1
|
Chiavacci E, Bagnoli S, Cellerino A, Terzibasi Tozzini E. Distribution of Brain-Derived Neurotrophic Factor in the Brain of the Small-Spotted Catshark Scyliorhinus canicula, and Evolution of Neurotrophins in Basal Vertebrates. Int J Mol Sci 2023; 24:ijms24119495. [PMID: 37298444 DOI: 10.3390/ijms24119495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Neurotrophins (NTFs) are structurally related neurotrophic factors essential for differentiation, survival, neurite outgrowth, and the plasticity of neurons. Abnormalities associated with neurotrophin-signaling (NTF-signaling) were associated with neuropathies, neurodegenerative disorders, and age-associated cognitive decline. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) has the highest expression and is expressed in mammals by specific cells throughout the brain, with particularly high expression in the hippocampus and cerebral cortex. Whole genome sequencing efforts showed that NTF signaling evolved before the evolution of Vertebrates; thus, the shared ancestor of Protostomes, Cyclostomes, and Deuterostomes must have possessed a single ortholog of neurotrophins. After the first round of whole genome duplication that occurred in the last common ancestor of Vertebrates, the presence of two neurotrophins in Agnatha was hypothesized, while the monophyletic group of cartilaginous fishes, or Chondrichthyans, was situated immediately after the second whole genome duplication round that occurred in the last common ancestor of Gnathostomes. Chondrichthyans represent the outgroup of all other living jawed vertebrates (Gnathostomes) and the sister group of Osteichthyans (comprehensive of Actinopterygians and Sarcopterygians). We were able to first identify the second neurotrophin in Agnatha. Secondly, we expanded our analysis to include the Chondrichthyans, with their strategic phylogenetic position as the most basal extant Gnathostome taxon. Results from the phylogenetic analysis confirmed the presence of four neurotrophins in the Chondrichthyans, namely the orthologs of the four mammalian neurotrophins BDNF, NGF, NT-3, and NT-4. We then proceeded to study the expression of BDNF in the adult brain of the Chondrichthyan Scyliorhinus canicula. Our results showed that BDNF is highly expressed in the S. canicula brain and that its expression is highest in the Telencephalon, while the Mesencephalic and Diencephalic areas showed expression of BDNF in isolated and well-defined cell groups. NGF was expressed at much lower levels that could be detected by PCR but not by in situ hybridization. Our results warrant further investigations in Chondrichthyans to characterize the putative ancestral function of neurotrophins in Vertebrates.
Collapse
Affiliation(s)
- Elena Chiavacci
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sara Bagnoli
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
| | - Alessandro Cellerino
- Biology Laboratory (BIO@SNS), Scuola Normale Superiore, 56126 Pisa, Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute, 07745 Jena, Germany
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Department (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
2
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Calle-Guisado V, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Retinal Development in a Precocial Bird Species, the Quail (Coturnix coturnix, Linnaeus 1758). Cells 2023; 12:cells12070989. [PMID: 37048062 PMCID: PMC10093483 DOI: 10.3390/cells12070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
The quail (Coturnix coturnix, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to examine the retinogenesis in this bird species immunohistochemically and compare the results with those from previous studies in precocial and altricial birds. We found that the first PCNA-negative nuclei are detected at Stage (St) 21 in the vitreal region of the neuroblastic layer, coinciding topographically with the first αTubAc-/Tuj1-/Isl1-immunoreactive differentiating ganglion cells. At St28, the first Prox1-immunoreactive nuclei can be distinguished in the vitreal side of the neuroblastic layer (NbL), but also the first visinin-immunoreactive photoreceptors in the scleral surface. The inner plexiform layer (IPL) emerges at St32, and the outer plexiform layer (OPL) becomes visible at St35—the stage in which the first GS-immunoreactive Müller cells are distinguishable. Newly hatched animals show a well-developed stratified retina in which the PCNA-and pHisH3-immunoreactivies are absent. Therefore, retinal cell differentiation in the quail progresses in the stereotyped order conserved among vertebrates, in which ganglion cells initially appear and are followed by amacrine cells, horizontal cells, and photoreceptors. Müller glia are one of the last cell types to be born. Plexiform layers emerge following a vitreal-to-scleral gradient. Finally, our results suggest that there are no significant differences in the timing of different events involved in retinal maturation between the quail and the chicken, but the same events are delayed in an altricial bird species.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Violeta Calle-Guisado
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
- Correspondence:
| |
Collapse
|
3
|
Zhang Q, Wu Y, Li W, Wang J, Zhou H, Zhang L, Liu Q, Ying L, Yan H. Retinal development and the expression profiles of opsin genes during larval development in Takifugu rubripes. JOURNAL OF FISH BIOLOGY 2023; 102:380-394. [PMID: 36371656 DOI: 10.1111/jfb.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.
