry during childhood locomotor development. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:80-95. [PMID: 32656773 DOI: 10.1002/ajpa.24080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The femur is a major weight-bearing bone that is variably loaded throughout growth as children transition through locomotory states prior to the attainment of a mature bipedal gait. Here, we document ontogenetic trends in femoral cross-sectional geometry (CSG) and explore how changes in loading regime may impact the structural arrangement of cortical bone along the length of the developing diaphysis. MATERIALS AND METHODS Micro-CT scans of 110 immature femora were generated from a documented archaeological sample ranging in age from birth to 8.5 years old. CSG properties indicative of relative bone strength and bending rigidity were analyzed from cross-sections extracted at 35%, 50% and 65% of total intermetaphyseal length. RESULTS Infants experience a marked redistribution of cortical bone between birth and 7 months facilitating a more advantageous mechanical structure for early load bearing behaviors as bone is displaced further from the section centroid. Early walkers are characterized by a mediolaterally reinforced cross-section that becomes more circular as gait continues to develop. DISCUSSION During ontogeny the femur undergoes distinct morphological phases, which correspond with changes in loading regime. This study illustrates the importance of loading conditions in shaping immature bone morphology. Nonmechanical factors such as changes in hormonal environmental can also impact on this dynamic.
Collapse
Affiliation(s)
- Karen R Swan
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Rachel Ives
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Laura A B Wilson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
6
|
Watson PJ, Fagan MJ, Dobson CA. The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study. Comput Methods Biomech Biomed Engin 2020; 23:959-967. [PMID: 32538160 DOI: 10.1080/10255842.2020.1777546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal loading associated with in utero movements; for example the development of a thicker gluteal cortex is a possible response to contractions of the gluteal muscles. This study examines if the strains generated in the prenatal iliac cortex due to musculoskeletal loading in utero are capable of initiating bone remodelling to either maintain homeostasis or form new bone. Computational modelling techniques were used firstly to predict the muscle forces and resultant joint reaction force acting on the pelvis during a range of in utero movements. Finite element analyses were subsequently performed to calculate the von Mises strains induced in the prenatal ilium. The results demonstrated that strains generated in the iliac cortex were above the thresholds suggested to regulate bone remodelling to either maintain homeostasis or form new bone. Further simulations are required to investigate the extent to which the heterogeneous cortex forms in response to these strains (i.e., remodelling) or if developmental bone modelling plays a more pivotal role.
Collapse
Affiliation(s)
- Peter J Watson
- Medical and Biological Engineering Research Group, Department of Engineering, University of Hull, Hull, UK
| | - Michael J Fagan
- Medical and Biological Engineering Research Group, Department of Engineering, University of Hull, Hull, UK
| | - Catherine A Dobson
- Medical and Biological Engineering Research Group, Department of Engineering, University of Hull, Hull, UK
| |
Collapse
|
7
|
Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat 2019; 236:448-462. [PMID: 31729033 DOI: 10.1111/joa.13116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
There is considerable variation in the gross morphology and tissue properties among the bones of human infants, children, adolescents, and adults. Using 18 known-age individuals (nfemale = 8, nmale = 9, nunknown = 1; birth to 21 years old), from a well-documented cemetery collection, Spitalfields Christ Church, London, UK, this study explores growth-related changes in cortical and trabecular bone microstructure. Micro-CT scans of mid-shaft middle thoracic ribs are used for quantitative analysis. Results are then compared to previously quantified conventional histomorphometry of the same sample. Total area (Tt.Ar), cortical area (Ct.Ar), cortical thickness (Ct.Th), and the major (Maj.Dm) and minor (Min.Dm) diameters of the rib demonstrate positive correlations with age. Pore density (Po.Dn) increases, but age-related changes to cortical porosity (Ct.Po) appear to be non-linear. Trabecular thickness (Tb.th) and trabecular separation (Tb.Sp) increase with age, whereas trabecular bone pattern factor (Tb.Pf), structural model index (SMI), and connectivity density (Conn.D) decrease with age. Sex-based differences were not identified for any of the variables included in this study. Some samples display clear evidence of diagenetic alteration without corresponding changes in radiopacity, which compromises the reliability of bone mineral density (BMD) data in the study of past populations. Cortical porosity data are not correlated with two-dimensional measures of osteon population density (OPD). This suggests that unfilled resorption spaces contribute more significantly to cortical porosity than do the Haversian canals of secondary osteons. Continued research using complementary imaging techniques and a wide array of histological variables will increase our understanding of age- and sex-specific ontogenetic patterns within and among human populations.
