1
|
Feghhi T, Hernandez RX, Stawarski M, Thomas CI, Kamasawa N, Lau AWC, Macleod GT. Computational modeling predicts ephemeral acidic microdomains in the glutamatergic synaptic cleft. Biophys J 2021; 120:5575-5591. [PMID: 34774503 DOI: 10.1016/j.bpj.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
At chemical synapses, synaptic vesicles release their acidic contents into the cleft, leading to the expectation that the cleft should acidify. However, fluorescent pH probes targeted to the cleft of conventional glutamatergic synapses in both fruit flies and mice reveal cleft alkalinization rather than acidification. Here, using a reaction-diffusion scheme, we modeled pH dynamics at the Drosophila neuromuscular junction as glutamate, ATP, and protons (H+) were released into the cleft. The model incorporates bicarbonate and phosphate buffering systems as well as plasma membrane calcium-ATPase activity and predicts substantial cleft acidification but only for fractions of a millisecond after neurotransmitter release. Thereafter, the cleft rapidly alkalinizes and remains alkaline for over 100 ms because the plasma membrane calcium-ATPase removes H+ from the cleft in exchange for calcium ions from adjacent pre- and postsynaptic compartments, thus recapitulating the empirical data. The extent of synaptic vesicle loading and time course of exocytosis have little influence on the magnitude of acidification. Phosphate but not bicarbonate buffering is effective at suppressing the magnitude and time course of the acid spike, whereas both buffering systems are effective at suppressing cleft alkalinization. The small volume of the cleft levies a powerful influence on the magnitude of alkalinization and its time course. Structural features that open the cleft to adjacent spaces appear to be essential for alleviating the extent of pH transients accompanying neurotransmission.
Collapse
Affiliation(s)
- Touhid Feghhi
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Roberto X Hernandez
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, Florida; International Max Planck Research School for Brain and Behavior, Jupiter, Florida; Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, Florida
| | - A W C Lau
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, Florida
| | - Gregory T Macleod
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, Florida; Wilkes Honors College, Florida Atlantic University, Jupiter, Florida; Brain Institute, Florida Atlantic University, Jupiter, Florida; Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
2
|
Sierksma MC, Borst JGG. Using ephaptic coupling to estimate the synaptic cleft resistivity of the calyx of Held synapse. PLoS Comput Biol 2021; 17:e1009527. [PMID: 34699519 PMCID: PMC8570497 DOI: 10.1371/journal.pcbi.1009527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
3
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
5
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
6
|
Ca 2+-independent but voltage-dependent quantal catecholamine secretion (CiVDS) in the mammalian sympathetic nervous system. Proc Natl Acad Sci U S A 2019; 116:20201-20209. [PMID: 31530723 DOI: 10.1073/pnas.1902444116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Action potential-induced vesicular exocytosis is considered exclusively Ca2+ dependent in Katz's Ca2+ hypothesis on synaptic transmission. This long-standing concept gets an exception following the discovery of Ca2+-independent but voltage-dependent secretion (CiVDS) and its molecular mechanisms in dorsal root ganglion sensory neurons. However, whether CiVDS presents only in sensory cells remains elusive. Here, by combining multiple independent recordings, we report that [1] CiVDS robustly presents in the sympathetic nervous system, including sympathetic superior cervical ganglion neurons and slice adrenal chromaffin cells, [2] uses voltage sensors of Ca2+ channels (N-type and novel L-type), and [3] contributes to catecholamine release in both homeostatic and fight-or-flight like states; [4] CiVDS-mediated catecholamine release is faster than that of Ca2+-dependent secretion at the quantal level and [5] increases Ca2+ currents and contractility of cardiac myocytes. Together, CiVDS presents in the sympathetic nervous system with potential physiological functions, including cardiac muscle contractility.
Collapse
|
7
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Laboy-Juárez KJ, Langberg T, Ahn S, Feldman DE. Elementary motion sequence detectors in whisker somatosensory cortex. Nat Neurosci 2019; 22:1438-1449. [PMID: 31332375 PMCID: PMC6713603 DOI: 10.1038/s41593-019-0448-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
How somatosensory cortex (S1) encodes complex patterns of touch, as occur during tactile exploration, is poorly understood. In mouse whisker S1, temporally dense stimulation of local whisker pairs revealed that most neurons are not classical single-whisker feature detectors, but instead are strongly tuned to 2-whisker sequences involving the columnar whisker (CW) and one, specific surround whisker (SW), usually in SW-leading-CW order. Tuning was spatiotemporally precise and diverse across cells, generating a rate code for local motion vectors defined by SW-CW combinations. Spatially asymmetric, sublinear suppression for suboptimal combinations and near-linearity for preferred combinations sharpened combination tuning relative to linearly predicted tuning. This resembles computation of motion direction selectivity in vision. SW-tuned neurons, misplaced in the classical whisker map, had the strongest combination tuning. Thus, each S1 column contains a rate code for local motion sequences involving the CW, providing a basis for higher-order feature extraction.
Collapse
Affiliation(s)
- Keven J Laboy-Juárez
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.,Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Tomer Langberg
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Seoiyoung Ahn
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Daniel E Feldman
- Deparment of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Genç Ö, Dickman DK, Ma W, Tong A, Fetter RD, Davis GW. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. eLife 2017; 6. [PMID: 28485711 PMCID: PMC5449185 DOI: 10.7554/elife.22904] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission.
Collapse
Affiliation(s)
- Özgür Genç
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Dion K Dickman
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Wenpei Ma
- Department of Biological Sciences, University of Southern California, Los Angeles, United States
| | - Amy Tong
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
10
|
Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity. Neural Plast 2017; 2017:6526151. [PMID: 28255461 PMCID: PMC5307005 DOI: 10.1155/2017/6526151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.
Collapse
|
11
|
Lujan B, Kushmerick C, Banerjee TD, Dagda RK, Renden R. Glycolysis selectively shapes the presynaptic action potential waveform. J Neurophysiol 2016; 116:2523-2540. [PMID: 27605535 DOI: 10.1152/jn.00629.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca2+ influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 μM) had no significant effect on Ca2+ influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity.