Collapse
Affiliation(s)
- Qi Zhang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Yumeng Wu
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Weiyuan Li
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Jia Wang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Huiting Zhou
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Lei Zhang
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Qi Liu
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Liu Ying
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| | - Hongwei Yan
- Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, China
| |
Collapse
|
4
|
Rodríguez-Arrizabalaga M, Hernández-Núñez I, Candal E, Barreiro-Iglesias A. Use of vivo-morpholinos for gene knockdown in the postnatal shark retina. Exp Eye Res 2023; 226:109333. [PMID: 36436570 DOI: 10.1016/j.exer.2022.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Work in the catshark Scyliorhinus canicula has shown that the evolutionary origin of postnatal neurogenesis in vertebrates is earlier than previously thought. Thus, the catshark can serve as a model of interest to understand postnatal neurogenic processes and their evolution in vertebrates. One of the best characterized neurogenic niches of the catshark CNS is found in the peripheral region of the retina. Unfortunately, the lack of genetic tools in sharks limits the possibilities to deepen in the study of genes involved in the neurogenic process. Here, we report a method for gene knockdown in the juvenile catshark retina based on the use of Vivo-Morpholinos. To establish the method, we designed Vivo-Morpholinos against the proliferation marker PCNA. We first evaluated the possible toxicity of 3 different intraocular administration regimes. After this optimization step, we show that a single intraocular injection of the PCNA Vivo-Morpholino decreases the expression of PCNA in the peripheral retina, which leads to reduced mitotic activity in this region. This method will help in deciphering the role of other genes potentially involved in postnatal neurogenesis in this animal model.
Collapse
Affiliation(s)
- Mariña Rodríguez-Arrizabalaga
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ismael Hernández-Núñez
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva Candal
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Hernández-Núñez I, Vivero-Lopez M, Quelle-Regaldie A, DeGrip WJ, Sánchez L, Concheiro A, Alvarez-Lorenzo C, Candal E, Barreiro-Iglesias A. Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochem Cell Biol 2022; 158:401-409. [PMID: 35779079 DOI: 10.1007/s00418-022-02127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. While there is a major focus on the study of juvenile/adult DR, the effects of hyperglycemia during early retinal development are less well studied. Recent studies in embryonic zebrafish models of nutritional hyperglycemia (high-glucose exposure) have revealed that hyperglycemia leads to decreased cell numbers of mature retinal cell types, which has been related to a modest increase in apoptotic cell death and altered cell differentiation. However, how embryonic hyperglycemia impacts cell proliferation in developing retinas still remains unknown. Here, we exposed zebrafish embryos to 50 mM glucose from 10 h postfertilization (hpf) to 5 days postfertilization (dpf). First, we confirmed that hyperglycemia increases apoptotic death and decreases the rod and Müller glia population in the retina of 5-dpf zebrafish. Interestingly, the increase in cell death was mainly observed in the ciliary marginal zone (CMZ), where most of the proliferating cells are located. To analyze the impact of hyperglycemia in cell proliferation, mitotic activity was first quantified using pH3 immunolabeling, which revealed a significant decrease in mitotic cells in the retina (mainly in the CMZ) at 5 dpf. A significant decrease in cell proliferation in the outer nuclear and ganglion cell layers of the central retina in hyperglycemic animals was also detected using the proliferation marker PCNA. Overall, our results show that nutritional hyperglycemia decreases cellular proliferation in the developing retina, which could significantly contribute to the decline in the number of mature retinal cells.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC, Leiden, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Veterinary Faculty, Universidade de Santiago de Compostela, 27002, Lugo, Spain.,Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago, Spain.