Collapse
Affiliation(s)
- Amy C Beresheim
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, Toronto, ON, Canada.,Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA.,Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
The hominid ilium is shaped by a synapomorphic growth mechanism that is unique within primates. Proc Natl Acad Sci U S A 2019; 116:13915-13920. [PMID: 31235562 DOI: 10.1073/pnas.1905242116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human ilium is significantly shorter and broader than those of all other primates. In addition, it exhibits an anterior inferior iliac spine (AIIS) that emerges via a secondary center of ossification, which is unique to hominids (i.e., all taxa related to the human clade following their phyletic separation from the African apes). Here, we track the ontogeny of human and other primate ossa coxae. The human pattern is unique, from anlage to adulthood, and fusion of its AIIS is the capstone event in a repositioning of the anterior gluteals that maximizes control of pelvic drop during upright walking. It is therefore a hominid synapomorphy that can be used to assess the presence and age of bipedal locomotion in extinct taxa.
Collapse
|
9
|
Calderazzi F, Nosenzo A, Galavotti C, Menozzi M, Pogliacomi F, Ceccarelli F. Apophyseal avulsion fractures of the pelvis. A review. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:470-476. [PMID: 30657114 PMCID: PMC6502104 DOI: 10.23750/abm.v89i4.7632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Fractures of the pelvis classically occur in adolescent during sports activities with forceful and repetitive contractions or passive lengthening acting on not yet ossified growth plates. Their misdiagnosis lead to disability, chronic pain and decrease of performances. Evidence based treatment guidelines do not exist; aim of this paper is to point out clinical outcomes, return to sport rates and complications of surgical and conservative approach. METHODS A systematic search based on MEDLINE database was performed in August 2017 to identify all published articles from 2010 to 2017 reporting outcomes, return to sport and complications rates after surgical and non-operative treatment of avulsion fractures of the pelvis. RESULTS Mean age was 14,5 years with anterior inferior iliac spine avulsion representing the most common injury (46%), followed by anterior superior iliac spine avulsion (32%), ischial tuberosity avulsion (12%) and iliac crest avulsion (11%). Rates of excellent outcome and return to sports at pre-injury levels were higher after surgical treatment; surgery has a higher risk of heterotopic ossification (9%) compared to conservative treatment (1,8%), whereas the risk of non-unions is lower (0% versus 2,5%). CONCLUSIONS Surgery is preferred for major dislocations and fragment sizes, providing a faster return to pre-injury level of activity, decreasing the risk of pseudoarthrosis. Conservative treatment is advisable for minimally displaced fractures when a rapid recovery is not required; patient and his family should be informed on the risk of non-unions and the eventuality of a delayed surgical approach.