Collapse
Affiliation(s)
- Brendan Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; and
| | - Tania Das Banerjee
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada;
| |
Collapse
|
12
|
Jones BL, Smith SM. Calcium-Sensing Receptor: A Key Target for Extracellular Calcium Signaling in Neurons. Front Physiol 2016; 7:116. [PMID: 27065884 PMCID: PMC4811949 DOI: 10.3389/fphys.2016.00116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.
Collapse
Affiliation(s)
- Brian L. Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
| | - Stephen M. Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science UniversityPortland, OR, USA
- Section of Pulmonary and Critical Care Medicine, VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
13
|
Barros-Barbosa AR, Lobo MG, Ferreirinha F, Correia-de-Sá P, Cordeiro JM. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes. Neuroscience 2015; 306:74-90. [PMID: 26299340 DOI: 10.1016/j.neuroscience.2015.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
Collapse
Affiliation(s)
- A R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - M G Lobo
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| | - J M Cordeiro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
14
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
15
|
Arai I, Jonas P. Nanodomain coupling explains Ca²⁺ independence of transmitter release time course at a fast central synapse. eLife 2014; 3. [PMID: 25487988 PMCID: PMC4270082 DOI: 10.7554/elife.04057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
A puzzling property of synaptic transmission, originally established at the neuromuscular junction, is that the time course of transmitter release is independent of the extracellular Ca2+ concentration ([Ca2+]o), whereas the rate of release is highly [Ca2+]o-dependent. Here, we examine the time course of release at inhibitory basket cell-Purkinje cell synapses and show that it is independent of [Ca2+]o. Modeling of Ca2+-dependent transmitter release suggests that the invariant time course of release critically depends on tight coupling between Ca2+ channels and release sensors. Experiments with exogenous Ca2+ chelators reveal that channel-sensor coupling at basket cell-Purkinje cell synapses is very tight, with a mean distance of 10–20 nm. Thus, tight channel-sensor coupling provides a mechanistic explanation for the apparent [Ca2+]o independence of the time course of release. DOI:http://dx.doi.org/10.7554/eLife.04057.001 The nervous system sends information around the body in the form of electrical signals that travel through cells called neurons. However, these electrical signals cannot cross the synapses between neurons. Instead, the information is carried across the synapse by molecules called neurotransmitters. Calcium ions control the release of neurotransmitters. There is a high concentration of calcium ions outside the neuron but they are not able to pass through the cell membrane under normal conditions. However, when an electrical impulse reaches the synapse, ion channels in the membrane open and allow calcium ions to enter the cell. Once inside, the ions activate the release of neurotransmitters by binding to proteins called release sensors. Several experiments on the release of neurotransmitters have studied the synapses between neurons and muscle fibers. These studies found that the higher the concentration of ions outside the neuron, the higher the rate at which the neurotransmitters were released. However, the timing of release—the length of time over which the neurotransmitters were released—did not depend on the concentration of calcium ions. Arai and Jonas have now studied neurotransmitter release at a synapse in a region of the brain called the cerebellum. These experiments also found that the timing of the release did not depend on the ion concentration, suggesting that this may be a general property of neurotransmitter release. To find out more, Arai and Jonas created a mathematical model of neurotransmitter release. This model suggests that for the timing of release to remain the same, the ion channel and the release sensor must be located close together in the presynaptic terminal. If they are not close together, the timing of release becomes blurred and more dependent on the external calcium concentration. Further experiments confirm the prediction of the model by showing that the calcium channels and the release sensors in these synapses are very close together. The next challenge will be to find out whether the conclusions are also valid for other synapses where the calcium channels and release sensors are further apart. DOI:http://dx.doi.org/10.7554/eLife.04057.002
Collapse
Affiliation(s)
- Itaru Arai
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
16
|
Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, Lloyd TE, Macleod GT, Bellen HJ, Venkatachalam K. A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 2014; 84:764-77. [PMID: 25451193 DOI: 10.1016/j.neuron.2014.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/30/2022]
Abstract
Presynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction. Thus, loss of Iav induces destabilization of presynaptic microtubules, resulting in diminished synaptic growth. Interestingly, expression of human TRPV1 in Iav-deficient motor neurons rescues these defects. We also show that the absence of Iav causes lower SV release probability and diminished synaptic transmission, whereas Iav overexpression elevates these synaptic parameters. Together, our findings indicate that Iav acts as a key regulator of synaptic development and function by influencing presynaptic resting [Ca(2+)].
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Kuchuan Chen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yong Qi Lin
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Zhongmin Lu
- Integrative Biology and Neuroscience program, Florida Atlantic University and Max Planck Florida Institute, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Wan Hee Yoon
- Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21231, USA
| | - Gregory T Macleod
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hugo J Bellen
- Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Howard Hughes Medical Institute; Departments of Molecular and Human Genetics and Neuroscience, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, 6431 Fannin Street, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite N1125.14, Mailstop NR-1125, Houston, TX 77030, USA; Graduate Programs in Cell and Regulatory Biology (CRB) and Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030.
| |
Collapse
|
17
|
Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells. Cell Calcium 2014; 56:202-7. [PMID: 25103334 DOI: 10.1016/j.ceca.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 07/12/2014] [Indexed: 11/24/2022]
Abstract
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca(2+) concentration ([Ca(2+)]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca(2+), in this calcium hypothesis, serves as a reservoir of Ca(2+) source. Recently we find that extracellular Ca(2+)per se inhibits the [Ca(2+)]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca(2+) or both. In this work we showed that, in physiological condition, extracellular Ca(2+) per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca(2+) in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca(2+) directly triggered vesicle exocytosis without eliciting intracellular Ca(2+). We propose that intracellular Ca(2+) and extracellular Ca(2+)per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca(2+), while the vesicle quantal size was mainly determined by extracellular Ca(2+) in chromaffin cells physiologically.