| |
Collapse
|
6
|
Álvarez-Hernán G, de Mera-Rodríguez JA, de la Gándara F, Ortega A, Barros-Gata I, Romero-Rodríguez JA, Blasco M, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Histogenesis and cell differentiation in the retina of Thunnus thynnus: A morphological and immunohistochemical study. Tissue Cell 2022; 76:101809. [DOI: 10.1016/j.tice.2022.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
7
|
Álvarez-Hernán G, de Mera-Rodríguez JA, Hernández-Núñez I, Acedo A, Marzal A, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Timing and Distribution of Mitotic Activity in the Retina During Precocial and Altricial Modes of Avian Development. Front Neurosci 2022; 16:853544. [PMID: 35615284 PMCID: PMC9125163 DOI: 10.3389/fnins.2022.853544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
During development of the vertebrate retina, mitotic activity is defined as apical when is located at the external surface of the neuroepithelium or as non-apical when is found in more internal regions. Apical mitoses give rise to all retinal cell types. Non-apical mitoses are linked to committed horizontal cell precursors that subsequently migrate vitreo-sclerally, reaching their final position in the outer surface of the inner nuclear layer, where they differentiate. Previous studies have suggested differences in the timing of retinal maturation between altricial and precocial bird species. In the present study we analyze qualitatively and quantitatively the mitotic activity in the developing retina of an altricial (zebra finch, Taeniopygia guttata) and a precocial (Japanese quail, Coturnix coturnix) bird species. We found that pHisH3-immunoreactive apical and non-apical mitoses were abundant in the T. guttata retina at the hatching stage. In contrast, pHisH3 immunoreactivity almost disappeared from the quail retina at the embryonic day 10 (E10). Furthermore, we also found that the onset of the appearance of non-apical mitoses occurred at later stages in the altricial bird species than in the precocial one. The disappearance of apical mitoses and the spatiotemporal distribution of non-apical mitoses followed central to peripheral and dorsal to ventral gradients, similar to gradients of cell differentiation described in the retina of birds. Therefore, these results suggest that retinal neurogenesis is active at the hatching stage in T. guttata, and that horizontal cell differentiation is delayed in the altricial bird species compared to the precocial one. Together, this study reveals important insights into the timing differences that regulate bird retinal maturation and provides a better understanding of the evolution of avian altriciality and precociality.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Ismael Hernández-Núñez
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Abel Acedo
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Joaquín Rodríguez-León,
| | - Javier Francisco-Morcillo
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- Javier Francisco-Morcillo,
| |
Collapse
|
8
|
Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. Int J Mol Sci 2021; 22:ijms222111715. [PMID: 34769146 PMCID: PMC8583983 DOI: 10.3390/ijms222111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3–4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.
