1
|
Ramos-Languren LE, Escobar ML. Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci 2013; 37:1248-59. [DOI: 10.1111/ejn.12141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 12/18/2012] [Accepted: 12/23/2012] [Indexed: 12/29/2022]
Affiliation(s)
- L. E. Ramos-Languren
- División de Investigación y Estudios de Posgrado; Facultad de Psicología; Universidad Nacional Autónoma de México; 04510; México City; D.F.; México
| | - M. L. Escobar
- División de Investigación y Estudios de Posgrado; Facultad de Psicología; Universidad Nacional Autónoma de México; 04510; México City; D.F.; México
| |
Collapse
|
2
|
TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 2012; 32:9383-95. [PMID: 22764246 DOI: 10.1523/jneurosci.6363-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurotrophin-3 (NT-3) plays numerous important roles in the CNS and the elevation of intracellular Ca(2+) ([Ca(2+)](i)) is critical for these functions of NT-3. However, the mechanism by which NT-3 induces [Ca(2+)](i) elevation remains largely unknown. Here, we found that transient receptor potential canonical (TRPC) 5 protein and TrkC, the NT-3 receptor, exhibited a similar temporal expression in rat hippocampus and cellular colocalization in hippocampal neurons. Stimulation of the neurons by NT-3 induced a nonselective cation conductance and PLCγ-dependent [Ca(2+)](i) elevation, which were both blocked when TRPC5, but not TRPC6 channels, were inhibited. Moreover, the Ca(2+) influx through TRPC5 induced by NT-3 inhibited the neuronal dendritic growth through activation of calmodulin-dependent kinase (CaMK) IIα. In contrast, the Ca(2+) influx through TRPC6 induced by NT-4 promoted the dendritic growth. Thus, TRPC5 acts as a novel and specific mediator for NT-3 to regulate dendrite development through CaMKIIα.
Collapse
|
3
|
Correlation of cognitive performance and morphological changes in neocortical pyramidal neurons in aging. Neurobiol Aging 2010; 33:1466-80. [PMID: 21163553 DOI: 10.1016/j.neurobiolaging.2010.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/12/2010] [Accepted: 10/16/2010] [Indexed: 12/24/2022]
Abstract
It is well established that the cerebral cortex undergoes extensive remodeling in aging. In this study, we used behaviorally characterized rats to correlate age-related morphological changes with cognitive impairment. For this, young and aged animals were tested in the Morris water maze to evaluate their cognitive performance. Following behavioral characterization, the animals were perfused and a combination of intracellular labeling and immunohistochemistry was applied. Using this approach, we characterized the dendritic morphology of cortical pyramidal neurons as well as the pattern of glutamatergic and GABAergic appositions on their cell bodies and dendrites. We focused on the association region of the parietal cortex (LtPA) and the medial prefrontal cortex (mPFC) for their involvement in the Morris water maze task. We found an age-related atrophy of distal basal dendrites that did not differ between aged cognitively unimpaired (AU) and aged cognitively impaired animals (AI). Dendritic spines and glutamatergic appositions generally decreased from young to AU and from AU to AI rats. On the other hand, GABAergic appositions only showed a trend towards a decrease in AU rats. Collectively, the data show that the ratio of excitatory/inhibitory inputs was only altered in AI animals. When cortical cholinergic varicosities were labeled on alternate sections, we found that AI animals also had a significant reduction of cortical cholinergic boutons compared with AU or young animals. In aged animals, the density of cortical cholinergic varicosities correlated with the excitatory/inhibitory ratio. Our data suggest that both cholinergic atrophy and an imbalance towards inhibition may contribute to the observed age-associated behavioral impairment.
Collapse
|
4
|
Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA. J Neurosci 2009; 29:15195-204. [PMID: 19955372 DOI: 10.1523/jneurosci.4203-09.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.
Collapse
|
5
|
Sun W, Salvi RJ. Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 2009; 164:1854-66. [PMID: 19778585 DOI: 10.1016/j.neuroscience.2009.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/25/2022]
Abstract
Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor 3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors (GlyR) on SGN of cochlea from postnatal C57 mouse. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, GlyR currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed GlyR expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity.