Collapse
|
18
|
The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations. J Neurosci 2013; 33:7811-24. [PMID: 23637173 DOI: 10.1523/jneurosci.5384-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm in the vicinity of stellate cell interneurons and Purkinje cell dendrites. The mechanisms used to maintain network excitability and Purkinje cell output in the face of this rapid change in calcium gradient have remained an enigma. Here we use single and dual patch recordings in an in vitro slice preparation of Sprague Dawley rats to investigate the effects of physiological decreases in [Ca](o) on the excitability of cerebellar stellate cells and their inhibitory regulation of Purkinje cells. We find that a Ca(v)3-K(v)4 ion channel complex expressed in stellate cells acts as a calcium sensor that responds to a decrease in [Ca]o by dynamically adjusting stellate cell output to maintain inhibitory charge transfer to Purkinje cells. The Ca(v)3-K(v)4 complex thus enables an adaptive regulation of inhibitory input to Purkinje cells during fluctuations in [Ca](o), providing a homeostatic control mechanism to regulate Purkinje cell excitability during repetitive afferent activity.
Collapse
|
19
|
Cordeiro JM, Boda B, Gonçalves PP, Dunant Y. Synaptotagmin 1 is required for vesicular Ca2+
/H+
-antiport activity. J Neurochem 2013; 126:37-46. [PMID: 23607712 DOI: 10.1111/jnc.12278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Joao Miguel Cordeiro
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
- Departamento de Biologia and CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Bernadett Boda
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
| | - Paula P. Gonçalves
- Departamento de Biologia and CESAM; Universidade de Aveiro; Aveiro Portugal
| | - Yves Dunant
- Neurosciences fondamentales; Faculté de Médecine; Université de Genève; Genève Switzerland
| |
Collapse
|
20
|
Abstract
Low-frequency depression (LFD) of transmitter release occurs at phasic synapses with stimulation at 0.2 Hz in both isolated crayfish (Procambarus clarkii) neuromuscular junction (NMJ) preparations and in intact animals. LFD is regulated by presynaptic activity of the Ca(2+)-dependent phosphatase calcineurin (Silverman-Gavrila and Charlton, 2009). Since the fast Ca(2+) chelator BAPTA-AM inhibits LFD but the slow chelator EGTA-AM does not, the Ca(2+) sensor for LFD may be close to a Ca(2+) source at active zones. Calcineurin can be activated by the Ca(2+)-activated protease calpain, and immunostaining showed that both proteins are present at nerve terminals. Three calpain inhibitors, calpain inhibitor I, MDL-28170, and PD150606, but not the control compound PD145305, inhibit LFD both in the intact animal as shown by electromyograms and by intracellular recordings at neuromuscular junctions. Analysis of mini-EPSPs indicated that these inhibitors had minimal postsynaptic effects. Proteolytic activity in CNS extract, detected by a fluorescent calpain substrate, was modulated by Ca(2+) and calpain inhibitors. Western blot analysis of CNS extract showed that proteolysis of calcineurin to a fragment consistent with the constitutively active form required Ca(2+) and was blocked by calpain inhibitors. Inhibition of LFD by calpain inhibition blocks the reduction in phosphoactin and the depolymerization of tubulin that normally occurs in LFD, probably by blocking the dephosphorylation of cytoskeletal proteins by calcineurin. In contrast, high-frequency depression does not involve protein phosphorylation- or calpain-dependent mechanisms. LFD may involve a specific pathway in which local Ca(2+) signaling activates presynaptic calpain and calcineurin at active zones and causes changes of tubulin cytoskeleton.
Collapse
|
21
|
Dreses-Werringloer U, Vingtdeux V, Zhao H, Chandakkar P, Davies P, Marambaud P. CALHM1 controls the Ca²⁺-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J Cell Sci 2013; 126:1199-206. [PMID: 23345406 DOI: 10.1242/jcs.117135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a Ca(2+) channel controlling neuronal excitability and potentially involved in the pathogenesis of Alzheimer's disease (AD). Although strong evidence indicates that CALHM1 is required for neuronal electrical activity, its role in intracellular Ca(2+) signaling remains unknown. In the present study, we show that in hippocampal HT-22 cells, CALHM1 expression led to a robust and relatively selective activation of the Ca(2+)-sensing kinases ERK1/2. CALHM1 also triggered activation of MEK1/2, the upstream ERK1/2-activating kinases, and of RSK1/2/3 and MSK1, two downstream effectors of ERK1/2 signaling. CALHM1-mediated activation of ERK1/2 signaling was controlled by the small GTPase Ras. Pharmacological inhibition of CALHM1 permeability using Ruthenium Red, Zn(2+), and Gd(3+), or expression of the CALHM1 N140A and W114A mutants, which are deficient in mediating Ca(2+) influx, prevented the effect of CALHM1 on the MEK, ERK, RSK and MSK signaling cascade, demonstrating that CALHM1 controlled this pathway via its channel properties. Importantly, expression of CALHM1 bearing the natural P86L polymorphism, which leads to a partial loss of CALHM1 function and is associated with an earlier age at onset in AD patients, showed reduced activation of ERK1/2, RSK1/2/3, and MSK1. In line with these results obtained in transfected cells, primary cerebral neurons isolated from Calhm1 knockout mice showed significant impairments in the activation of MEK, ERK, RSK and MSK signaling. The present study identifies a previously uncharacterized mechanism of control of Ca(2+)-dependent ERK1/2 signaling in neurons, and further establishes CALHM1 as a critical ion channel for neuronal signaling and function.
Collapse
Affiliation(s)
- Ute Dreses-Werringloer
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yeast Ist2 recruits the endoplasmic reticulum to the plasma membrane and creates a ribosome-free membrane microcompartment. PLoS One 2012; 7:e39703. [PMID: 22808051 PMCID: PMC3392263 DOI: 10.1371/journal.pone.0039703] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H(+) pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane.