Collapse
Affiliation(s)
- Filippo Calderazzi
- Dipartimento Scienze Chirurgiche Ospedale Maggiore Parma, U.O. Clinica Ortopedica.
| | | | | | | | | | | |
Collapse
|
10
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Farke AA, Beck BR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ 2018; 6:e5778. [PMID: 30402347 PMCID: PMC6215452 DOI: 10.7717/peerj.5778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
This paper is the first of a three-part series that investigates the architecture of cancellous ('spongy') bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology at The Webb Schools, Claremont, CA, USA
| | - Belinda R. Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Exercise and Human Performance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
11
|
Tsegai ZJ, Skinner MM, Pahr DH, Hublin JJ, Kivell TL. Ontogeny and variability of trabecular bone in the chimpanzee humerus, femur and tibia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:713-736. [DOI: 10.1002/ajpa.23696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zewdi J. Tsegai
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Center; School of Anthropology and Conservation, University of Kent; Canterbury United Kingdom
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural Biomechanics; Vienna University of Technology; Wien Austria
| | - Jean-Jacques Hublin
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Tracy L. Kivell
- Skeletal Biology Research Center; School of Anthropology and Conservation, University of Kent; Canterbury United Kingdom
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| |
Collapse
|
12
|
A rare case of pelvic bone duplication. Skeletal Radiol 2018; 47:1171-1175. [PMID: 29445931 DOI: 10.1007/s00256-017-2869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/02/2023]
Abstract
Iliac bone malformations are rare and result from early disturbance of the genetic and epigenetic processes that come together to form the pelvic girdle. We report the case of a 5-month-old boy found to have a duplication of the ilium and describe the likely causes of this very rare malformation.
Collapse
|
13
|
Verbruggen SW, Nowlan NC. Ontogeny of the Human Pelvis. Anat Rec (Hoboken) 2017; 300:643-652. [PMID: 28297183 DOI: 10.1002/ar.23541] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/08/2016] [Accepted: 09/04/2016] [Indexed: 01/20/2023]
Abstract
The human pelvis has evolved over time into a remarkable structure, optimised into an intricate architecture that transfers the entire load of the upper body into the lower limbs, while also facilitating bipedal movement. The pelvic girdle is composed of two hip bones, os coxae, themselves each formed from the gradual fusion of the ischium, ilium and pubis bones. Unlike the development of the classical long bones, a complex timeline of events must occur in order for the pelvis to arise from the embryonic limb buds. An initial blastemal structure forms from the mesenchyme, with chondrification of this mass leading to the first recognisable elements of the pelvis. Primary ossification centres initiate in utero, followed post-natally by secondary ossification at a range of locations, with these processes not complete until adulthood. This cascade of events can vary between individuals, with recent evidence suggesting that fetal activity can affect the normal development of the pelvis. This review surveys the current literature on the ontogeny of the human pelvis. Anat Rec, 300:643-652, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
14
|
Oussoren E, Bessems JHJM, Pollet V, van der Meijden JC, van der Giessen LJ, Plug I, Devos AS, Ruijter GJG, van der Ploeg AT, Langeveld M. A long term follow-up study of the development of hip disease in Mucopolysaccharidosis type VI. Mol Genet Metab 2017; 121:241-251. [PMID: 28552677 DOI: 10.1016/j.ymgme.2017.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022]
Abstract
Hip problems in Mucopolysaccharidosis type VI (MPS VI) lead to severe disability. Lack of data on the course of hip disease in MPS VI make decisions regarding necessity, timing and type of surgical intervention difficult. We therefore studied the development of hip pathology in MPS VI patients over time. Data were collected as part of a prospective follow-up study. Standardized supine AP pelvis and frog leg lateral radiographs of both hips were performed yearly or every 2years. Image assessment was performed quantitatively (angle measurements) and qualitatively (hip morphology). Clinical burden of hip disease was evaluated by physical examination, six minute walking test (6MWT) and a questionnaire assessing pain, wheelchair-dependency and walking distance. A total of 157 pelvic radiographs of 14 ERT treated MPS VI patients were evaluated. Age at first image ranged from 2.0 to 21.1years. Median follow up duration was 6.8years. In all patients, even in the youngest, the acetabulum and os ilium were dysplastic. Coverage of the femoral head by the acetabulum improved over time, but remained insufficient. While the femoral head appeared normal in the radiographs at young age, the ossification pattern became abnormal in all patients over time. In all patients the distance covered in the 6MWT was reduced (median Z scores -3.3). Twelve patients had a waddling gait. Four patients were partially wheelchair-dependent and ten patients had limitations in their maximum walking distance. In conclusion, clinically significant hip abnormalities develop in all MPS VI patients from very early in life, starting with deformities of the os ilium and acetabulum. Femoral head abnormalities occur later, most likely due to altered mechanical forces in combination with epiphyseal abnormalities due to glycosaminoglycan storage. The final shape and angle of the femoral head differs significantly between individual MPS VI patients and is difficult to predict.