Collapse
|
9
|
Álvarez-Hernán G, Garrido-Jiménez S, Román ÁC, Carvajal-González JM, Francisco-Morcillo J. Distribution of planar cell polarity proteins in the developing avian retina. Exp Eye Res 2021; 209:108681. [PMID: 34166683 DOI: 10.1016/j.exer.2021.108681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
Planar cell polarity (PCP) is evolutionary conserved and play a critical role in proper tissue development and function. During central nervous system development, PCP proteins exhibit specific patterns of distribution and are indispensable for axonal growth, dendritogenesis, neuronal migration, and neuronal differentiation. The retina constitutes an excellent model in which to study molecular mechanisms involved in neural development. The analysis of the spatiotemporal expression of PCP proteins in this model constitutes an useful histological approach in order to identify possible roles of these proteins in retinogenesis. Immunohistochemical techniques revealed that Frz6, Celsr1, Vangl1, Pk1, Pk3, and Fat1 were present in emerging axons from recently differentiated ganglion cells in the chicken retina. Except for Vangl1, they were also asymmetrically distributed in differentiated amacrine cells. Pk1 and Pk3 were restricted in the outer nuclear layer to the outer segment of photoreceptors. Vangl1 was also located in the cell somata of Müller glia. Given these findings together, the distribution of PCP proteins in the developing chicken retina suggest essential roles in axonal guidance during early retinogenesis and a possible involvement in the establishment of cell asymmetry and maintenance of retinal cell phenotypes.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sergio Garrido-Jiménez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ángel Carlos Román
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José María Carvajal-González
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
10
|
Álvarez-Hernán G, Hernández-Núñez I, Rico-Leo EM, Marzal A, de Mera-Rodríguez JA, Rodríguez-León J, Martín-Partido G, Francisco-Morcillo J. Retinal differentiation in an altricial bird species, Taeniopygia guttata: An immunohistochemical study. Exp Eye Res 2020; 190:107869. [DOI: 10.1016/j.exer.2019.107869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
|
11
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn 2019; 248:850-865. [PMID: 31226225 DOI: 10.1002/dvdy.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance. RESULTS Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro. Using the developing visual system of the chicken as a model, the present study found that SA-β-GAL detected in the developing retina corresponded to lysosomal β-galactosidase activity, and that SA-β-GAL activity did not correlate with the chronotopographical distribution of apoptotic cells. However, SA-β-GAL staining in the undifferentiated retina coincided with the appearance of early differentiating neurons. In the laminated retina, SA-β-GAL staining was concentrated in the ganglion, amacrine, and horizontal cell layers. The photoreceptors and pigment epithelial cells also exhibited SA-β-GAL activity throughout retinal development. We have also found that SA-β-GAL staining strongly correlated p21 immunoreactivity. CONCLUSION In conclusion, the results clearly show that SA-β-GAL activity cannot be regarded as a specific marker of senescence during retinal development, and that it is mainly expressed in subpopulations of postmitotic neurons, which are nonproliferative cells, even at early stages of cell differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
12
|
Retinal differentiation in syngnathids: comparison in the developmental rate and acquisition of retinal structures in altricial and precocial fish species. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00447-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Docampo-Seara A, Santos-Durán GN, Candal E, Rodríguez Díaz MÁ. Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct 2018; 224:33-56. [PMID: 30242506 PMCID: PMC6373381 DOI: 10.1007/s00429-018-1758-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to specific ventricular areas in the adult brain, RGCs are the predominant glial element in fishes. However, developmental studies on the RGCs of cartilaginous fishes are scant. We have studied the expression patterns of RGCs markers including glial fibrillary acidic protein (GFAP), brain lipid binding protein (BLBP), and glutamine synthase (GS) in the telencephalic hemispheres of catshark (Scyliorhinus canicula) from early embryos to post-hatch juveniles. GFAP, BLBP and GS are first detected, respectively, in early, intermediate and late embryos. Expression