Collapse
Affiliation(s)
- W Sun
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, 137 Cary Hall, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
6
|
Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci 2008; 28:5433-49. [PMID: 18495877 DOI: 10.1523/jneurosci.0749-08.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anorexigenic melanocortins decrease food intake by activating MC3/MC4 receptors (MC3/4R); the prevailing view is that the orexigenic neuropeptide agouti-related peptide (AgRP) exerts the opposite action by acting as an antagonist at MC3/MC4 receptors. A total of 370 hypothalamic ventromedial nucleus (VMH) glutamatergic neurons was studied using whole-cell recording in hypothalamic slices from a novel mouse expressing green fluorescent protein (GFP) under control of the vesicular glutamate transporter 2 (vGluT2) promoter. Massive numbers of GFP-expressing VMH dendrites extended out of the core of the nucleus into the surrounding cell-poor shell. VMH dendrites received frequent appositions from AgRP-immunoreactive axons in the shell of the nucleus, but not the core, suggesting that AgRP may influence target VMH neurons. alpha-MSH, melanotan II (MTII), and selective MC3R or MC4R agonists were all inhibitory, reducing the spontaneous firing rate and hyperpolarizing vGluT2 neurons. The MC3/4R antagonist SHU9119 was excitatory. Unexpectedly, AgRP did not attenuate MTII actions on these neurons; instead, these two compounds showed an additive inhibitory effect. In the absence of synaptic activity, no hyperpolarization or change in input resistance was evoked by either MTII or AgRP, suggesting indirect actions. Consistent with this view, MTII increased the frequency of spontaneous and miniature IPSCs. In contrast, the mechanism of AgRP inhibition was dependent on presynaptic inhibition of EPSCs mediated by G(i)/G(o)-proteins, and was attenuated by pertussis toxin and NF023, inconsistent with mediation by G(s)-proteins associated with MC receptors. Together, our data suggest that the mechanism of AgRP actions on these excitatory VMH cells appears to be independent of the actions of melanocortins on MC receptors.
Collapse
|
7
|
Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci 2008; 28:2814-9. [PMID: 18337411 DOI: 10.1523/jneurosci.5447-07.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Arousal and maintenance of a wake state is dependent on the hypothalamic hypocretin/orexin system. We found that hypocretin neurons are depressed by opiates, drugs of abuse that reduce cognitive alertness. Met-enkephalin (mENK), an endogenous opioid, and exogenous opiates such as morphine inhibited the hypocretin system by direct actions on the cell body that include reduced spike frequency, hyperpolarization, increased G-protein-coupled inwardly rectifying K(+) channel current, and attenuated calcium current, and indirectly through reducing excitatory synaptic tone by a presynaptic mechanism. CTAP (H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH(2)) and naloxone, antagonists of mu-opioid receptors, blocked mu agonist actions. In the absence of exogenous opioids, mu receptor antagonists enhanced activity of the hypocretin system, suggesting ongoing inhibition by endogenous receptors. Morphine pretreatment attenuated subsequent excitatory responses to hypocretin, suggesting a long-lasting depression caused by opiate exposure. Chronic exposure to morphine reduced subsequent responses to morphine and to mENK, but increased the response to opioid receptor antagonists. Together, these data are consistent with the view that the hypocretin system may be an important direct target for drugs of abuse, including opiates, that induce sedation and mental lethargy.
Collapse
|
8
|
Li Y, van den Pol AN. Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J Neurosci 2007; 26:13037-47. [PMID: 17167093 PMCID: PMC6674960 DOI: 10.1523/jneurosci.3380-06.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hypocretin/orexin arousal system plays a key role in maintaining an alert wake state. The hypocretin peptide is colocalized with an opioid peptide, dynorphin. As dynorphin may be coreleased with hypocretin, we asked what action simultaneous stimulation with the excitatory neuropeptide hypocretin and the inhibitory peptide dynorphin might exert on cells postsynaptic to hypocretin axons, including hypocretin neurons. Hypocretin neurons received direct synaptic contact from other hypocretin neurons but showed little direct response to hypocretin. Here, we show that mouse hypocretin neurons are acutely sensitive to dynorphin. Dynorphin inhibits the hypocretin system by direct postsynaptic actions (hyperpolarization, decreased spike frequency, increased GIRK (G-protein-gated inwardly rectifying K+ channel) current, and attenuated calcium current, and indirectly by reducing excitatory synaptic tone. Interestingly, a selective antagonist of kappa-opioid receptors enhanced activity of the hypocretin system, suggesting ongoing depression by endogenous