1
|
Voigt S, Calábková G, Ploch I, Nosek V, Pawlak W, Raczyński P, Spindler F, Werneburg R. A diadectid skin impression and its implications for the evolutionary origin of epidermal scales. Biol Lett 2024; 20:20240041. [PMID: 38773928 PMCID: PMC11285442 DOI: 10.1098/rsbl.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/24/2024] Open
Abstract
Corneous skin appendages are not only common and diverse in crown-group amniotes but also present in some modern amphibians. This raises the still unresolved question of whether the ability to form corneous skin appendages is an apomorphy of a common ancestor of amphibians and amniotes or evolved independently in both groups. So far, there is no palaeontological contribution to the issue owing to the lack of keratin soft tissue preservation in Palaeozoic anamniotes. New data are provided by a recently discovered ichnofossil specimen from the early Permian of Poland that shows monospecific tetrapod footprints associated with a partial scaly body impression. The traces can be unambiguously attributed to diadectids and are interpreted as the globally first evidence of horned scales in tetrapods close to the origin of amniotes. Taking hitherto little-noticed scaly skin impressions of lepospondyl stem amniotes from the early Permian of Germany into account, the possibility has to be considered that the evolutionary origin of epidermal scales deeply roots among anamniotes.
Collapse
Affiliation(s)
- Sebastian Voigt
- Urweltmuseum GEOSKOP, Burgstr. 19, Thallichtenberg66871, Germany
| | - Gabriela Calábková
- Department of Geology and Paleontology, Moravian Museum, Zelný Trh 6,Brno 659 37, Czech Republic
| | - Izabela Ploch
- Polish Geological Institute – National Research Institute, Rakowiecka 4,Warszawa 00-975, Poland
| | - Vojtěch Nosek
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Joštova 220/13,Brno 662 43, Czech Republic
| | - Wojciech Pawlak
- Department of Biology, University of Warsaw, Miecznikowa 1,Warszawa 02-089, Poland
| | - Paweł Raczyński
- Institute of Geological Sciences, Wrocław University, Pl. Maksa Borna 9, Wrocław50-204, Poland
| | | | - Ralf Werneburg
- Naturhistorisches Museum Schloss Bertholdsburg Schleusingen, Burgstr. 6,Schleusingen 98553, Germany
| |
Collapse
|
2
|
Carron M, Sachslehner AP, Cicekdal MB, Bruggeman I, Demuynck S, Golabi B, De Baere E, Declercq W, Tschachler E, Vleminckx K, Eckhart L. Evolutionary origin of Hoxc13-dependent skin appendages in amphibians. Nat Commun 2024; 15:2328. [PMID: 38499530 PMCID: PMC10948813 DOI: 10.1038/s41467-024-46373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.
Collapse
Affiliation(s)
- Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | | | - Munevver Burcu Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Inge Bruggeman
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB-Ugent Center for Inflammation Research, 9000, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB-Ugent Center for Inflammation Research, 9000, Ghent, Belgium
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Ran R, Li L, Xu T, Huang J, He H, Chen Y. Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis. Commun Biol 2024; 7:275. [PMID: 38443437 PMCID: PMC10915148 DOI: 10.1038/s42003-024-05967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Transparent immunodeficient animal models not only enhance in vivo imaging investigations of visceral organ development but also facilitate in vivo tracking of transplanted tumor cells. However, at present, transparent and immunodeficient animal models are confined to zebrafish, presenting substantial challenges for real-time, in vivo imaging studies addressing specific biological inquiries. Here, we employed a mitf-/-/prkdc-/-/il2rg-/- triple-knockout strategy to establish a colorless and immunodeficient amphibian model of Xenopus tropicalis. By disrupting the mitf gene, we observed the loss of melanophores, xanthophores, and granular glands in Xenopus tropicalis. Through the endogenous mitf promoter to drive BRAFV600E expression, we confirmed mitf expression in melanophores, xanthophores and granular glands. Moreover, the reconstruction of the disrupted site effectively reinstated melanophores, xanthophores, and granular glands, further highlighting the crucial role of mitf as a regulator in their development. By crossing mitf-/- frogs with prkdc-/-/il2rg-/- frogs, we generated a mitf-/-/prkdc-/-/il2rg-/- Xenopus tropicalis line, providing a colorless and immunodeficient amphibian model. Utilizing this model, we successfully observed intravital metastases of allotransplanted xanthophoromas and migrations of allotransplanted melanomas. Overall, colorless and immunodeficient Xenopus tropicalis holds great promise as a valuable platform for tumorous and developmental biology research.
