1
|
Zhuang J, Zang N, Ye C, Xu F. Lethal avian influenza A (H5N1) virus induces ataxic breathing in mice with apoptosis of pre-Botzinger complex neurons expressing neurokinin-1 receptor. Am J Physiol Lung Cell Mol Physiol 2017; 313:L772-L780. [PMID: 28729347 DOI: 10.1152/ajplung.00145.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022] Open
Abstract
Lethal influenza A (H5N1) induces respiratory failure in humans. Although it also causes death at 7 days postinfection (dpi) in mice, the development of the respiratory failure and the viral impact on pre-Botzinger complex (PBC) neurons expressing neurokinin 1 receptor (NK1R), which is the respiratory rhythm generator, have not been explored. Body temperature, weight, ventilation, and arterial blood pH and gases were measured at 0, 2, 4, and 6 dpi in control, lethal HK483, and nonlethal HK486 viral-infected mice. Immunoreactivities (IR) of PBC NK1R, H5N1 viral nucleoprotein (NP), and active caspase-3 (CASP3; a marker for apoptosis) were detected at 6 dpi. HK483, but not HK486, mice showed the following abnormalities: 1) gradual body weight loss and hypothermia; 2) tachypnea at 2-4 dpi and ataxic breathing with long-lasting apneas and hypercapnic hypoxemia at 6 dpi; and 3) viral replication in PBC NK1R neurons with NK1R-IR reduced by 75% and CASP3-IR colabeled at 6 dpi. Lethal H5N1 viral infection causes tachypnea at the early stage and ataxic breathing and apneas (hypercapnic hypoxemia) leading to death at the late stage. Its replication in the PBC induces apoptosis of local NK1R neurons, contributing to ataxic breathing and respiratory failure.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Chunyan Ye
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
2
|
Erken HA, Erken G, Colak R, Genç O. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity. High Alt Med Biol 2014; 14:360-6. [PMID: 24377343 DOI: 10.1089/ham.2012.1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA.
Collapse
Affiliation(s)
- Haydar Ali Erken
- 1 Department of Physiology, Faculty of Medicine, Balikesir University , Balikesir, Turkey
| | | | | | | |
Collapse
|
3
|
Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol 2012; 185:144-55. [PMID: 22705011 DOI: 10.1016/j.resp.2012.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022]
Abstract
Any general model of respiratory control must explain a puzzling array of breathing patterns that are observed during the course of a lifetime. Particular challenges are to understand why periodic breathing is rarely seen in the first few days after birth, reaches a peak at 2-4 weeks postnatal age, and disappears by 6 months, why it is prevalent in preterm infants, and why it reappears in adults at altitude or with heart failure. In this review we use the concept of loop gain to obtain quantitative insight into the genesis of unstable breathing patterns with a particular focus on how changes in carotid body function could underlie the age-related dependence of periodic breathing.
Collapse
Affiliation(s)
- Bradley A Edwards
- Division of Sleep Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
4
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
5
|
Edwards BA, Sands SA, Skuza EM, Brodecky V, Stockx EM, Wilkinson MH, Berger PJ. Maturation of respiratory control and the propensity for breathing instability in a sheep model. J Appl Physiol (1985) 2009; 107:1463-71. [DOI: 10.1152/japplphysiol.00587.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limited evidence suggests that the ventilatory interaction between O2 and CO2 is additive after birth and becomes multiplicative with postnatal development. Such a switch may be linked to the propensity for periodic breathing (PB) in infancy. To test this idea, we characterized the maturation of the respiratory controller and its effect on breathing stability in ∼10-day-old lambs and 6-mo-old sheep. We measured 1) carotid body sensitivity via dynamic ventilatory responses to step changes in O2 and CO2, 2) steady-state ventilatory sensitivity to CO2 under hypoxic and hyperoxic conditions, 3) the dependence of the apneic threshold on arterial Po2, and 4) the effect of hypoxic or hypercapnic gas inhalation during induced PB. Stability of the system was assessed using surrogate measures of loop gain. Peripheral sensitivity to O2 was higher in newborn than in older animals ( P < 0.05), but peripheral CO2 sensitivity was unchanged. Central CO2 sensitivity was reduced with age, but the slopes of the ventilatory responses to CO2 were the same in hypoxia and hyperoxia. Reduced arterial Po2 caused a leftward shift in the apneic threshold at both ages. Inspiration of hypoxic gas during PB immediately halted PB, whereas hypercapnia stopped PB only after one or two further PB cycles. We conclude that the controller in the sheep remains additive over the first 6 mo of life. Our results also show that the loop gain of the respiratory control system is reduced with age, possibly as a result of a reduction of peripheral O2 sensitivity.