hypothalamic opioids. Electrical stimulation of hypothalamic microslices that contained hypocretin cells and their axons evoked dynorphin release. Costimulation with dynorphin and hypocretin had three different effects on neurons postsynaptic to hypocretin axons: direct response to only one or the other of the two peptides [hypocretin cells respond to dynorphin, arcuate neuropeptide Y (NPY) cells respond to hypocretin], differential desensitization causing shift from inhibitory current to excitatory current with repeated coexposure (melanin-concentrating hormone neurons), synergistic direct excitation by hypocretin and presynaptic attenuation of inhibition by dynorphin (arcuate NPY neurons). These results suggest that hypocretin neurons may be able to exercise a high degree of modulatory control over postsynaptic targets using multiple neuropeptides with target-dependent actions.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Anthony N. van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
9
|
Shimazu K, Zhao M, Sakata K, Akbarian S, Bates B, Jaenisch R, Lu B. NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Mem 2006; 13:307-15. [PMID: 16705139 PMCID: PMC1475811 DOI: 10.1101/lm.76006] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 02/09/2006] [Indexed: 01/19/2023]
Abstract
In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiation, rather than proliferation, of the neuronal precursor cells (NPCs) was significantly impaired in DG lacking NT-3. Triple labeling for BrdU, the neuronal marker NeuN, and the glial marker GFAP indicated that NT-3 affects the number of newly differentiated neurons, but not glia, in DG. Field recordings revealed a selective impairment in long-term potentiation (LTP) in the lateral, but not medial perforant path-granule neuron synapses. In parallel, the NT-3 mutant mice exhibited deficits in spatial memory tasks. In addition to identifying a novel role for NT-3 in adult NPC differentiation in vivo, our study provides a potential link between neurogenesis, dentate LTP, and spatial memory.
Collapse
Affiliation(s)
- Kazuhiro Shimazu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Huang H, Ghosh P, van den Pol AN. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 2006; 95:1656-68. [PMID: 16492946 DOI: 10.1152/jn.00927.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.
Collapse
Affiliation(s)
- Hao Huang
- Dept. of Neurosurgery, Yale Univ., School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
11
|
Woo NH, Lu B. Regulation of cortical interneurons by neurotrophins: from development to cognitive disorders. Neuroscientist 2006; 12:43-56. [PMID: 16394192 DOI: 10.1177/1073858405284360] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parvalbumin-positive interneurons, which include basket and chandelier cells, represent a unique class of interneurons. By innervating the soma and the axonal initial segment of pyramidal cells, these interneurons can elicit powerful control on the output of pyramidal cells and consequently are important for a number of physiological processes in the mammalian brain. Recent evidence indicates that neurotrophins regulate the development and functions of parvalbumin-positive interneurons. Disruption of neurotrophin-mediated regulation of interneurons is thought to contribute to the pathological processes underlying CNS dysfunction. This review brings together recently described roles of neurotrophins in migration, differentiation, synaptogenesis during development, and acute effects of neurotrophins in transmission at inhibitory synapses, Cl(-) homeostasis, and network activity of cortical interneurons. The authors also discuss the importance of neurotrophin regulation of GABAergic neurons in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- Newton H Woo
- Section on Neural Development & Plasticity, NICHD, Bethesda, MD 20892-3714, USA
| | | |
Collapse
|
12
|
Zhou C, Xiao C, Commissiong JW, Krnjević K, Ye JH. Mesencephalic astrocyte-derived neurotrophic factor enhances nigral γ-aminobutyric acid release. Neuroreport 2006; 17:293-7. [PMID: 16462600 DOI: 10.1097/01.wnr.0000201504.23255.bc] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) - one of a new class of astrocyte-derived human proteins--selectively promotes the survival of dopamine neurons of the ventral midbrain. Using the whole-cell clamp technique, we looked for acute effects of MANF on gamma-aminobutyric acid type A (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in dopamine neurons of the substantia nigra pars compacta of 6 to 15-day-old rats. In slices, MANF increased the amplitude of evoked IPSCs and decreased the paired pulse ratio. In mechanically dissociated cells, MANF increased the frequency of spontaneous and miniature IPSCs, without changing their mean amplitudes; and in enzymatically dissociated neurons, MANF had no effect on currents induced by exogenous GABA. The presynaptic enhancement of GABAergic inhibition may contribute to MANF's protective action on dopamine cells.