Collapse
Affiliation(s)
- Rensen Ran
- Department of Chemical Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China.
| | - Lanxin Li
- Department of Chemical Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Tingting Xu
- Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Jixuan Huang
- Department of Chemical Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Yonglong Chen
- Department of Chemical Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
4
|
Zhang M, Wilson SS, Casey KM, Thomson PE, Zlatow AL, Langlois VS, Green SL. Degenerative Osteoarthropathy in Laboratory Housed Xenopus (Silurana) tropicalis. Comp Med 2021; 71:512-520. [PMID: 34794532 DOI: 10.30802/aalas-cm-21-000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this case study, 15 adult laboratory Xenopus (Silurana) tropicalis (7 adult males and 8 adult females) were examined for nodular enlargements of the clawed digits (digits 0, I, II, and III) on the hind feet. Radiographs showed smoothly margined, rounded, peripherally mineralized lesions arising from the distal phalanges of digits 0-III with osteoproductive and osteolytic components in all frogs. Micro computed tomography (microCT) scans further revealed interphalangeal (IP), metacarpophalangeal (MCP), and metatarsophalangeal (MTP) joint osteoarthritis characterized by periarticular new bone formation, rounded mineral foci both peripherally and centrally within the joints, and more rarely, linear mineralization palmar/plantar to the joints in the flexor tendons. In the nonclawed digits, the shape of the distal phalanx was variably distorted and both subluxation and malangulation of IP joints were identified. Histologically, nodules corresponded to a peripheral rim of mature cortical bone surrounding central adipose tissue, scattered hematopoietic elements, and residual bone of the distal phalanx. Occasionally, the peripheral rim of cortical bone extended proximally to encompass the distal aspect of adjacent phalanx. MCP, MTP and IP joint spaces of most digits exhibited widespread osteoarthritis characterized by periarticular cartilaginous or osseous metaplasia, bony remodeling, and less frequently, granulomatous osteomyelitis. Nutritional analyses of the feed did not indicate imbalances nor were the lesions consistent with metabolic bone disease. The exact etiopathogenesis of these lesions is unknown; however, we hypothesize that the osteoarthritic changes are due to a combination of the frogs' mature age, the unique structure of the Xenopus spp. claw, genetics and biomechanical forces on the digits and distal phalanges of the hind feet.