of these glial markers was observed in cells with radial glia morphology lining the telencephalic ventricles, as well as in their radial processes and endfeet at the pial surface and their expression continue in ependymal cells (or tanycytes) in early juveniles. In addition, BLBP- and GS-immunoreactive cells morphologically resembling oligodendrocytes were observed. In late embryos, most of the GFAP- and BLBP-positive RGCs also coexpress GS and show proliferative activity. Our results indicate the existence of different proliferating subpopulations of RGCs in the embryonic ventricular zone of catshark. Further investigations are needed to determine whether these proliferative RGCs could act as neurogenic and/or gliogenic precursors.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G N Santos-Durán
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Rodríguez Díaz
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Pang JJ, Yang Z, Jacoby RA, Wu SM. Cone synapses in mammalian retinal rod bipolar cells. J Comp Neurol 2018; 526:1896-1909. [PMID: 29667170 PMCID: PMC6031453 DOI: 10.1002/cne.24456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Some mammalian rod bipolar cells (RBCs) can receive excitatory chemical synaptic inputs from both rods and cones (DBCR2 ), but anatomical evidence for mammalian cone-RBC contacts has been sparse. We examined anatomical cone-RBC contacts using neurobiotin (NB) to visualize individual mouse cones and standard immuno-markers to identify RBCs, cone pedicles and synapses in mouse and baboon retinas. Peanut agglutinin (PNA) stained the basal membrane of all cone pedicles, and mouse cones were positive for red/green (R/G)-opsin, whereas baboon cones were positive for calbindin D-28k. All synapses in the outer plexiform layer were labeled for synaptic vesicle protein 2 (SV2) and PSD (postsynaptic density)-95, and those that coincided with PNA resided closest to bipolar cell somas. Cone-RBC synaptic contacts were identified by: (a) RBC dendrites deeply invaginating into the center of cone pedicles (invaginating synapses), (b) RBC dendritic spines intruding into the surface of cone pedicles (superficial synapses), and (c) PKCα immunoreactivity coinciding with synaptic marker SV2, PSD-95, mGluR6, G protein beta 5 or PNA at cone pedicles. One RBC could form 0-1 invaginating and 1-3 superficial contacts with cones. 20.7% and 38.9% of mouse RBCs contacted cones in the peripheral and central retina (p < .05, n = 14 samples), respectively, while 34.4% (peripheral) and 48.5% (central) of cones contacted RBCs (p > .05). In baboon retinas (n = 4 samples), cone-RBC contacts involved 12.2% of RBCs (n = 416 cells) and 22.5% of cones (n = 225 cells). This suggests that rod and cone signals in the ON pathway are integrated in some RBCs before reaching AII amacrine cells.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Roy A Jacoby
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
15
|
Álvarez-Hernán G, Sánchez-Resino E, Hernández-Núñez I, Marzal A, Rodríguez-León J, Martín-Partido G, Francisco-Morcillo J. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817). J Anat 2018; 233:106-120. [PMID: 29582431 DOI: 10.1111/joa.12809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 01/11/2023] Open
Abstract
Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems. However, comparison of embryonic pre-hatchling retinal development between altricial and precocial birds has been poorly explored. The purpose of this study was to examine the morphogenesis and histogenesis of the retina in the altricial zebra finch (Taeniopygia guttata, Vieillot 1817) and compare the results with those from previous studies in the precocial chicken. Several maturational features (morphogenesis of the optic vesicle and optic cup, appearance of the first differentiated neurons, the period in which the non-apical cell divisions are observable, and the emergence of the plexiform layers) were found to occur at later stages in the zebra finch than in the chicken. At hatching, the retina of T. guttata showed the typical cytoarchitecture of the mature tissue, although features of immaturity were still observable, such as a ganglion cell layer containing many thick cells, very thin plexiform layers, and poorly developed photoreceptors. Moreover, abundant mitotic activity was detected in the entire retina, even in the regions where the layering was complete. The circumferential marginal zone was very prominent and showed abundant mitotic activity. The partially undifferentiated stage of maturation at hatching makes the T. guttata retina an appropriate model with which to study avian postnatal retinal neurogenesis.