Collapse
Affiliation(s)
- Chunyi Zhou
- Department of Anesthesiology, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
13
|
Acuna-Goycolea C, van den Pol AN. Peptide YY(3-36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci 2006; 25:10510-9. [PMID: 16280589 PMCID: PMC6725817 DOI: 10.1523/jneurosci.2552-05.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peptide YY(3-36) (PYY(3-36)) is released by endocrine cells of the gut and may serve as an important long-distance neuropeptide signal relating energy balance information to the brain to depress food intake. The postulated mechanism is the activation of anorexigenic proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus. In striking contrast, using voltage and current-clamp recording, we found that PYY(3-36) consistently, dose dependently, and reversibly inhibited POMC cells by reducing action potentials, hyperpolarizing the membrane potential, decreasing input resistance and inward calcium currents, increasing G-protein-gated inwardly rectifying K+ channel currents, and presynaptically inhibiting release of excitatory glutamate. Importantly, we found PYY(3-36) had similar inhibitory effects on identified orexigenic neuropeptide Y (NPY) neurons. In both cell types, these effects were blocked by BIIE0246, a Y2 receptor antagonist. Together, these data argue that anorexigenic actions of PYY(3-36) are mediated more likely by inhibition of NPY neurons. Dual PYY(3-36) inhibition of both NPY and POMC cells may temporarily reduce the contribution of arcuate cells to feeding circuits, enhancing the role of other CNS loci.
Collapse
Affiliation(s)
- Claudio Acuna-Goycolea
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
14
|
Abstract
Hypothalamic hypocretin enhances arousal, similar to the actions of norepinephrine (NE). The physiological actions of NE were examined in hypocretin neurons identified by selective green fluorescent protein expression in transgenic mouse hypothalamic slices using whole-cell recording. NE induced an outward current, inhibited spike frequency, and hyperpolarized hypocretin neurons dose dependently. Similar actions were evoked by the selective alpha2 adrenergic agonist clonidine. The alpha2 antagonist idazoxan increased spike frequency, suggesting tonic NE-mediated inhibition. The NE-induced current was inwardly rectified, and the reversal potential was dependent on external potassium concentration; it was blocked by barium in the bath and by GTP-gamma-S in the pipette, suggesting activation of a G-protein inward rectifying K+ (GIRK) current. NE and clonidine decreased calcium currents evoked by depolarizing voltage steps. The selective alpha1 adrenergic agonist phenylephrine had no effect on membrane potential but did increase IPSC frequency; miniature IPSC frequency was also increased, in some cells without any effect on amplitude, suggesting a facilitative presynaptic action at alpha1 receptors on GABAergic axons that innervate hypocretin neurons. NE therefore inhibits hypocretin neurons directly through two mechanisms: activation of a GIRK current, depression of calcium currents, and indirectly through increased inhibitory GABA input. Similar to NE, dopamine and epinephrine reduced or blocked spikes and, in the presence of TTX, showed direct hyperpolarizing actions. The action of dopamine was blocked by the D2 receptor antagonist eticlopride, whereas a D1/5 antagonist had no effect. These data suggest that catecholamines evoke strong inhibitory actions on hypocretin neurons and suggest negative feedback from catecholamine cells that may be excited by hypocretin.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
15
|
Fu LY, Acuna-Goycolea C, van den Pol AN. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci 2005; 24:8741-51. [PMID: 15470140 PMCID: PMC6729969 DOI: 10.1523/jneurosci.2268-04.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurons that release neuropeptide Y (NPY) have important effects on hypothalamic homeostatic regulation, including energy homeostasis, and innervate hypocretin neurons. Using whole-cell patch-clamp recording, we explored NPY actions on hypocretin cells identified by selective green fluorescent protein expression in mouse hypothalamic slices. NPY reduced spike frequency and hyperpolarized the membrane potential of hypocretin neurons. The NPY hyperpolarizing action persisted in tetrodotoxin (TTX), was mimicked by Y1 receptor-selective agonists [Pro34]-NPY and [D-Arg25]-NPY, and was abolished by the Y1-specific antagonist BIBP3226 [(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginine-amide], consistent with a direct activation of postsynaptic Y1 receptors. NPY induced a current that was dependent on extracellular potassium, reversed near the potassium equilibrium potential, showed inward rectification, was blocked by extracellular barium, and was abolished by GDP-betaS in the recording pipette, consistent with a G-protein-activated inwardly rectifying K+ (GIRK) current. [Pro34]-NPY evoked, and BIBP3226 blocked, the activation of the GIRK-type current, indicating mediation by a Y1 receptor. NPY attenuated voltage-dependent calcium currents mainly via a Y1 receptor subtype. BIBP3226 increased spontaneous spike frequency, suggesting an ongoing Y1 receptor-mediated NPY inhibition. In TTX, miniature EPSCs were reduced in frequency but not amplitude by NPY, NPY13-36, and [D-Trp32]-NPY, but not by [Pro34]-NPY, suggesting the presynaptic inhibition was mediated by a Y2/Y5 receptor. NPY had little effect on GABA-mediated miniature IPSCs but depressed spontaneous IPSCs. Together, these data support the view that NPY reduces the activity of hypocretin neurons by multiple presynaptic and postsynaptic mechanisms and suggest NPY axons innervating hypocretin neurons may tonically attenuate hypocretin-regulated arousal.