Collapse
Affiliation(s)
- Mingyun Zhang
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Sabrina S Wilson
- Diagnostic Imaging Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Paisley E Thomson
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Quebec, QC, Canada
| | - Anne L Zlatow
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Quebec, QC, Canada
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
5
|
Alibardi L. Vertebrate keratinization evolved into cornification mainly due to transglutaminase and sulfhydryl oxidase activities on epidermal proteins: An immunohistochemical survey. Anat Rec (Hoboken) 2021; 305:333-358. [PMID: 34219408 DOI: 10.1002/ar.24705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
The epidermis of vertebrates forms an extended organ to protect and exchange gas, water, and organic molecules with aquatic and terrestrial environments. Herein, the processes of keratinization and cornification in aquatic and terrestrial vertebrates were compared using immunohistochemistry. Keratins with low cysteine and glycine contents form the main bulk of proteins in the anamniote epidermis, which undergoes keratinization. In contrast, specialized keratins rich in cysteine-glycine and keratin associated corneous proteins rich in cysteine, glycine, and tyrosine form the bulk of proteins of amniote soft cornification in the epidermis and hard cornification in scales, claws, beak, feathers, hairs, and horns. Transglutaminase (TGase) and sulfhydryl oxidase (SOXase) are the main enzymes involved in cornification. Their evolution was fundamental for the terrestrial adaptation of vertebrates. Immunohistochemistry results revealed that TGase and SOXase were low to absent in fish and amphibian epidermis, while they increased in the epidermis of amniotes with the evolution of the stratum corneum and skin appendages. TGase aids the formation of isopeptide bonds, while SOXase forms disulfide bonds that generate numerous cross-links between keratins and associated corneous proteins, likely increasing the mechanical resistance and durability of the amniote epidermis and its appendages. TGase is low to absent in the beta-corneous layers of sauropsids but is detected in the softer but pliable alpha-layers of sauropsids, mammalian epidermis, medulla, and inner root sheath of hairs. SOXase is present in hard and soft corneous appendages of reptiles, birds, and mammals, and determines cross-linking among corneous proteins of scales, claws, beaks, hairs, and feathers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Alibardi L. Development, structure, and protein composition of reptilian claws and hypotheses of their evolution. Anat Rec (Hoboken) 2020; 304:732-757. [PMID: 33015957 DOI: 10.1002/ar.24515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
Here, we review the development, morphology, genes, and proteins of claws in reptiles. Claws likely form owing to the inductive influence of phalangeal mesenchyme on the apical epidermis of developing digits, resulting in hyperproliferation and intense protein synthesis in the dorsal epidermis, which forms the unguis. The tip of claws results from prevalent cell proliferation and distal movement along most of the ungueal epidermis in comparison to the ventral surface forming the subunguis. Asymmetrical growth between the unguis and subunguis forces beta-cells from the unguis to rotate into the apical part of the subunguis, sharpening the claw tip. Further sharpening occurs by scratching and mechanical wearing. Ungueal keratinocytes elongate, form an intricate perimeter and cementing junctions, and remain united impeding desquamation. In contrast, thin keratinocytes in the subunguis form a smooth perimeter, accumulate less corneous beta proteins (CBPs) and cysteine-poor intermediate filament (IF)-keratins, and desquamate. In addition to prevalent glycine-cysteine-tyrosine rich CBPs, special cysteine-rich IF-keratins are also synthesized in the claw, generating numerous SS bonds that harden the thick and compact corneous material. Desquamation and mechanical wear at the tip ensure that the unguis curvature remains approximately stable over time. Reptilian claws are likely very ancient in evolution, although the unguis differentiated like the outer scale surface of scales, while the subunguis might have derived from the inner scale surface. The few hair-like IF-keratins synthesized in reptilian claws indicate that ancestors of sauropsids and mammals shared cysteine-rich IF-keratins. However, the number of these keratins remained low in reptiles, while new types of CBPs function to strengthen claws.
Collapse
|
7
|
Luna MC, Mcdiarmid RW, Faivovich J. From erotic excrescences to pheromone shots: structure and diversity of nuptial pads in anurans. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Celeste Luna
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Ángel Gallardo, Buenos Aires, Argentina
| | - Roy W Mcdiarmid
- United States Geological Survey Patuxent Wildlife Research Center, Division of Amphibians and Reptiles, National Museum of Natural History, Washington, DC, USA
| | - Julian Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Ángel Gallardo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Abstract
The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Fabrezi M, Goldberg J, Chuliver Pereyra M. Morphological Variation in Anuran Limbs: Constraints and Novelties. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:546-574. [DOI: 10.1002/jez.b.22753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/27/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Marissa Fabrezi
- Instituto de Bio y Geociencias del NOA; IBIGEO (CONICET-UNSa); CCT-Salta Salta Argentina
| | - Javier Goldberg
- Instituto de Bio y Geociencias del NOA; IBIGEO (CONICET-UNSa); CCT-Salta Salta Argentina
| | | |
Collapse
|
10
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Marsicano CA, Wilson JA, Smith RMH. A temnospondyl trackway from the early Mesozoic of western Gondwana and its implications for basal tetrapod locomotion. PLoS One 2014; 9:e103255. [PMID: 25099971 PMCID: PMC4123899 DOI: 10.1371/journal.pone.0103255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. METHODOLOGY/PRINCIPAL FINDINGS We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes) and symplesiomorphies (e.g., absence of claws) in the Episcopopus trackway that indicate a temnospondyl trackmaker. CONCLUSIONS/SIGNIFICANCE Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls.