Collapse
Affiliation(s)
- Esmee Oussoren
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Johannes H J M Bessems
- Department of Paediatric Orthopaedics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Virginie Pollet
- Department of Paediatric Orthopaedics, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Jan C van der Meijden
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Lianne J van der Giessen
- Department of Paediatric Physiotherapy, Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| | - Iris Plug
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Annick S Devos
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - George J G Ruijter
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Mirjam Langeveld
- Center for Lysosomal and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Endocrinology and Metabolism, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Kivell TL. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? J Anat 2016; 228:569-94. [PMID: 26879841 DOI: 10.1111/joa.12446] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past.
Collapse
Affiliation(s)
- Tracy L Kivell
- Animal Postcranial Evolution Laboratory, Skeletal Biological Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
Maclean SJ, Black SM, Cunningham CA. The developing juvenile ischium: macro-radiographic insights. Clin Anat 2014; 27:906-14. [PMID: 24639178 DOI: 10.1002/ca.22391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 11/10/2022]
Abstract
Despite the importance of the human pelvis as a weight-bearing structure, there is a paucity of literature that discusses the development of the juvenile innominate from a biomechanical perspective. This study aims to add to the limited body of literature pertaining to this topic through the qualitative analysis of the gross architecture of the human ischium during the juvenile period. Macro-radiographs of 55 human ischia ranging from 28 intra-uterine weeks to 14 years of age were examined using intensity-gradient color mapping to highlight changes in gross structural morphology with increasing age. A clear pattern of maturation was observed in the juvenile ischium with increasing age. The acetabular component and ramus of the ischium consistently displayed low bone intensity in the postnatal skeletal material. Conversely the posterior body of the ischium, and in particular the ischial spine and lesser sciatic notch, exhibited increasing bone intensity which first arose at 1-2 years of age and became more expansive in older cohorts. The intensity patterns observed within the developing juvenile ischium are indicative of the potential factors influencing the maturation of this skeletal element. While the low intensity acetabular fossa indicates a lack of significant biomechanical interactions, the posterior increase in bone intensity may be related to the load-bearing nature of the posterior ischium.
Collapse
Affiliation(s)
- Stephen J Maclean
- Centre for Anatomy and Human Identification, College of Arts, Science and Engineering, University of Dundee, Dundee, DD1 5EH
| | | | | |
Collapse
|
17
|
Yusof NA, Soames RW, Cunningham CA, Black SM. Growth of the Human Ilium: The Anomalous Sacroiliac Junction. Anat Rec (Hoboken) 2013; 296:1688-94. [DOI: 10.1002/ar.22785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Nurul A. Yusof
- Centre for Anatomy and Human Identification; College of Life Science; University of Dundee; Dow Street Dundee Scotland United Kingdom
| | - Roger W. Soames
- Centre for Anatomy and Human Identification; College of Life Science; University of Dundee; Dow Street Dundee Scotland United Kingdom
| | - Craig A. Cunningham
- Centre for Anatomy and Human Identification; College of Life Science; University of Dundee; Dow Street Dundee Scotland United Kingdom
| | - Sue M. Black
- Centre for Anatomy and Human Identification; College of Life Science; University of Dundee; Dow Street Dundee Scotland United Kingdom
| |
Collapse
|
18
|
Cunningham CA, Black SM. The vascular collar of the ilium- Three-dimensional evaluation of the dominant nutrient foramen. Clin Anat 2013; 26:502-8. [DOI: 10.1002/ca.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 11/10/2022]
|
19
|
Abel R, Macho GA. Ontogenetic changes in the internal and external morphology of the ilium in modern humans. J Anat 2011; 218:324-35. [PMID: 21323915 PMCID: PMC3058218 DOI: 10.1111/j.1469-7580.2011.01342.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 11/29/2022] Open
Abstract