Collapse
Affiliation(s)
- Li-Ying Fu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
16
|
Abstract
While the development and plasticity of excitatory synaptic connections have been studied into detail, little is known about the development of inhibitory synapses. As proposed for excitatory synapses, recent studies have indicated that activity-dependent forms of synaptic plasticity, such as long-term potentiation and long-term depression, may play a role in the establishment of functional inhibitory synaptic connections. Here, I review these different forms of plasticity and focus on their possible role in the developing neuronal network.
Collapse
Affiliation(s)
- J-L Gaïarsa
- Institut de Neurobiologie de la Méditerranée (INMED), Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 29, Marseille, France.
| |
Collapse
|
17
|
Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 2002; 36:1169-81. [PMID: 12495630 DOI: 10.1016/s0896-6273(02)01132-7] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurons that release hypocretin/orexin modulate sleep, arousal, and energy homeostasis; the absence of hypocretin results in narcolepsy. Here we present data on the physiological characteristics of these cells, identified with GFP in transgenic mouse brain slices. Hypocretin-1 and -2 depolarized hypocretin neurons by 15mV and evoked an increase in spike frequency (+366% from a 1-3 Hz baseline). The mechanism for this appears to be hypocretin-mediated excitation of local glutamatergic neurons that regulate hypocretin neuron activity, in part by presynaptic facilitation of glutamate release. This represents a possible mechanism for orchestrating the output of the diffuse hypothalamic arousal system. No direct effect of hypocretin on membrane properties of hypocretin cells was detected. Norepinephrine and serotonin, transmitters of other arousal systems, decreased spike frequency and evoked outward currents, whereas acetylcholine and histamine had little effect.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
18
|
Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 2002; 25:564-70. [PMID: 12392931 DOI: 10.1016/s0166-2236(02)02269-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activity-dependent long-term changes in synaptic efficacy are thought to be important in learning, memory formation, neuronal development and pathological states of neuronal excitability in the CNS. For the past two decades, numerous studies have investigated long-term changes in synaptic efficacy at excitatory glutamatergic synapses. Although inhibitory synapses are essential for proper functioning of the neuronal network, attention has focused only recently on describing and characterizing plasticity at these types of synapse. Not surprisingly, different forms of plasticity at GABAergic, and the closely related glycinergic, synapses have been reported in several regions of the brain. Here we review these different forms of plasticity and focus on their possible roles in developing and adult neuronal networks.
Collapse
Affiliation(s)
- Jean-Luc Gaiarsa
- INMED/INSERM U29, Avenue de Luminy, B.P. 13, 13273 Marseille cedex 09, France.