Collapse
Affiliation(s)
- Claudia A. Marsicano
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeffrey A. Wilson
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roger M. H. Smith
- Department of Karoo Paleontology, Iziko South African Museum, Cape Town, South Africa
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Cytokeratin localization in toe pads of the anuran amphibian Philautus annandalii (Boulenger, 1906). Tissue Cell 2014; 46:165-9. [PMID: 24698093 DOI: 10.1016/j.tice.2014.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/16/2014] [Accepted: 03/10/2014] [Indexed: 11/23/2022]
Abstract
We have examined cytokeratin distribution and their nature in toe pads of the Himalayan tree-frog Philautus annandalii. Toe pads are expanded tips of digits and show modifications of their ventral epidermis for adhesion. The toe pad epidermal cells, being organized into 3-4 rows, possess keratin bundles, especially in surface nanostructures that are involved in adhesion. Immunohistochemical localization using a pan-cytokeratin antibody revealed that cytokeratin immunoreactivity is the strongest in the mid- to basal cell rows of the epidermis, which parallels our previous ultrastructural observation of dense keratin bundles present in this part of the epidermis. The remainder of the epidermis (i.e., the superficial cell layer) showed little immunoreactivity. Immunoblot analysis revealed that toe-pads possessed keratins prominently in the molecular mass of 50 kDa. Possible presence of keratin 5 in toe pad epidermis has been correlated with its usual distribution pattern in mammalian epidermis.
Collapse
|
13
|
Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3471-3480. [DOI: 10.1016/j.bbamcr.2013.06.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/05/2023]
|
14
|
ALIBARDI LORENZO. Perspectives on Hair Evolution Based on Some Comparative Studies on Vertebrate Cornification. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:325-43. [DOI: 10.1002/jez.b.22447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- LORENZO ALIBARDI
- Comparative Histolab and Dipartimento di Biologia; University of Bologna, Bologna; Italy
| |
Collapse
|
15
|
Luna MC, Taboada C, Baêta D, Faivovich J. Structural diversity of nuptial pads in Phyllomedusinae (Amphibia: Anura: Hylidae). J Morphol 2012; 273:712-24. [PMID: 22419239 DOI: 10.1002/jmor.20016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/23/2011] [Accepted: 01/22/2012] [Indexed: 11/11/2022]
Abstract
We studied the morphological variation of the nuptial pads using light microscopy and scanning electron microscopy (SEM) in 26 species of phyllomedusines (Anura: Hylidae), representing the five currently recognized genera. All phyllomedusines have single nuptial pads with dark colored epidermal projections (EPs). Spine-shaped EPs occur in Cruziohyla calcarifer, Phrynomedusa appendiculata and in one species of Phasmahyla. The other species have roundish EPs. The density of the EPs on the pad is variable. Species in the Phyllomedusa hypochondrialis Group have EPs with a density that varies between 764 ± 58/mm(2) and 923 ± 160/mm(2). In all other studied species (including the Phyllomedusa burmeisteri and Phyllomedusa perinesos groups, Phyllomedusa camba, Phyllomedusa boliviana, Phyllomedusa sauvagii, Phyllomedusa bicolor, and Phyllomedusa tomopterna) the density of EPs varies between 108 ± 20/mm(2) and 552 ± 97/mm(2). Pores were observed with SEM in C. calcarifer, Agalychnis lemur, Agalychnis moreletii, but its presence is confirmed through histological sections on several other species. Its visibility using SEM seems to be related with the level of separation between adjacent EPs. The pores in the four studied species of Agalychnis are shown with SEM and histological sections to have a characteristic epidermal rim, that is absent in the otherphyllomedusines. Unlike most previous reports on breeding glands, those of phyllomedusines are alcian blue positive, indicating the presence of acidic mucosubstances on its secretions.