Collapse
Affiliation(s)
- Bradley A. Edwards
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Scott A. Sands
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elizabeth M. Skuza
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Vojta Brodecky
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Elaine M. Stockx
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Malcolm H. Wilkinson
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| | - Philip J. Berger
- Ritchie Centre for Baby Health Research, Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Australia
| |
Collapse
|
6
|
Cummings KJ, Frappell PB. Breath-to-breath hypercapnic response in neonatal rats: temperature dependency of the chemoreflexes and potential implications for breathing stability. Am J Physiol Regul Integr Comp Physiol 2009; 297:R124-34. [PMID: 19420287 DOI: 10.1152/ajpregu.91011.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The breathing of newborns is destabilized by warm temperatures. We hypothesized that in unanesthetized, intact newborn rats, body temperature (T(B)) influences the peripheral chemoreflex response (PCR response) to hypercapnia. To test this, we delivered square-wave challenges of 8% CO(2) in air to postnatal day 4-5 (P4-P5) rats held at a T(B) of 30 degrees C (Cold group, n = 11), 33 degrees C (Cool group, n = 10), and 35 degrees C thermoneutral zone group [thermoneutral zone (TNZ) group, n = 11], while measuring ventilation (Ve) directly with a pneumotach and mask. Cool animals were challenged with 8% CO(2) balanced in either air or hyperoxia (n = 10) to identify the PCR response. Breath-to-breath analysis was performed on 30 room air breaths and every breath of the 1-min CO(2) challenge. As expected, warmer T(B) was associated with an unstable breathing pattern in room air: TNZ animals had a coefficient of variation in Ve (Ve CV%) that was double that of animals held at cooler T(B) (P < 0.001). Hyperoxia markedly suppressed the hypercapnic ventilatory response over the first 10 breaths (or approximately 4 s), suggesting that this domain is dominated by the PCR response. The PCR response (P = 0.03) and total response (P = 0.04) were significantly greater in TNZ animals compared with hypothermic animals. The total response had a significant, negative relationship with Vco(2) (R(2) = 0.53; P < 0.001). Breathing stability was positively related to the total response (R(2) = 0.36; P < 0.001) and to a lesser extent, the PCR response (R(2) = 0.19; P = 0.01) and was negatively related to Vco(2) (R(2) = 0.34; P < 0.001). ANCOVA confirmed a significant effect of T(B) alone on breathing stability (P < 0.01), with no independent effects of Vco(2) (P = 0.41), the PCR response (P = 0.82), or the total Ve response (P = 0.08). Our data suggest that in early postnatal life, the chemoreflex responses to CO(2) are highly influenced by T(B), and while related to breathing stability, are not predictors of stability after accounting for the independent effect of T(B).
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
7
|
Rieger-Fackeldey E, Sindelar R, Sedin G, Jonzon A. Bronchopulmonary C-fibers modulate the breathing pattern in surfactant-depleted juvenile cats. Respir Physiol Neurobiol 2007; 160:341-9. [PMID: 18088566 DOI: 10.1016/j.resp.2007.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 10/28/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the influence of nonmyelinated C-fibers on the breathing pattern by cooling the vagal nerves to temperatures at which myelinated nerve transmission from pulmonary stretch receptors is blocked (+7 degrees C) and further at which nonmyelinated fiber input is blocked (0 degrees C), in anaesthetized spontaneously breathing juvenile cats with normal (L(N)), surfactant-depleted (L(D)) and surfactant-treated (L(T)) lungs. In L(N), vagal cooling from +7 to 0 degrees C decreased respiratory frequency (f(R); -8%; p < 0.01), and increased tidal volume (V(T); +40%; p < 0.01). In the presence of shallow fast breathing in L(D), f(R) decreased (+38 to +7 degrees C: -26%; p < 0.015 and +7 to 0 degrees C: -24%; p < 0.001) and V(T) increased (+37%; p < 0.049 and +88%; p < 0.016). In L(T), f(R) decreased (+7 to 0 degrees C: -21%; p < 0.001), whereas V(T) remained the same at 0 degrees C (+12%; NS). These findings show for the first time that the activity of bronchopulmonary C-fibers have a prominent role in modulating the breathing pattern in juvenile cats with surfactant-depleted lungs.