Collapse
|
23
|
Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci U S A 2012; 109:E1963-71. [PMID: 22711817 DOI: 10.1073/pnas.1204023109] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular Ca(2+) (Ca(2+)(o)) plays important roles in physiology. Changes of Ca(2+)(o) concentration ([Ca(2+)](o)) have been observed to modulate neuronal excitability in various physiological and pathophysiological settings, but the mechanisms by which neurons detect [Ca(2+)](o) are not fully understood. Calcium homeostasis modulator 1 (CALHM1) expression was shown to induce cation currents in cells and elevate cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in response to removal of Ca(2+)(o) and its subsequent addback. However, it is unknown whether CALHM1 is a pore-forming ion channel or modulates endogenous ion channels. Here we identify CALHM1 as the pore-forming subunit of a plasma membrane Ca(2+)-permeable ion channel with distinct ion permeability properties and unique coupled allosteric gating regulation by voltage and [Ca(2+)](o). Furthermore, we show that CALHM1 is expressed in mouse cortical neurons that respond to reducing [Ca(2+)](o) with enhanced conductance and action potential firing and strongly elevated [Ca(2+)](i) upon Ca(2+)(o) removal and its addback. In contrast, these responses are strongly muted in neurons from mice with CALHM1 genetically deleted. These results demonstrate that CALHM1 is an evolutionarily conserved ion channel family that detects membrane voltage and extracellular Ca(2+) levels and plays a role in cortical neuronal excitability and Ca(2+) homeostasis, particularly in response to lowering [Ca(2+)](o) and its restoration to normal levels.
Collapse
|
24
|
Ariel P, Ryan TA. New insights into molecular players involved in neurotransmitter release. Physiology (Bethesda) 2012; 27:15-24. [PMID: 22311967 DOI: 10.1152/physiol.00035.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The strength of a synapse can profoundly influence network function. How this strength is set at the molecular level is a key question in neuroscience. Here, we review a simple model of neurotransmission that serves as a convenient framework to discuss recent studies on RIM and synaptotagmin.
Collapse
Affiliation(s)
- Pablo Ariel
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | | |
Collapse
|
25
|
Similar intracellular Ca2+ requirements for inactivation and facilitation of voltage-gated Ca2+ channels in a glutamatergic mammalian nerve terminal. J Neurosci 2012; 32:1261-72. [PMID: 22279211 DOI: 10.1523/jneurosci.3838-11.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) of the P/Q-type, which are expressed at a majority of mammalian nerve terminals, show two types of Ca2+-dependent feedback regulation-inactivation (CDI) and facilitation (CDF). Because of the nonlinear relationship between Ca2+ influx and transmitter release, CDI and CDF are powerful regulators of synaptic strength. To what extent VGCCs inactivate or facilitate during spike trains depends on the dynamics of free Ca2+ ([Ca2+]i) and the Ca2+ sensitivity of CDI and CDF, which has not been determined in nerve terminals. In this report, we took advantage of the large size of a rat auditory glutamatergic synapse--the calyx of Held--and combined voltage-clamp recordings of presynaptic Ca2+ currents (ICa(V)) with UV-light flash-induced Ca2+ uncaging and presynaptic Ca2+ imaging to study the Ca2+ requirements for CDI and CDF. We find that nearly half of the presynaptic VGCCs inactivate during 100 ms voltage steps and require several seconds to recover. This inactivation is caused neither by depletion of Ca2+ ions from the synaptic cleft nor by metabotropic feedback inhibition, because it is resistant to blockade of metabotropic and ionotropic glutamate receptors. Facilitation of ICa(V) induced by repetitive depolarizations or preconditioning voltage steps decays within tens of milliseconds. Since Ca2+ buffers only weakly affect CDI and CDF, we conclude that the Ca2+ sensors are closely associated with the channel. CDI and CDF can be induced by intracellular photo release of Ca2+ resulting in [Ca2+]i elevations in the low micromolar range, implying a surprisingly high affinity of the Ca2+ sensors.
Collapse
|
26
|
Ren D. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron 2012; 72:899-911. [PMID: 22196327 DOI: 10.1016/j.neuron.2011.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
Abstract
Extracellular K⁺, Na⁺, and Ca²⁺ ions all influence the resting membrane potential of the neuron. However, the mechanisms by which extracellular Na⁺ and Ca²⁺ regulate basal neuronal excitability are not well understood. Recent findings suggest that NALCN, in association with UNC79 and UNC80, contributes a basal Na⁺ leak conductance in neurons. Mutations in Nalcn, Unc79, or Unc80 lead to severe phenotypes that include neonatal lethality and disruption in rhythmic behaviors. This review discusses the properties of the NALCN complex, its regulation, and its contribution to neuronal function and animal behavior.
Collapse
Affiliation(s)
- Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Martin GV, Yun Y, Conforti L. Modulation of T cell activation by localized K⁺ accumulation at the immunological synapse--a mathematical model. J Theor Biol 2012; 300:173-82. [PMID: 22285786 DOI: 10.1016/j.jtbi.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 01/06/2023]
Abstract
The response of T cells to antigens (T cell activation) is marked by an increase in intracellular Ca²⁺ levels. Voltage-gated and Ca²⁺-dependent K⁺ channels control the membrane potential of human T cells and regulate Ca²⁺ influx. This regulation is dependent on proper accumulation of K⁺ channels at the immunological synapse (IS) a signaling zone that forms between a T cell and antigen presenting cell. It is believed that the IS provides a site for regulation of the activation response and that K⁺ channel inhibition occurs at the IS, but the underlying mechanisms are unknown. A mathematical model was developed to test whether K⁺ efflux through K⁺ channels leads to an accumulation of K⁺ in the IS cleft, ultimately reducing K⁺ channel function and intracellular Ca²⁺ concentration ([Ca²⁺](i)). Simulations were conducted in models of resting and activated T cell subsets, which express different levels of K⁺ channels, by varying the K⁺ diffusion constant and the spatial localization of K⁺ channels at the IS. K⁺ accumulation in the IS cleft was calculated to increase K⁺ concentration ([K⁺]) from its normal value of 5.0 mM to 5.2-10.0 mM. Including K⁺ accumulation in the model of the IS reduced calculated K⁺ current by 1-12% and consequently, reduced calculated [Ca²⁺](i) by 1-28%. Significant reductions in K⁺ current and [Ca²⁺](i) only occurred in activated T cell simulations when most K⁺ channels were centrally clustered at the IS. The results presented show that the localization of K⁺ channels at the IS can produce a rise in [K⁺] in the IS cleft and lead to a substantial decrease in K⁺ currents and [Ca²⁺](i) in activated T cells thus providing a feedback inhibitory mechanism during T cell activation.