Collapse
Affiliation(s)
- Maria Celeste Luna
- División Herpetología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia-CONICET, Buenos Aires 1405, Argentina
| | | | | | | |
Collapse
|
16
|
McEwan J, Lynch J, Beck CW. Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Dev Dyn 2011; 240:1259-70. [DOI: 10.1002/dvdy.22555] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2010] [Indexed: 11/12/2022] Open
|
17
|
Deleterious Mutations of a Claw Keratin in Multiple Taxa of Reptiles. J Mol Evol 2010; 72:265-73. [DOI: 10.1007/s00239-010-9427-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
18
|
Russell AP, Maddin HC, Chrbet T. Restorative Regeneration of Digital Tips in the African Clawed Frog (Xenopus laevis Daudin). Anat Rec (Hoboken) 2010; 294:253-62. [DOI: 10.1002/ar.21313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/28/2010] [Indexed: 11/08/2022]
|
19
|
Alibardi L. Cornification in the claw of the amphibianXenopus laevis(Pipidae, Anura) and comparison with claws in amniotes. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/11250000903173395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Ethier DM, Kyle CJ, Kyser TK, Nocera JJ. Variability in the growth patterns of the cornified claw sheath among vertebrates: implications for using biogeochemistry to study animal movement. CAN J ZOOL 2010. [DOI: 10.1139/z10-073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We review the role of biogeochemical signatures, such as stable isotopes and trace elements, in the cornified claw tissue as a means of studying movement and foraging behaviour of vertebrates because this approach is noninvasive and can capture contemporary and historic signatures. Because biogeochemical techniques are still relatively new in studies of animal movement, we are only beginning to understand how the growth patterns of the cornified claw sheath may affect our ability to interpret the biogeochemical signals in these tissues. To move towards resolving this, we review the morphology of the epidermal cornified claw sheath in several taxa that illustrate substantial variation in growth patterns both between taxa and between individual distinct claw regions. For instance, in mammalian claws, deposition of keratinizing cells from the epidermis is nonlinear because the claw tip is composed of old and new cornified epidermal cells, whereas the cornified blade horn covering the claw’s lateral walls is deposited continuously and without assortment, providing unbroken time-series data. We also consider patterns of growth in mammalian hooves, as well as reptilian, avian, and amphibian cornified claw sheaths, and address the need for expanded research in this field. We conclude this synthesis by describing a noninvasive technique for monitoring growth rates in a model mammal, the American badger ( Taxidea taxus (Schreber, 1777)), and provide guidelines for future sampling of claw keratin, which will improve our ability to back-calculate the time of biogeochemical integration into this tissue.
Collapse
Affiliation(s)
- Danielle M. Ethier
- Environmental and Life Sciences Graduate Program, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Natural Resources and DNA Profiling Forensic Centre, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Ontario Ministry of Natural Resources, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Christopher J. Kyle
- Environmental and Life Sciences Graduate Program, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Natural Resources and DNA Profiling Forensic Centre, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Ontario Ministry of Natural Resources, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - T. Kurt Kyser
- Environmental and Life Sciences Graduate Program, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Natural Resources and DNA Profiling Forensic Centre, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Ontario Ministry of Natural Resources, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Joseph J. Nocera
- Environmental and Life Sciences Graduate Program, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Forensic Science Department, Natural Resources and DNA Profiling Forensic Centre, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Ontario Ministry of Natural Resources, Trent University, DNA Building, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
21
|