Collapse
Affiliation(s)
- Esther Rieger-Fackeldey
- Department of Women's and Children's Health, Section for Pediatrics, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
8
|
Xu F, Zhuang J, Wang R, Seagrave JC, March TH. Blunted ventilatory response to hypoxia/hypercapnia in mice with cigarette smoke-induced emphysema. Respir Physiol Neurobiol 2007; 158:5-13. [PMID: 17531548 PMCID: PMC2703296 DOI: 10.1016/j.resp.2007.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
It has been reported that the degree of emphysema induced by chronic cigarette smoke (CS) is greater in female C3H/HeN mice as compared to other mouse strains. We hypothesized that these mice would develop the similar major characteristics seen in hypercapnic patients with chronic obstructive pulmonary disease (COPD), including emphysema, pulmonary inflammation, hypercapnia/hypoxemia, rapid breathing, and attenuated ventilatory response (AVR). Mice were exposed either to CS or filtered air (FA) for 16 weeks. After exposure, arterial blood gases and minute ventilation were measured before and during chemical challenges in anesthetized and spontaneously breathing mice. We found that as compared to FA, CS exposure caused emphysema and pulmonary inflammation associated with: (1) hypercapnia and hypoxemia, (2) rapid breathing, and (3) AVR to 25 breaths of pure N(2), 5% CO(2) alone, and 5% CO(2) coupled with 10% O(2). The similarity of these pathophysiological characteristics between our mouse model and COPD patients suggests that this model could be effectively applied to study COPD pathophysiology, especially central mechanisms of the AVR genesis.
Collapse
Affiliation(s)
- F Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | | | | | | | | |
Collapse
|
9
|
Kumar P, Bin-Jaliah I. Adequate stimuli of the carotid body: more than an oxygen sensor? Respir Physiol Neurobiol 2007; 157:12-21. [PMID: 17291838 DOI: 10.1016/j.resp.2007.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/12/2007] [Accepted: 01/15/2007] [Indexed: 11/15/2022]
Abstract
The past 10-20 years has seen a significant increase in the number of studies aimed at elucidating the mechanism of action of the carotid body and this has led to an increased knowledge of how this sensory organ transduces hypoxaemia into afferent chemodischarge. Whilst hypoxia is often considered as the most significant, peripheral chemostimulus, the carotid body is able to transduce many other physico-chemical stimuli, including not only arterial P(CO2) and pH but also blood potassium concentration, temperature and osmolarity as well as, potentially, blood glucose levels and all with appropriate physiological sensitivity. Although it is difficult to be definitive, these other stimuli appear to be sensed independently of the hypoxia transduction process, albeit converging at the point of type I cell membrane depolarisation or Ca(2+) -dependent neurosecretion. We suggest, therefore, that the carotid body might better be viewed as a polymodal receptor with its multiple adequate stimuli interacting to provide additive or greater than additive effects upon chemoafferent discharge for the purpose of cardiorespiratory homeostasis during periods of stress.
Collapse
Affiliation(s)
- Prem Kumar
- Department of Physiology, The Medical School, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
10
|
Piccione G, Costa A, Bertolucci C, Borruso M, Pennisi P, Caola G. Acid–base balance modifications in the lamb and goat kids during the first week of life. Small Rumin Res 2006. [DOI: 10.1016/j.smallrumres.2005.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Putnam RW, Conrad SC, Gdovin MJ, Erlichman JS, Leiter JC. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir Physiol Neurobiol 2005; 149:165-79. [PMID: 15876557 PMCID: PMC1255969 DOI: 10.1016/j.resp.2005.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 11/16/2022]
Abstract
The ventilatory response to CO2 changes as a function of neonatal development. In rats, a ventilatory response to CO2 is present in the first 5 days of life, but this ventilatory response to CO2 wanes and reaches its lowest point around postnatal day 8. Subsequently, the ventilatory response to CO2 rises towards adult levels. Similar patterns in the ventilatory response to CO2 are seen in some other species, although some animals do not exhibit all of these phases. Different developmental patterns of the ventilatory response to CO2 may be related to the state of development of the animal at birth. The triphasic pattern of responsiveness (early decline, a nadir, and subsequent achievement of adult levels of responsiveness) may arise from the development of several processes, including central neural mechanisms, gas exchange, the neuromuscular junction, respiratory muscles and respiratory mechanics. We only discuss central neural mechanisms here, including altered CO2 sensitivity of neurons among the various sites of central CO2 chemosensitivity, changes in astrocytic function during development, the maturation of electrical and chemical synaptic mechanisms (both inhibitory and excitatory mechanisms) or changes in the integration of chemosensory information originating from peripheral and multiple central CO2 chemosensory sites. Among these central processes, the maturation of synaptic mechanisms seems most important and the relative maturation of synaptic processes may also determine how plastic the response to CO2 is at any particular age.