Trabecular architecture forms an important structural component of bone and, depending on the loading conditions encountered during life, is organised in a systematic, bone- and species-specific manner. However, recent studies suggested that gross trabecular arrangement (e.g. density distribution), like overall bone shape, is predetermined and/or affected by factors other than loading and perhaps less plastic than commonly assumed. To explore this issue further, the present cross-sectional ontogenetic study investigated morphological changes in external bone shape in relation to changes in trabecular bundle orientation and anisotropy. Radiographs of 73 modern human ilia were assessed using radiographic and Geometric Morphometric techniques. The study confirmed the apparently strong predetermination of trabecular bundle development, i.e. prior to external loading, although loading clearly also had an effect on overall morphology. For example, the sacro-pubic bundle, which follows the path of load transmission from the auricular surface to the acetabulum, is well defined and shows relatively high levels of anisotropy from early stages of development; the situation for the ischio-iliac strut is similar. However, while the sacro-pubic strut retains a constant relationship with the external landmarks defining the joint surfaces, the ischio-iliac bundle changes its relationship with the external landmarks and becomes aligned with the iliac tubercle only during late adolescence/early adulthood. It is tentatively proposed that the rearrangement of the ischio-iliac strut may reflect a change in locomotor pattern and/or a shift in positional behavior with increasing mass after growth of external bone dimensions has slowed/ceased.
Collapse
Affiliation(s)
- Richard Abel
- Imperial College London, Charing Cross Campus, London, UK
| | | |
Collapse
|
20
|
Cunningham CA, Black SM. The neonatal ilium-metaphyseal drivers and vascular passengers. Anat Rec (Hoboken) 2010; 293:1297-309. [PMID: 20665808 DOI: 10.1002/ar.21182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At birth the newborn is equipped with a developing locomotor apparatus, which will ultimately become involved in load transfer from the period when the child adopts a sitting posture through to the attainment of a bipedal gait. This load transfer has been considered to influence trabecular bone structural organization by setting up forces, which remodel the internal architecture into a functionally optimized form. However, during the neonatal developmental period the locomotor apparatus is nonweight bearing and instead only supports reflexive movements. Surprisingly, a structural organization has been identified within the internal trabecular architecture and external cortical morphology of the neonatal ilium, which appears to mimic the structural composition of the more mature bone. This study aims to build upon previous qualitative and quantitative investigation of this apparently precocious patterning by further examining structural data obtained from selected volumes of interest within the ilium. Analysis has revealed statistically significant differences in regional trabecular and cortical bone characteristics, which have formed the basis of a possible growth model for the ilium. Volumetric comparison has demonstrated the presence of three progressive "growth regions" and three "restricted growth regions," which appear to relate to metaphyseal and nonmetaphyseal borders of the ilium. Therefore, the structural data and statistical analysis presented in this study challenge the current concept of implied centrifugal ossification within the human ilium and present evidence of an alternative pattern of ossification that is largely dictated and controlled by vascular distribution and growth plate position.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
21
|
Watson PJ, O'Higgins P, Fagan MJ, Dobson CA. Validation of a Morphometric Reconstruction Technique Applied to a Juvenile Pelvis. Proc Inst Mech Eng H 2010; 225:48-57. [DOI: 10.1243/09544119jeim810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three-dimensional reconstructions of bone geometry from microCT (computed tomography) data are frequently used in biomechanical and finite element analyses. Digitization of bone models is usually a simple process for specimens with a complete geometry, but in instances of damage or disarticulation it can be very challenging. Subsequent to digitization, further imaging techniques are often required to estimate the geometry of missing bone or connecting cartilage. This paper presents an innovative approach to the reconstruction of incomplete scan data, to reproduce proper anatomical arrangements of bones, including absent connecting cartilaginous elements. Utilizing geometric morphometric tools, the reconstruction technique is validated through comparison of a reconstructed 9 year old pelvis, to the original CT data. A principal component analysis and an overlay of the two pelves provide a measure of the accuracy of the reconstructed model. Future work aims to investigate the biomechanical effects of any minor positional error on the bone's predicted structural properties through the use of finite element analysis.