Collapse
Affiliation(s)
- Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Elena Sánchez-Resino
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ismael Hernández-Núñez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Alfonso Marzal
- Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
16
|
Bejarano-Escobar R, Sánchez-Calderón H, Otero-Arenas J, Martín-Partido G, Francisco-Morcillo J. Müller glia and phagocytosis of cell debris in retinal tissue. J Anat 2017; 231:471-483. [PMID: 28695619 DOI: 10.1111/joa.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Müller cells are the predominant glial cell type in the retina of vertebrates. They play a wide variety of roles in both the developing and the mature retina that have been widely reported in the literature. However, less attention has been paid to their role in phagocytosis of cell debris under physiological, pathological or experimental conditions. Müller glia have been shown to phagocytose apoptotic cell bodies originated during development of the visual system. They also engulf foreign molecules that are injected into the eye, cone outer segments and injured photoreceptors. Phagocytosis of photoreceptor cell debris in the light-damaged teleost retina is primarily carried out by Müller cells. Once the microglial cells become activated and migrate to the photoreceptor cell layer, the phagocytic activity of Müller cells progressively decreases, suggesting a possible mechanism of communication between Müller cells and neighbouring microglia and photoreceptors. Additionally, it has been shown that phagocytic Müller cells acquire proliferating activity in the damaged teleost retina, suggesting that engulfment of apoptotic photoreceptor debris might stimulate the Müller glia to proliferate during the regenerative response. These findings highlight Müller glia phagocytosis as an underlying mechanism contributing to degeneration and regeneration under pathological conditions.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | - Josué Otero-Arenas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
17
|
Sánchez-Farías N, Candal E. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks. Front Neuroanat 2016; 10:65. [PMID: 27378863 PMCID: PMC4913098 DOI: 10.3389/fnana.2016.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the radial glia (RG) state.
Collapse
Affiliation(s)
- Nuria Sánchez-Farías
- Grupo BRAINSHARK, Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Eva Candal
- Grupo BRAINSHARK, Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
18
|
Fan WJ, Li X, Yao HL, Deng JX, Liu HL, Cui ZJ, Wang Q, Wu P, Deng JB. Neural differentiation and synaptogenesis in retinal development. Neural Regen Res 2016; 11:312-8. [PMID: 27073386 PMCID: PMC4810997 DOI: 10.4103/1673-5374.177743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function.
Collapse
Affiliation(s)
- Wen-Juan Fan
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Xue Li
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Huan-Ling Yao
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Hong-Liang Liu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Zhan-Jun Cui
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Qiang Wang
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Ping Wu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
19
|
Martín-Partido G, Francisco-Morcillo J. The role of Islet-1 in cell specification, differentiation, and maintenance of phenotypes in the vertebrate neural retina. Neural Regen Res 2016; 10:1951-2. [PMID: 26889183 PMCID: PMC4730819 DOI: 10.4103/1673-5374.165301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Gervasio Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
20
|
Pavón-Muñoz T, Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Retinal development in the gilthead seabream Sparus aurata. JOURNAL OF FISH BIOLOGY 2016; 88:492-507. [PMID: 26507100 DOI: 10.1111/jfb.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The retinal development of the gilthead seabream Sparus aurata has been analysed from late embryonic development to juvenile stages using classical histological and immunohistological methods. Five significant phases were established. Phases 1 and 2 comprise the late embryonic and hatching stages, respectively. The results indicate that during these early stages the retina is composed of a single neuroblastic layer that consists of undifferentiated retinal progenitor cells. Phase 3 (late prolarval stage) is characterized by the emergence of the retinal layers and the appearance of neurochemical profiles in differentiating photoreceptors, amacrine and ganglion cells. Phases 4 and 5 comprise the late larval and juvenile stages. In these stages, all the retinal cell types can be detected immunohistochemically. All the maturational events described are first detected in the central retina and, as development progresses, spread to the rest of the retina following a central-to-peripheral gradient. The results of this study suggest that S. aurata is an altricial teleost species that hatches with a morphologically undifferentiated retina. The most relevant processes involved in retinogenesis occur during the late prolarval stage (phase 3).