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | | | | | |
Collapse
|
12
|
Donnelly DF. Development of carotid body/petrosal ganglion response to hypoxia. Respir Physiol Neurobiol 2005; 149:191-9. [PMID: 16011911 DOI: 10.1016/j.resp.2005.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/08/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Carotid body chemoreceptors undergo significant maturational changes in the post-natal period over a period of days to weeks. This is likely initiated by the rise in Pa(O2) at the time of birth and reflects the changing value of "normoxia" from 25 Torr to near 100 Torr. Chemoreceptors in the newborn period have a lower absolute discharge frequency and the dynamic response to acute hypoxia is less compared to the adult. This maturation change appears due to changes occurring presynaptically to the afferent nerve fibers. Hypoxia-induced secretion from the glomus cell (catecholamine and other constituents of dense cored vesicles) is enhanced whilst constitutive (non-hypoxia-dependent) release is reduced with age. On the post-synaptic side, the number of afferent synaptic sites increases four- to five-fold in the post-natal period and there may be an increase in afferent nerve excitability. Both of these changes are subject to environmental perturbations in which post-natal exposure to chronic hypoxia or hyperoxia leads to significantly reduced organ sensitivity and function. Thus, developmental changes and environmental factors may significantly change the ability of an animal to detect and respond to hypoxic insults, perhaps leading to periods of heightened vulnerability to hypoxic stresses.
Collapse
Affiliation(s)
- David F Donnelly
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Abstract
Whereas peripheral chemoreceptor oxygen sensitivity increases markedly after birth, previous studies of ventilatory responses to CO(2) in term infants have shown no postnatal development. However, the hypercapnic challenges applied have usually been long-term, which meant that the effect of central chemoreceptors dominated. Oscillatory breathing, apneas, and sighs cause transient Pco(2) changes, probably primarily stimulating peripheral chemoreceptors. We wanted to assess whether the immediate ventilatory responses to step changes in inspired CO(2) and O(2) in term infants undergo postnatal developmental changes. Twenty-six healthy term infants were studied during natural sleep 2 d and 8 wk postnatally. Ventilatory responses to a randomized sequence of 15 s hypercapnia (3% CO(2)), hypoxia (15% O(2)), and hypercapnic hypoxia (3% CO(2) + 15% O(2)) were recorded breath-by-breath using a pneumotachometer. Response rate, stimulus-response time, and response magnitude were analyzed with ANOVA after coherent averaging. Response rate increased with age by 30% (hypercapnia), 318% (hypoxia), and 302% (hypercapnic hypoxia). Response rate during hypercapnic hypoxia exceeded rate during hypercapnia plus rate during hypoxia in wk 8, but not on d 2. Time to half-maximum response decreased by 3.4 s with age for the two hypercapnic stimuli but was unchanged for hypoxia. Response magnitude was unchanged for hypercapnia, but increased for the two hypoxic stimuli. In conclusion, an interaction between the effects of hypercapnia and hypoxia on ventilatory response rate emerged between postnatal d 2 and wk 8 in term infants. Concomitantly, stimulus-response time to hypercapnic stimuli declined markedly. The development of a prompt response to transient hypercapnia may be important for infant respiratory stability.
Collapse
Affiliation(s)
- Signe Søvik
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | |
Collapse
|
14
|
Poon CS, Siniaia MS. Plasticity of cardiorespiratory neural processing: classification and computational functions. RESPIRATION PHYSIOLOGY 2000; 122:83-109. [PMID: 10967337 DOI: 10.1016/s0034-5687(00)00152-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neural plasticity, or malleability of neuronal structure and function, is an important attribute of the mammalian forebrain and is generally thought to be a kernel of biological intelligence. In this review, we examine some reported manifestations of neural plasticity in the cardiorespiratory system and classify them into four functional categories, integral; differential; memory; and statistical-type plasticity. At the cellular and systems level the myriad forms of cardiorespiratory plasticity display emergent and self-organization properties, use- and disuse-dependent and pairing-specific properties, short-term and long-term potentiation or depression, as well as redundancy in series or parallel structures, convergent pathways or backup and fail-safe surrogate pathways. At the behavioral level, the cardiorespiratory system demonstrates the capability of associative and nonassociative learning, classical and operant conditioning as well as short-term and long-term memory. The remarkable similarity and consistency of the various types of plasticity exhibited at all levels of organization suggest that neural plasticity is integral to cardiorespiratory control and may subserve important physiological functions.