Collapse
Affiliation(s)
- Geoffrey V Martin
- Department of Internal Medicine, 231 A. Sabin Way, Division of Nephrology, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | |
Collapse
|
28
|
|
29
|
Xiong W, Liu T, Wang Y, Chen X, Sun L, Guo N, Zheng H, Zheng L, Ruat M, Han W, Zhang CX, Zhou Z. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis. PLoS One 2011; 6:e24573. [PMID: 22028769 PMCID: PMC3196490 DOI: 10.1371/journal.pone.0024573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
Aim Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis. Results Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. Conclusion/Significance As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yeshi Wang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaowei Chen
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lei Sun
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ning Guo
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hui Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lianghong Zheng
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Martial Ruat
- CNRS, UPR9040, Institut de Neurobiologie Alfred Fessard-IFR 2118, Gif sur Yvette, France
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Claire Xi Zhang
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| | - Zhuan Zhou
- State Key Laboratory of Biomembrane Engineering and Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (ZZ); (CXZ)
| |
Collapse
|
30
|
Klug A. Short-term synaptic plasticity in the auditory brain stem by using in-vivo-like stimulation parameters. Hear Res 2011; 279:51-9. [DOI: 10.1016/j.heares.2011.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
31
|
Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron 2011; 70:991-1004. [PMID: 21658590 DOI: 10.1016/j.neuron.2011.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
The release of neurotransmitter-filled vesicles after action potentials occurs with discrete time courses: submillisecond phasic release that can be desynchronized by activity followed by "delayed release" that persists for tens of milliseconds. Delayed release has a well-established role in synaptic integration, but it is not clear whether desynchronization of phasic release has physiological consequences. At the climbing fiber to Purkinje cell synapse, the synchronous fusion of multiple vesicles is critical for generating complex spikes. Here we show that stimulation at physiological frequencies drives the temporal dispersion of vesicles undergoing multivesicular release, resulting in a slowing of the EPSC on the millisecond timescale. Remarkably, these changes in EPSC kinetics robustly alter the Purkinje cell complex spike in a manner that promotes axonal propagation of individual spikelets. Thus, desynchronization of multivesicular release enhances the precise and efficient information transfer by complex spikes.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
32
|
Grantyn R, Henneberger C, Jüttner R, Meier JC, Kirischuk S. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins. Front Cell Neurosci 2011; 5:13. [PMID: 21772813 PMCID: PMC3131524 DOI: 10.3389/fncel.2011.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 12/03/2022] Open
Abstract
Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: (1) synaptic transmission starts with GABA, (2) nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release), (3) immature synaptic terminals release vesicles with higher probability than mature synapses, (4) immature GABAergic synapses are prone to paired pulse and tetanic depression, (5) synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, (6) in immature neurons GABA acts as a depolarizing transmitter, (7) synapse maturation implies inhibitory postsynaptic current shortening due to an increase in alpha1 subunit expression, (8) extrasynaptic (tonic) conductances can inhibit the development of synaptic (phasic) GABA actions.
Collapse
Affiliation(s)
- Rosemarie Grantyn
- Institute of Neurophysiology, University Medicine Charité Berlin, Germany
| | | | | | | | | |
Collapse
|
33
|
Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron 2010; 68:488-99. [PMID: 21040849 DOI: 10.1016/j.neuron.2010.09.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 01/17/2023]
Abstract
In contrast to its extensively studied intracellular roles, the molecular mechanisms by which extracellular Ca(2+) regulates the basal excitability of neurons are unclear. One mechanism is believed to be through Ca(2+)'s interaction with the negative charges on the cell membrane (the charge screening effect). Here we show that, in cultured hippocampal neurons, lowering [Ca(2+)](e) activates a NALCN channel-dependent Na(+)-leak current (I(L-Na)). The coupling between [Ca(2+)](e) and NALCN requires a Ca(2+)-sensing G protein-coupled receptor, an activation of G-proteins, an UNC80 protein that bridges NALCN to a large novel protein UNC79 in the same complex, and the last amino acid of NALCN's intracellular tail. In neurons from nalcn and unc79 knockout mice, I(L-Na) is insensitive to changes in [Ca(2+)](e), and reducing [Ca(2+)](e) fails to elicit the excitatory effects seen in the wild-type. Therefore, extracellular Ca(2+) influences neuronal excitability through the UNC79-UNC80-NALCN complex in a G protein-dependent fashion.
Collapse
Affiliation(s)
- Boxun Lu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chanda S, Oh S, Xu-Friedman MA. Calcium imaging of auditory nerve fiber terminals in the cochlear nucleus. J Neurosci Methods 2010; 195:24-9. [PMID: 21108967 DOI: 10.1016/j.jneumeth.2010.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/16/2022]
Abstract
One important model for understanding neuronal computation is how auditory information is transformed at the synapses made by auditory nerve (AN) fibers on the bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). This transformation is influenced by synaptic plasticity, the mechanisms of which have been studied primarily using postsynaptic electrophysiology. However, it is also important to make direct measurements of the presynaptic terminal to consider presynaptic mechanisms. Here we introduce a technique for doing that using calcium imaging of presynaptic AN terminals, by injecting dextran-conjugated fluorophores into the cochlea. To measure the calcium transients, we used calcium-sensitive fluorophores, and measured the changes in fluorescence upon stimulation. As an example of the application of this technique, we showed that activation of GABA(B) receptors reduces presynaptic calcium influx. This technique could be further extended to study the effects of activity- and other neuromodulator-dependent plasticities on AN terminals.