| | | | | |
Collapse
|
19
|
Obrietan K, Gao XB, Van Den Pol AN. Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism--a positive feedback circuit in developing neurons. J Neurophysiol 2002; 88:1005-15. [PMID: 12163549 DOI: 10.1152/jn.2002.88.2.1005] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During early neuronal development, GABA functions as an excitatory neurotransmitter, triggering membrane depolarization, action potentials, and the opening of plasma membrane Ca(2+) channels. These excitatory actions of GABA lead to a number of changes in neuronal structure and function. Although the effects of GABA on membrane biophysics during early development have been well documented, little work has been done to examine the possible mechanisms underlying GABA-regulated plastic changes in the developing brain. This study focuses on GABA-regulated kinase activity and transcriptional control. We utilized a combination of Western blotting and immunocytochemical techniques to examine two potential downstream pathways regulated by GABA excitation: the p42/44 mitogen-activated protein kinase (MAPK) cascade and the transcription factor cyclic AMP response element binding protein (CREB). During early development of cultured hypothalamic neurons (5 days in vitro), stimulation with GABA triggered activation of the MAPK cascade and phosphorylation of CREB at Ser 133. These effects were mediated by the GABA(A) receptor, since administration of the GABA(A) receptor-specific agonist muscimol (50 microM) triggered pathway activation, and pretreatment with the GABA(A)-receptor specific antagonist bicuculline (20 microM) blocked pathway activation. Immunocytochemistry revealed a spatial and temporal correlation between activation of the MAPK cascade and CREB phosphorylation. Pretreatment with the MAPK/ERK kinase (MEK) inhibitor U0126 (10 microM) attenuated CREB phosphorylation, indicating that the MAPK pathway regulates that activation state of CREB. In contrast to the excitatory effects observed during early development, in more mature neurons, GABA functions as an inhibitory transmitter. Consistent with this observation, GABA(A) receptor activation did not stimulate MAPK cascade activation or CREB phosphorylation in mature cultures (18 days in vitro). To determine whether GABA(A) receptor activation during early development stimulates gene expression, we examined the inducible expression of the neurotrophin brain-derived neurotrophic factor (BDNF). Both GABA and muscimol stimulated BDNF expression, and pretreatment with U0126 attenuated GABA-induced BDNF expression. Whole cell electrophysiological recording was used to assess the effects of BDNF on GABA release. BDNF (100 ng/ml) dramatically increased the frequency of excitatory GABAergic spontaneous postsynaptic currents. Together, these data suggest a positive excitatory feedback loop between GABA and BDNF expression during early development, where GABA facilitates BDNF expression, and BDNF facilitates the synaptic release of GABA. Signaling via the MAPK cascade and the transcription factor CREB appear to play a substantial role in this process.
Collapse
Affiliation(s)
- Karl Obrietan
- Department of Neuroscience, The Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
20
|
Gao XB, van den Pol AN. Melanin-concentrating hormone depresses L-, N-, and P/Q-type voltage-dependent calcium channels in rat lateral hypothalamic neurons. J Physiol 2002; 542:273-86. [PMID: 12096069 PMCID: PMC2290404 DOI: 10.1113/jphysiol.2002.019372] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Melanin-concentrating hormone (MCH), a cyclic 19-amino-acid peptide, is synthesized exclusively by neurons in the lateral hypothalamic (LH) area. It is involved in a number of brain functions and recently has raised interest because of its role in energy homeostasis. MCH axons and receptors are found throughout the brain. Previous reports set the foundation for understanding the cellular actions of MCH by using non-neuronal cells transfected with the MCH receptor gene; these cells exhibited an increase in cytoplasmic calcium in response to MCH, suggesting an excitatory action for the peptide. In the study presented here, we have used whole-cell recording in 117 neurons from LH cultures and brain slices to examine the actions of MCH. MCH decreased the amplitude of voltage-dependent calcium currents in almost all tested neurons. The inhibition desensitized rapidly (18 s to half maximum at 100 nM concentration) and was dose-dependent (IC(50) = 7.8 nM) when activated with a pulse from -80 mV to 0 mV. A priori activation of G-proteins with GTPgammaS completely eliminated the MCH-induced effect at low MCH concentrations and reduced the MCH-induced effect at high MCH concentrations. Inhibition of G-proteins with pertussis toxin (PTX) blocked the MCH-induced inhibitory effect at high MCH concentrations. Pre-pulse depolarization resulted in an attenuation of the MCH-induced inhibition of calcium currents in most neurons. These data suggest that MCH exerts an inhibitory effect on calcium currents via PTX-sensitive G-protein pathways, probably the G(i)/G(o) pathway, in LH neurons. L-, N- and P/Q-type calcium channels were identified in LH neurons, with L- and N-type channels accounting for most of the voltage-activated current (about 40 % each); MCH attenuated each of the three types (mean 50 % depression), with the greatest inhibition found for N-type currents. In contrast to previous data on non-neuronal cells showing an MHC-evoked increase in calcium, our data suggest that the reverse occurs in LH neurons. The attenuation of calcium currents is consistent with an inhibitory action for the peptide in neurons.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