Collapse
Affiliation(s)
- P J Watson
- Department of Engineering, University of Hull, UK
| | - P O'Higgins
- Department of Anatomy, Hull York Medical School, University of York, UK
| | - M J Fagan
- Department of Engineering, University of Hull, UK
| | - C A Dobson
- Department of Engineering, University of Hull, UK
| |
Collapse
|
22
|
Abstract
Recent studies of the neonatal ilium are beginning to reveal that a recognizable structural patterning of trabecular bone is present in the absence of any direct stance-related weight transfer. However, little is known about the organization of compact bone in the ilium and the way in which it is laid down during the earliest stages of development. This study investigates cortical bone thickness across both gluteal and pelvic iliac shells in the human neonatal ilium. Measurements of specific regions of interest on the iliac cortices were recorded using reconstructed micro-computed tomography scans from 30 neonatal ilia. Analysis of gluteal and pelvic cortical thicknesses revealed a distinctive patterning consistent with the expected bone distribution achieved through early bone modelling and remodelling. The analysis of this pattern is important for understanding the relationship between trabecular bone patterning and cortical bone structure in the earliest stages of pelvic development prior to locomotive influences and its response to the specific functional forces acting during this period.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | |
Collapse
|
23
|
Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat 2009; 214:817-29. [PMID: 19538628 PMCID: PMC2705293 DOI: 10.1111/j.1469-7580.2009.01073.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2009] [Indexed: 11/29/2022] Open
Abstract
Trabecular bone structural organization is considered to be predominantly influenced by localized temporal forces which act to maintain and remodel the trabecular architecture into a biomechanically optimal configuration. In the adult pelvis, the most significant remodelling forces are believed to be those generated during bipedal locomotion. However, during the fetal and neonatal period the pelvic complex is non-weight bearing and, as such, structural organization of iliac trabecular bone cannot reflect direct stance-related forces. In this study, micro-computed tomography scans from 28 neonatal ilia were analysed, using a whole bone approach, to investigate the trabecular characteristics present within specific volumes of interest relevant to density gradients highlighted in a previous radiographic study. Analysis of the structural indices bone volume fraction, trabecular thickness, trabecular spacing and trabecular number was carried out to quantitatively investigate structural composition. Quantification of the neonatal trabecular structure reinforced radiographic observations by highlighting regions of significant architectural form which grossly parallel architectural differences in the adult pattern but which have previously been attributed to stance-related forces. It is suggested that the seemingly organized rudimentary scaffold observed in the neonatal ilium may be attributable to other non-weight bearing anatomical interactions or even to a predetermined genetic blueprint. It must also be postulated that whilst the observed patterning may be indicative of a predetermined inherent template, early non-weight bearing and late stance-related locomotive influences may subsequently be superimposed upon this scaffolding and perhaps reinforced and likely remodelled at a later age. Ultimately, the analysis of this fundamental primary pattern has core implications for understanding the earliest changes in pelvic trabecular architecture and provides a baseline insight into future ontogenetic development and bipedal capabilities.
Collapse
Affiliation(s)
- Craig A Cunningham
- Centre for Anatomy and Human Identification, University of Dundee, Scotland, UK.
| | | |
Collapse
|