Collapse
Affiliation(s)
- Soham Chanda
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
35
|
Parker D. Neuronal network analyses: premises, promises and uncertainties. Philos Trans R Soc Lond B Biol Sci 2010; 365:2315-28. [PMID: 20603354 DOI: 10.1098/rstb.2010.0043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuronal networks assemble the cellular components needed for sensory, motor and cognitive functions. Any rational intervention in the nervous system will thus require an understanding of network function. Obtaining this understanding is widely considered to be one of the major tasks facing neuroscience today. Network analyses have been performed for some years in relatively simple systems. In addition to the direct insights these systems have provided, they also illustrate some of the difficulties of understanding network function. Nevertheless, in more complex systems (including human), claims are made that the cellular bases of behaviour are, or will shortly be, understood. While the discussion is necessarily limited, this issue will examine these claims and highlight some traditional and novel aspects of network analyses and their difficulties. This introduction discusses the criteria that need to be satisfied for network understanding, and how they relate to traditional and novel approaches being applied to addressing network function.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Borst JGG. The low synaptic release probability in vivo. Trends Neurosci 2010; 33:259-66. [DOI: 10.1016/j.tins.2010.03.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/09/2010] [Accepted: 03/16/2010] [Indexed: 01/20/2023]
|
37
|
Marrero HG, Lemos JR. Ionic conditions modulate stimulus-induced capacitance changes in isolated neurohypophysial terminals of the rat. J Physiol 2009; 588:287-300. [PMID: 19933755 DOI: 10.1113/jphysiol.2009.180778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptidergic nerve terminals of the neurohypophysis (NH) secrete both oxytocin and vasopressin upon stimulation with peptide-specific bursts of action potentials from magnocellular neurons. These bursts vary in both frequency and action potential duration and also induce in situ ionic changes both inside and outside the terminals in the NH. These temporary effects include the increase of external potassium and decrease of external calcium, as well as the increase in internal sodium and chloride concentrations. In order to determine any mechanism of action that these ionic changes might have on secretion, stimulus-induced capacitance recordings were performed on isolated terminals of the NH using action potential burst patterns of varying frequency and action potential width. The results indicate that in NH terminals: (1) increased internal chloride concentration improves the efficiency of action potential-induced capacitance changes, (2) increasing external potassium increases stimulus-induced capacitance changes, (3) decreasing external calcium decreases the capacitance induced by low frequency broadened action potentials, while no capacitance change is observed with high frequency un-broadened action potentials, and (4) increasing internal sodium increases the capacitance change induced by low frequency bursts of broadened action potentials, more than for high frequency bursts of narrow action potentials. These results are consistent with previous models of stimulus-induced secretion, where optimal secretory efficacy is determined by particular characteristics of action potentials within a burst. Our results suggest that positive effects of increased internal sodium and external potassium during a burst may serve as a compensatory mechanism for secretion, counterbalancing the negative effects of reduced external calcium. In this view, high frequency un-broadened action potentials (initial burst phase) would condition the terminals by increasing internal sodium for optimal secretion by the physiological later phase of broadened action potentials. Thus, ionic changes occurring during a burst may help to make such stimulation more efficient at inducing secretion. Furthermore, these effects are thought to occur within the initial few seconds of incoming burst activity at both oxytocin and vasopressin types of NH nerve terminals.
Collapse
Affiliation(s)
- Héctor G Marrero
- Physiology Department & Program in Neuroscience, University of Massachusetts, Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
38
|
Xue R, Zhao Y, Su L, Ye F, Chen P. PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. Pflugers Arch 2009; 458:1137-49. [PMID: 19593582 DOI: 10.1007/s00424-009-0697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 01/18/2023]
Abstract
It has been well documented that protein kinase Cs (PKCs) play multifaceted roles in regulating exocytosis of neurotransmitters and hormones. But the isoform-specific PKC effects are still poorly elucidated mainly because of the large variety of PKC isoforms and the dubious specificity of the commonly used pharmacological agents. In the present study, based on overexpression of wild-type or dominant negative PKC epsilon, we demonstrate in neuroendocrine PC12 cells that PKC epsilon, but not PKC alpha, facilitates recovery of exocytosis after an exhausting stimulation. Specifically, PKC epsilon mediates fast recovery of the extent of exocytosis in a phosphatidylinositol biphosphate-dependent manner, likely through enhancing the rate of vesicle delivery and reorganization of cortical actin network. In addition, PKC epsilon promotes fast recovery of vesicle release kinetics that is slowed after a strong stimulation. These experimental results may suggest a PKC-dependent mechanism relevant to the short-term plasticity of exocytosis in both neurons and neuroendocrine cells.
Collapse
Affiliation(s)
- Renhao Xue
- Division of Bioengineering, Nanyang Technological University, Singapore, 637457, Singapore
| | | | | | | | | |
Collapse
|
39
|
Hrabetová S, Masri D, Tao L, Xiao F, Nicholson C. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J Physiol 2009; 587:4029-49. [PMID: 19546165 DOI: 10.1113/jphysiol.2009.170092] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties.
Collapse
Affiliation(s)
- Sabina Hrabetová
- Department of Physiology and Neuroscience, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca](o)) and thus may impair neurotransmission. Increases in [Ca](o) activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits nonselective cation channels at the majority of cortical nerve terminals. This pathway may modulate synaptic transmission by attenuating the impact of decreases in [Ca](o) on synaptic transmission. Using patch-clamp recording from isolated cortical terminals, cortical neuronal pairs and isolated neuronal soma we examined the modulation of synaptic transmission by CaSR. EPSCs were increased on average by 88% in reduced affinity CaSR-mutant (CaSR(-/-)) neurons compared with wild-type. Variance-mean analysis indicates that the enhanced synaptic transmission was due largely to an increase in average probability of release (0.27 vs 0.46 for wild-type vs CaSR(-/-) pairs) with little change in quantal size (23 +/- 4 pA vs 22 +/- 4 pA) or number of release sites (11 vs 13). In addition, the CaSR agonist spermidine reduced synaptic transmission and increased paired-pulse depression at physiological [Ca](o). Spermidine did not affect quantal size, consistent with a presynaptic mechanism of action, nor did it affect voltage-activated Ca channel currents. In summary, reduced CaSR function enhanced synaptic transmission and CaSR stimulation had the opposite effect. Thus CaSR provides a mechanism that may compensate for the fall in release probability that accompanies decreases in [Ca](o).