Homberger DG, Ham K, Ogunbakin T, Bonin JA, Hopkins BA, Osborn ML, Hossain I, Barnett HA, Matthews KL, Butler LG, Bragulla HH. The structure of the cornified claw sheath in the domesticated cat (Felis catus): implications for the claw-shedding mechanism and the evolution of cornified digital end organs. J Anat 2010; 214:620-43. [PMID: 19422432 DOI: 10.1111/j.1469-7580.2009.01068.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The morphology of cornified structures is notoriously difficult to analyse because of the extreme range of hardness of their component tissues. Hence, a correlative approach using light microscopy, scanning electron microscopy, three-dimensional reconstructions based on x-ray computed tomography data, and graphic modeling was applied to study the morphology of the cornified claw sheath of the domesticated cat as a model for cornified digital end organs. The highly complex architecture of the cornified claw sheath is generated by the living epidermis that is supported by the dermis and distal phalanx. The latter is characterized by an ossified unguicular hood, which overhangs the bony articular base and unguicular process of the distal phalanx and creates an unguicular recess. The dermis covers the complex surface of the bony distal phalanx but also creates special structures, such as a dorsal dermal papilla that points distally and a curved ledge on the medial and lateral sides of the unguicular process. The hard-cornified external coronary horn and proximal cone horn form the root of the cornified claw sheath within the unguicular recess, which is deeper on the dorsal side than on the medial and lateral sides. As a consequence, their rate of horn production is greater dorsally, which contributes to the overall palmo-apical curvature of the cornified claw sheath. The external coronary and proximal cone horn is worn down through normal use as it is pushed apically. The hard-cornified apical cone horn is generated by the living epidermis enveloping the base and free part of the dorsal dermal papilla. It forms nested horn cones that eventually form the core of the hardened tip of the cornified claw. The sides of the cornified claw sheath are formed by the newly described hard-cornified blade horn, which originates from the living epidermis located on the slanted face of the curved ledge. As the blade horn is moved apically, it entrains and integrates the hard-cornified parietal horn on its internal side. It is covered by the external coronary and proximal cone horn on its external side. The soft-cornified terminal horn extends distally from the parietal horn and covers the dermal claw bed at the tip of the uniguicular process, thereby filling the space created by the converging apical cone and blade horn. The soft-cornified sole horn fills the space between the cutting edges of blade horn on the palmar side of the cornified claw sheath. The superficial soft-cornified perioplic horn is produced on the internal side of the unguicular pleat, which surrounds the root of the cornified claw sheath. The shedding of apical horn caps is made possible by the appearance of microcracks in the superficial layers of the external coronary and proximal cone horn in the course of deformations of the cornified claw sheath, which is subjected to tensile forces during climbing or prey catching. These microcracks propagate tangentially through the coronary horn and do not injure the underlying living epidermal and dermal tissues. This built-in shedding mechanism maintains sharp claw tips and ensures the freeing of the claws from the substrate.
Collapse
Affiliation(s)
- Dominique G Homberger
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803-1715, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sire JY, Donoghue PCJ, Vickaryous MK. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat 2010; 214:409-40. [PMID: 19422423 DOI: 10.1111/j.1469-7580.2009.01046.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most non-tetrapod vertebrates develop mineralized extra-oral elements within the integument. Known collectively as the integumentary skeleton, these elements represent the structurally diverse skin-bound contribution to the dermal skeleton. In this review we begin by summarizing what is known about the histological diversity of the four main groups of integumentary skeletal tissues: hypermineralized (capping) tissues; dentine; plywood-like tissues; and bone. For most modern taxa, the integumentary skeleton has undergone widespread reduction and modification often rendering the homology and relationships of these elements confused and uncertain. Fundamentally, however, all integumentary skeletal elements are derived (alone or in combination) from only two types of cell condensations: odontogenic and osteogenic condensations. We review the origin and diversification of the integumentary skeleton in aquatic non-tetrapods (including stem gnathostomes), focusing on tissues derived from odontogenic (hypermineralized tissues, dentines and elasmodine) and osteogenic (bone tissues) cell condensations. The novelty of our new scenario of integumentary skeletal evolution resides in the demonstration that elasmodine, the main component of elasmoid scales, is odontogenic in origin. Based on available data we propose that elasmodine is a form of lamellar dentine. Given its widespread distribution in non-tetrapod lineages we further propose that elasmodine is a very ancient tissue in vertebrates and predict that it will be found in ancestral rhombic scales and cosmoid scales.
Collapse
|