Collapse
Affiliation(s)
- T Pavón-Muñoz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - R Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - M Blasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - G Martín-Partido
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| | - J Francisco-Morcillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, 06071, Badajoz, Spain
| |
Collapse
|
21
|
Islet-1 immunoreactivity in the developing retina of Xenopus laevis. ScientificWorldJournal 2013; 2013:740420. [PMID: 24348185 PMCID: PMC3844241 DOI: 10.1155/2013/740420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/22/2013] [Indexed: 01/09/2023] Open
Abstract
The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.
Collapse
|
22
|
Bejarano-Escobar R, Blasco M, Durán AC, Martín-Partido G, Francisco-Morcillo J. Chronotopographical distribution patterns of cell death and of lectin-positive macrophages/microglial cells during the visual system ontogeny of the small-spotted catshark Scyliorhinus canicula. J Anat 2013; 223:171-84. [PMID: 23758763 DOI: 10.1111/joa.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
The patterns of distribution of TUNEL-positive bodies and of lectin-positive phagocytes were investigated in the developing visual system of the small-spotted catshark Scyliorhinus canicula, from the optic vesicle stage to adulthood. During early stages of development, TUNEL-staining was mainly found in the protruding dorsal part of the optic cup and in the presumptive optic chiasm. Furthermore, TUNEL-positive bodies were also detected during detachment of the embryonic lens. Coinciding with the developmental period during which ganglion cells began to differentiate, an area of programmed cell death occurred in the distal optic stalk and in the retinal pigment epithelium that surrounds the optic nerve head. The topographical distribution of TUNEL-positive bodies in the differentiating retina recapitulated the sequence of maturation of the various layers and cell types following a vitreal-to-scleral gradient. Lectin-positive cells apparently entered the retina by the optic nerve head when the retinal layering was almost complete. As development proceeded, these labelled cells migrated parallel to the axon fascicles of the optic fiber layer and then reached more external layers by radial migration. In the mature retina, lectin-positive cells were confined to the optic fiber layer, ganglion cell layer and inner plexiform layer. No evident correlation was found between the chronotopographical pattern of distribution of TUNEL-positive bodies and the pattern of distribution of lectin-labelled macrophages/microglial cells during the shark's visual system ontogeny.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
23
|
Bejarano-Escobar R, Blasco M, Martín-Partido G, Francisco-Morcillo J. Light-induced degeneration and microglial response in the retina of an epibenthonic pigmented teleost: age-dependent photoreceptor susceptibility to cell death. ACTA ACUST UNITED AC 2012; 215:3799-812. [PMID: 22811246 DOI: 10.1242/jeb.072124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Constant intense light causes apoptosis of photoreceptors in the retina of albino fish. However, very few studies have been performed on pigmented species. Tench (Tinca tinca) is a teleost inhabiting dimly lit environments that has a predominance of rods within the photoreceptor layer. To test the hypothesis that constant high intensity light can result in retinal damage in such pigmented epibenthonic teleost species, photodegeneration of the retina was investigated in the larvae and in juveniles of tench to assess whether any damage may also be dependent on fish age. We exposed both groups of animals to 5 days of constant darkness, followed by 4 days of constant 20,000 lx light, and then by 6 days of recovery in a 14 h light:10 h dark cycle. The results showed that the retina of the larvae group exhibited abundant photoreceptor cell apoptosis during the time of exposition to intense light, whereas that of juveniles was indifferent to it. Damaged retinas showed a strong TUNEL signal in photoreceptor nuclei, and occasionally a weak cytoplasmic TUNEL signal in Müller glia. Specific labelling of microglial cells with Griffonia simplicifolia lectin (GSL) histochemistry revealed that photoreceptor cell death alerts microglia in the degenerating retina, leading to local proliferation, migration towards the injured outer nuclear layer (ONL), and enhanced phagocytosis of photoreceptor debris. During the first days of intense light treatment, Müller cells phagocytosed dead photoreceptor cells but, once microglial cells became activated, there was a progressive increase in the phagocytic capacity of the microglia.
Collapse
Affiliation(s)
- Ruth Bejarano-Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|