Collapse
|
41
|
Dunant Y, Cordeiro JM, Gonçalves PP. Exocytosis, Mediatophore, and Vesicular Ca2+/H+Antiport in Rapid Neurotransmission. Ann N Y Acad Sci 2009; 1152:100-12. [PMID: 19161381 DOI: 10.1111/j.1749-6632.2008.04000.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yves Dunant
- Neurosciences Fondamentales, Université de Genève, Centre Médical Universitaire, Geneva, Switzerland.
| | | | | |
Collapse
|
42
|
Caldwell JH, Herin GA, Nagel G, Bamberg E, Scheschonka A, Betz H. Increases in intracellular calcium triggered by channelrhodopsin-2 potentiate the response of metabotropic glutamate receptor mGluR7. J Biol Chem 2008; 283:24300-7. [PMID: 18599484 DOI: 10.1074/jbc.m802593200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor 7a (mGluR7a), a heptahelical Galphai/o-coupled protein, has been shown to be important for presynaptic feedback inhibition at central synapses and certain forms of long term potentiation and long term depression. The intracellular C terminus of mGluR7a interacts with calmodulin in a Ca2+-dependent manner, and calmodulin antagonists have been found to abolish presynaptic inhibition of glutamate release in neurons and mGluR7a-induced activation of G-protein-activated inwardly rectifying K+ channel (GIRK) channels in HEK293 cells. Here, we characterized the Ca2+ dependence of mGluR7a signaling in Xenopus oocytes by using channelrhodopsin-2 (ChR2), a Ca2+-permeable, light-activated ion channel for triggering Ca2+ influx, and a GIRK3.1/3.2 concatemer to monitor mGluR7a responses. Application of the agonist (S)-2-amino-4-phosphonobutanoic acid (l-AP4) (1-100 microm) caused a dose-dependent inward current in high K+ solutions due to activation of GIRK channels by G-protein betagamma subunits released from mGluR7a. Elevation of intracellular free Ca2+ by light stimulation of ChR2 markedly increased the amplitude of L-AP4 responses, and this effect was attenuated by the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). l-AP4 responses were potentiated by submembranous [Ca2+] levels within physiological ranges and with a threshold close to resting [Ca2+]i values, as determined by recording the endogenous Xenopus Ca2+-activated chloride conductance. Together, these results show that L-AP4-dependent mGluR7a signaling is potentiated by physiological levels of [Ca2+]i, consistent with a model in which presynaptic mGluR7a acts as a coincidence detector of Ca2+ influx and glutamate release.
Collapse
Affiliation(s)
- John H Caldwell
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, D-60528 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Yang H, Xu-Friedman MA. Relative roles of different mechanisms of depression at the mouse endbulb of Held. J Neurophysiol 2008; 99:2510-21. [PMID: 18367696 DOI: 10.1152/jn.01293.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several mechanisms can underlie short-term synaptic depression, including vesicle depletion, receptor desensitization, and changes in presynaptic release probability. To determine which mechanisms affect depression under physiological conditions, we studied the synapse formed by auditory nerve fibers onto bushy cells in the anteroventral cochlear nucleus (the "endbulb of Held") using voltage-clamp recordings of brain slices from P15-P21 mice near physiological temperatures. Depression of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) excitatory postsynaptic currents (EPSCs) showed two phases of recovery. The fast component of depression for the AMPA EPSC was eliminated by cyclothiazide and aniracetam, suggesting it results from desensitization. The fast component of depression for the NMDA EPSC was reduced by the low-affinity antagonist l-AP5, suggesting it results from saturation. The remaining depression in AMPA and NMDA components is identical and therefore presynaptic in origin. It is likely to result from presynaptic vesicle depletion. Recovery from depression after trains of activity was slowed by the application of EGTA-AM, suggesting that the endbulb has a residual-calcium-dependent form of recovery. We developed a model that incorporates depletion, desensitization, and calcium-dependent recovery. This model replicated experimental findings over a range of experimental conditions. The model further indicated that desensitization plays only a minor role during prolonged activity, in large part because presynaptic release is so depleted. Thus depletion appears to be the dominant mechanism of depression at the endbulb during normal activity. Furthermore, calcium-dependent recovery at the endbulb is critical to prevent complete rundown during high activity and to preserve the reliability of information transmission.
Collapse
Affiliation(s)
- Hua Yang
- University of Buffalo, Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
44
|
Breitwieser GE. Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol 2008; 40:1467-80. [PMID: 18328773 PMCID: PMC2441573 DOI: 10.1016/j.biocel.2008.01.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/16/2008] [Accepted: 01/18/2008] [Indexed: 12/23/2022]
Abstract
The past several decades of research into calcium signaling have focused on intracellular calcium (Ca(i)(2+)), revealing both exquisite spatial and dynamic control of this potent second messenger. Our understanding of Ca(i)(2+) signaling has benefited from the evolution of cell culture methods, development of high affinity fluorescent calcium indicators (both membrane-permeant small molecules and genetically encoded proteins), and high-resolution fluorescence microscopy. As our understanding of single cell calcium dynamics has increased, translational efforts have attempted to push calcium signaling studies back into tissues, organs and whole animals. Emerging results from these more complicated, diffusion-limited systems have begun to define a role for extracellular calcium (Ca(o)(2+)) as an agonist, spurred by the cloning and characterization of a G protein-coupled receptor activated by Ca(o)(2+) (the calcium sensing receptor, CaR). Here, we review the current state-of-the art for measurement of Ca(o)(2+) fluctuations, and the evidence that fluctuations in Ca(o)(2+) can act as primary signals regulating cell function. Current results suggest that Ca(o)(2+) in bone and epidermis may act as a chemotactic homing signal, targeting cells to the appropriate tissue locations prior to initiation of the differentiation program. Ca(i)(2+) signaling-mediated Ca(o)(2+) fluctuations in interstitial spaces may integrate cell signaling responses in multicellular networks through activation of CaR. Appreciation of the importance of Ca(o)(2+) fluctuations in coordinating cell function will likely spur identification of additional, niche-specific Ca(2+) sensors, and provide unique insights into the regulation of multicellular signaling networks.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822, United States.