Collapse
Affiliation(s)
- C S Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Bldg. E25-501, Cambridge, MA 02139, USA.
| | | |
Collapse
|
15
|
Ruggiero DA, Gootman PM, Ingenito S, Wong C, Gootman N, Sica AL. The area postrema of newborn swine is activated by hypercapnia: relevance to sudden infant death syndrome? JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:167-75. [PMID: 10412841 DOI: 10.1016/s0165-1838(99)00017-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was performed to investigate a role of the neonatal area postrema (AP) in the chemoreceptor response to hypercapnia which is defective in sudden infant death syndrome (SIDS). AP responses to CO2 inhalation were monitored in 1 to 5 week old piglets by mapping neurons that were induced to express the c-fos gene product, Fos--a marker of functional activation. Interpretive confounds were minimized by controlling for hypoxia, the effects of surgical procedures and ambient environmental stressors on neuronal activity (c-fos expression). The AP demonstrated a powerful and reproducible response in neonatal swine breathing 10% CO2 for 1 h. Intensely immunolabeled nuclei were detected throughout the longitudinal extent of the circumventricular organ, and were especially heavily concentrated at rostral levels proximal to obex. Quantitative analysis verified statistically significant increases in numbers of cells that were induced to express Fos-like immunoreactivity (FLI) in the AP of CO2- stimulated piglets as compared to control groups. No detectable age-related differences were observed in AP response patterns. Conclusions. The AP responds to hypercapnic stress in the newborn piglet. A mature circumventricular organ response in the neonate may be crucial in defending against common environmental stressors, such as nicotine exposure--an emetic agent acting via the AP and a major risk factor in SIDS. Hence, a defect of the AP or its network may underlie a loss of state-dependent controls over cardiopulmonary reflex function in SIDS.
Collapse
Affiliation(s)
- D A Ruggiero
- Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York State Psychiatric Institute, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Watanabe T, Kumar P, Hanson MA. Elevation of metabolic rate by pyrogen administration does not affect the gain of respiratory peripheral chemoreflexes in unanesthetized kittens. Pediatr Res 1998; 44:357-62. [PMID: 9727713 DOI: 10.1203/00006450-199809000-00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported that reducing environmental temperature from 30 to 25 degrees C increases the gain of respiratory chemoreflexes. To investigate the role of increased metabolism in mediating the effect on the gain of the respiratory chemoreflex, we compared the respiratory responses, at ca. 26 degrees C to breath-by-breath alternations of inspired gas between air and 14% oxygen (hypoxia run) or air and 5% CO2 (CO2 run) with that to alteration of air between two inspired lines (control run) before and after the injection of a pyrogen (IL-1beta 400 ng/kg i.p.) in eight kittens at 27-35 d of postnatal age. The respiratory chemoreflex was quantified from the alternations in inspiratory and expiratory variables produced during test runs in terms of the direction and the amplitude of the alternation for each variable and compared with the results of control runs at the same temperature. Pyrogen administration produced a rise in rectal temperature and in oxygen consumption. However, there was no difference in the chemoreflex response to hypoxia or CO2 runs, in terms of either the pattern or of the amplitude of alternation, before and after the injection of the pyrogen. We conclude that the increase in the gain of chemoreflex observed during cooling in a previous study is not due to an increase in metabolism. Some change in input from thermoreceptors may bias the gain of chemoreflexes.
Collapse
Affiliation(s)
- T Watanabe
- Department of Obstetrics and Gynaecology, University College London Medical School, United Kingdom
| | | | | |
Collapse
|
17
|
Abstract
Effects of chronic hypoxia on chemoreceptors and chemoreflexes in the fetus and neonate are reviewed. The effects are discussed in relation to those in the adult, in which there is an apparent paradox between the increase in chemoreflex gain during acclimatisation to the hypoxia of altitude vs the 'blunting' reported during chronic hypoxia. The possible location and importance of "chemoreceptors" in the brainstem is discussed. In the neonate, chronic hypoxia blunts the ventilatory response to acute hypoxia, an effect largely due to blunting of chemoreceptor sensitivity. Whether this is mediated via a reduction or delay in the normal process of postnatal resetting of hypoxia sensitivity is not known. In addition, there is evidence that the effects on neonatal chemoreceptors are reversible on return to normoxia. Such differences from the adult suggest that special processes, affected by chronic hypoxia, operate in the neonate. In the fetus there is no direct information on the effect of chronic hypoxia on chemoreceptor responses, but it appears that chemoreflexes are augmented, as may occur in the adult during acclimatisation to hypoxia. Recent evidence suggests that arterial chemoreceptors play an important role in fetal cardiovascular and endocrine responses to prolonged hypoxaemia. This will be a productive avenue for future research.
Collapse
Affiliation(s)
- M A Hanson
- Department of Obstetrics and Gynaecology, University College London Medical School, U.K.
| |
Collapse
|