21
|
Wang YF, Gao XB, van den Pol AN. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons. J Neurophysiol 2001; 86:1252-65. [PMID: 11535674 DOI: 10.1152/jn.2001.86.3.1252] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Spikes may play an important role in modulating a number of aspects of brain development. In early hypothalamic development, GABA can either evoke action potentials, or it can shunt other excitatory activity. In both slices and cultures of the mouse hypothalamus, we observed a heterogeneity of spike patterns and frequency in response to GABA. To examine the mechanisms underlying patterns and frequency of GABA-evoked spikes, we used conventional whole cell and gramicidin perforation recordings of neurons (n = 282) in slices and cultures of developing mouse hypothalamus. Recorded with gramicidin pipettes, GABA application evoked action potentials in hypothalamic neurons in brain slices of postnatal day 2-9 (P2-9) mice. With conventional patch pipettes (containing 29 mM Cl-), action potentials were also elicited by GABA from neurons of 2-13 days in vitro (2-13 DIV) embryonic hypothalamic cultures. Depolarizing responses to GABA could be generally classified into three types: depolarization with no spike, a single spike, or complex patterns of multiple spikes. In parallel experiments in slices, electrical stimulation of GABAergic mediobasal hypothalamic neurons in the presence of glutamate receptor antagonists [10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 100 microM 2-amino-5-phosphonopentanoic acid (AP5)] resulted in the occurrence of spikes that were blocked by bicuculline (20 microM). Blocking ionotropic glutamate receptors with AP5 and CNQX did not block GABA-mediated multiple spikes. Similarly, when synaptic transmission was blocked with Cd(2+) (200 microM) and Ni(2+) (300 microM), GABA still induced multiple spikes, suggesting that the multiple spikes can be an intrinsic membrane property of GABA excitation and were not based on local interneurons. When the pipette [Cl-] was 29 or 45 mM, GABA evoked multiple spikes. In contrast, spikes were not detected with 2 or 10 mM intracellular [Cl-]. With gramicidin pipettes, we found that the mean reversal potential of GABA-evoked current (E(GABA)) was positive to the resting membrane potential, suggesting a high intracellular [Cl-] in developing mouse neurons. Varying the holding potential from -80 to 0 mV revealed an inverted U-shaped effect on spike probability. Blocking voltage-dependent Na+ channels with tetrodotoxin eliminated GABA-evoked spikes, but not the GABA-evoked depolarization. Removing Ca(2+) from the extracellular solution did not block spikes, indicating GABA-evoked Na+ -based spikes. Although E(GABA) was more positive within 2-5 days in culture, the probability of GABA-evoked spikes was greater in 6- to 9-day cells. Mechanistically, this appears to be due to a greater Na+ current found in the older cells during a period when the E(GABA) is still positive to the resting membrane potential. GABA evoked similar spike patterns in HEPES and bicarbonate buffers, suggesting that Cl-, not bicarbonate, was primarily responsible for generating multiple spikes. GABA evoked either single or multiple spikes; neurons with multiple spikes had a greater Na+ current, a lower conductance, a more negative spike threshold, and a greater difference between the peak of depolarization and the spike threshold. Taken together, the present results indicate that the patterns of multiple action potentials evoked by GABA are an inherent property of the developing hypothalamic neuron.
Collapse
Affiliation(s)
- Y F Wang
- Department of Neurosurgery, Yale University Medical School, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
22
|
Paul J, Gottmann K, Lessmann V. NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport 2001; 12:2635-9. [PMID: 11522939 DOI: 10.1097/00001756-200108280-00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BDNF and NT-3 can modulate the development and plasticity of central synaptic transmission. Although the expression of NT-3 and BDNF in the rodent hippocampus coincides during perinatal development, little is known about possible functional interactions between both neurotrophins in synaptic development. Here, we have investigated the effects of combined long-term application of NT-3 and BDNF on excitatory glutamatergic (mEPSC) and inhibitory GABAergic miniature synaptic currents (mIPSC) in cultured embryonic hippocampal neurons. Our results show that the BDNF-induced twofold increase in mEPSC frequency is abolished by pre-treatment with NT-3. In addition, the NT-3-induced twofold downregulation of mIPSC frequency is reversed by BDNF. Finally, the BDNF-induced increase in c-fos expression is reduced by 50% after pre-treatment with NT-3. In summary, these data suggest an NT-3 controlled modulation of BDNF signalling in differentiating hippocampal neurons.