| |
Collapse
|
45
|
Abstract
Voltage-gated Ca(2+) channels activated by action potentials evoke Ca(2+) entry into presynaptic terminals thus briefly distorting the resting Ca(2+) concentration. When this happens, a number of processes are initiated to re-establish the Ca(2+) equilibrium. During the post-spike period, the increased Ca(2+) concentration could enhance the presynaptic Ca(2+) signalling. Some of the mechanisms contributing to presynaptic Ca(2+) dynamics involve endogenous Ca(2+) buffers, Ca(2+) stores, mitochondria, the sodium-calcium exchanger, extraterminal Ca(2+) depletion and presynaptic receptors. Additionally, subthreshold presynaptic depolarization has been proposed to have an effect on release of neurotransmitters through a mechanism involving changes in resting Ca(2+). Direct evidence for the role of any of these participants in shaping the presynaptic Ca(2+) dynamics comes from direct recordings of giant presynaptic terminals and from fluorescent Ca(2+) imaging of axonal boutons. Here, some of this evidence is presented and discussed.
Collapse
|
46
|
Abstract
Increasing levels of anesthesia are thought to produce a progressive loss of brain responsiveness to external stimuli. Here, we present the first report of a state window within anesthesia-induced coma, usually associated with an EEG pattern of burst suppression, during which brain excitability is dramatically increased so that even subliminal stimuli elicit bursts of whole-brain activity. We investigated this phenomenon in vivo using intracellular recordings of both neurons and glia, as well as extracellular calcium and EEG recordings. The results indicate that the bursting activity elicited with mechanical microstimulations, but also with auditory and visual stimuli, is dependent on complex mechanisms, including modulation of excitatory (NMDA) components, gap junction transmission, as well as the extracellular calcium concentration. The occurrence of bursting events is associated with a postburst refractory period that underlies the genesis of the alternating burst-suppression pattern. These findings raise the issue of what burst spontaneity during anesthesia-induced coma means and opens new venues for the handling of comatose patients.
Collapse
Affiliation(s)
- Daniel Kroeger
- Laboratoire de Neurophysiologie, Centre de Recherche Université Laval Robert-Giffard, Quebec, Quebec, Canada G1J 2G3
| | - Florin Amzica
- Laboratoire de Neurophysiologie, Centre de Recherche Université Laval Robert-Giffard, Quebec, Quebec, Canada G1J 2G3
| |
Collapse
|
47
|
50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurones. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s10669-007-9143-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Nichols RA, Dengler AF, Nakagawa EM, Bashkin M, Paul BT, Wu J, Khan GM. A constitutive, transient receptor potential-like Ca2+ influx pathway in presynaptic nerve endings independent of voltage-gated Ca2+ channels and Na+/Ca2+ exchange. J Biol Chem 2007; 282:36102-11. [PMID: 17928293 DOI: 10.1074/jbc.m706002200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion. Here, we demonstrate that a constitutive influx pathway for Ca(2+) exists in presynaptic terminals to maintain internal Ca(2+) independent of voltage-gated Ca(2+) channels and Na(+)/Ca(2+) exchange, as measured in intact isolated nerve endings from mouse cortex and in intact varicosities in a neuronal cell line using fluorescence spectroscopy and confocal imaging. The Mg(2+) and lanthanide sensitivity of the influx pathway, in addition to its pharmacological and short hairpin RNA sensitivity, and the results of immunostaining for transient receptor potential (TRP) channels indicate the involvement of TRPC channels, possibly TRPC5 and TRPC1. This constitutive Ca(2+) influx pathway likely serves to maintain synaptic function under widely varying levels of synaptic activity.
Collapse
Affiliation(s)
- Robert A Nichols
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Kainate-selective ionotropic glutamate receptors (GluRs) require external Na+ and Cl- as well as the neurotransmitter L-glutamate for activation. Although, external anions and cations apparently coactivate kainate receptors (KARs) in an identical manner, it has yet to be established how ions of opposite charge achieve this. An additional complication is that KARs are subject to other forms of cation modulation via extracellular acidification (i.e., protons) and divalent ions. Consequently, other cation species may compete with Na+ to regulate the time KARs remain in the open state. Here we designed experiments to unravel how external ions regulate GluR6 KARs. We show that GluR6 kinetics are unaffected by alterations in physiological pH but that divalent and alkali metal ions compete to determine the time course of KAR channel activity. Additionally, Na+ and Cl- ions coactivate GluR6 receptors by establishing a dipole, accounting for their common effect on KARs. Using charged amino acids as tethered ions, we further demonstrate that the docking order is fixed with cations binding first, followed by anions. Together, our findings identify the dipole as a novel gating feature that couples neurotransmitter binding to KAR activation.
Collapse
Affiliation(s)
- Adrian Y. C. Wong
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada H3G 1Y6
| | - David M. MacLean
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada H3G 1Y6
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada H3G 1Y6
| |
Collapse
|
50
|
Chaudhuri D, Issa JB, Yue DT. Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. ACTA ACUST UNITED AC 2007; 129:385-401. [PMID: 17438119 PMCID: PMC2154375 DOI: 10.1085/jgp.200709749] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.
Collapse
Affiliation(s)
- Dipayan Chaudhuri
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|