Collapse
Affiliation(s)
- J Paul
- Department of Cell Physiology, Ruhr-University Bochum, NC7-132, 44780 Bochum, Germany
| | | | | |
Collapse
|
23
|
Gao XB, van den Pol AN. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 2001; 533:237-52. [PMID: 11351031 PMCID: PMC2278620 DOI: 10.1111/j.1469-7793.2001.0237b.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The neuropeptide melanin concentrating hormone (MCH) is synthesised only by neurons of the lateral hypothalamic (LH) area in the CNS. MCH cells project widely throughout the brain. Despite the growing interest in this peptide, in part related to its role in feeding, little has been done to characterise its physiological effects in neurons. Using whole-cell recording with current and voltage clamp, we examined the cellular actions in neurons from the LH. MCH induced a consistent decrease in the frequency of action potentials and reduced synaptic activity. Most fast synaptic activity in the hypothalamus is mediated by GABA or glutamate. MCH inhibited the synaptic activity of both glutamatergic and GABAergic LH neurons, each tested independently. MCH reduced the amplitude of glutamate-evoked currents and reduced the amplitude of miniature excitatory currents, indicating an inhibitory modulation of postsynaptic glutamate receptors. In the presence of tetrodotoxin to block action potentials, MCH caused a depression in the frequency of miniature glutamate-mediated postsynaptic currents, suggesting a presynaptic site of receptor expression. In voltage clamp experiments, MCH depressed the amplitude of calcium currents, suggesting that a mechanism of inhibition may involve a reduced calcium-dependent release of amino acid transmitter. Previous reports have suggested that MCH activated potassium channels in non-neuronal cells transfected with the MCH receptor gene. We found no effect of MCH on voltage-dependent potassium channels in LH neurons. Baclofen, a GABAB receptor agonist, activated G-protein gated inwardly rectifying potassium (GIRK)-type channels; in the same neurons, MCH had no effect on GIRK channels. MCH showed no modulation of sodium currents. Blockade of the Gi/Go protein with pertussis toxin eliminated the actions of MCH. The inhibitory actions of MCH on both excitatory and inhibitory synaptic events, coupled with opposing excitatory actions of hypocretin, another LH peptide that projects to many of the same loci, suggest a substantial level of complexity in neuropeptide modulation of LH actions.
Collapse
Affiliation(s)
- X B Gao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
24
|
Van Den Pol AN, Patrylo PR, Ghosh PK, Gao XB. Lateral hypothalamus: early developmental expression and response to hypocretin (orexin). J Comp Neurol 2001; 433:349-63. [PMID: 11298360 DOI: 10.1002/cne.1144] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypocretin is a recently discovered peptide that is synthesized by neurons in the lateral hypothalamic area (LH) and is believed to play a role in sleep regulation, arousal, endocrine control, and food intake. These functions are critical for the development of independent survival. We investigated the developmental profile of the hypocretin system in rats. Northern blot analysis showed that the expression of hypocretin mRNA increased from postnatal day 1 to adulthood. Both of the identified hypocretin receptor mRNAs were strongly expressed very early in hypothalamic development, and expression subsequently decreased in the mature brain. Immunocytochemistry revealed hypocretin-2 peptide expression in the cell bodies of LH neurons and in axons in the brain and spinal cord as early as embryonic day 19. Whole-cell patch clamp recordings from postnatal P1-P14 LH slices demonstrated a robust increase in synaptic activity in all LH neurons tested (n = 20) with a 383% increase in the frequency of spontaneous activity upon hypocretin-2 (1.5 microM) application. A similar increase in activity was found with hypocretin-1 application to LH slices. Hypocretin-2 evoked a robust increase in synaptic activity even on the earliest day tested, the day of birth. Furthermore, voltage-clamp recordings and calcium digital imaging experiments using cultured LH cells revealed that both hypocretin-1 and -2 induced enhancement of neuronal activity occurred as early as synaptic activity was detected. Thus, as in the adult central nervous system, hypocretin exerts a profound excitatory influence on neuronal activity early in development, which might contribute to the development of arousal, sleep regulation, feeding, and endocrine control.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/physiology
- Brain/embryology
- Calcium/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/pharmacology
- Cells, Cultured
- Electrophysiology
- Embryo, Mammalian/metabolism
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/embryology
- Hypothalamic Area, Lateral/growth & development
- Hypothalamic Area, Lateral/physiology
- Immunohistochemistry
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins
- Neurons/physiology
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Neuropeptides/pharmacology
- Orexin Receptors
- Orexins
- RNA, Messenger/metabolism
- Rats/physiology
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide/genetics
Collapse
Affiliation(s)
- A N Van Den Pol
- Department of Neurosurgery, Yale University Medical School, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|