1
|
Zalecki M. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig. J Chem Neuroanat 2011; 43:1-13. [PMID: 21903161 DOI: 10.1016/j.jchemneu.2011.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 01/17/2023]
Abstract
The pylorus, an important part of the digestive tract controlling the flow of chyme between the stomach and the duodenum, is widely innervated by intrinsic and extrinsic nerves. To determine the locations of postganglionic sympathetic perikarya that innervate the pylorus of the domestic pig, a retrograde tracing method with application of Fast Blue tracer was used. All positive neuronal cell bodies (ca. 1750) were found in the celiac-cranial mesenteric ganglion complex (CSMG), however, the coeliac poles of this complex provided the major input to the pylorus. Afterwards, the immunohistochemical staining procedure was applied to determine biologically active substances expressed in the FB-labeled perikarya. Approximately 77% of the FB-positive cell bodies contained tyrosine hydroxylase (TH), 87% dopamine β-hydroxylase (DβH), 40% neuropeptide Y (NPY), 12% somatostatin (SOM) and 7% galanin (GAL). The presence of all these substances in the ganglion tissue was confirmed by RT-PCR technique. Double immunocytochemistry revealed that all of the TH-positive perikarya contained DβH, about 40% NPY, 12% SOM and 8% GAL. Additionally, all above-cited immunohistochemical markers as well as VIP, PACAP, ChAT, LEU, MET, SP and nNOS were observed within nerve fibers associated with the FB-positive perikarya. Immunocytochemical labeling of the pyloric wall tissue disclosed that TH+, DβH+ and NPY+ nerve fibers innervated ganglia of the myenteric and submucosal plexuses, blood vessels, both muscular layers and the muscularis mucosae; nerve fibers immunoreactive to GAL mostly innervated both muscular layers, while SOM+ nerve fibers were observed within the myenteric plexus. Presented study revealed sources of origin and immunohistochemical characteristics of the sympathetic postganglionic perikarya innervating the porcine pylorus.
Collapse
Affiliation(s)
- Michal Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14 St., 10-719 Olsztyn, Poland.
| |
Collapse
|
2
|
From biological gastroenterology to fundamental neurosciences: How studies in gastric emptying have led to the discovery of a new mechanism of neuronal functioning. ACTA ACUST UNITED AC 2010; 34:260-6. [DOI: 10.1016/j.gcb.2010.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022]
|
5
|
Fasano C, Niel JP. The mammalian sympathetic prevertebral ganglia: Models for the study of neuronal networks and basic neuronal properties. Auton Neurosci 2009; 150:8-20. [DOI: 10.1016/j.autneu.2009.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 11/24/2022]
|
7
|
Fasano C, Tercé F, Niel JP, Nguyen HTT, Hiol A, Bertrand-Michel J, Mallet N, Collet X, Miolan JP. Neuronal conduction of excitation without action potentials based on ceramide production. PLoS One 2007; 2:e612. [PMID: 17637828 PMCID: PMC1906860 DOI: 10.1371/journal.pone.0000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 06/18/2007] [Indexed: 01/19/2023] Open
Abstract
Background Action potentials are the classic mechanism by which neurons convey a state of excitation throughout their length, leading, after synaptic transmission, to the activation of other neurons and consequently to network functioning. Using an in vitro integrated model, we found previously that peripheral networks in the autonomic nervous system can organise an unconventional regulatory reflex of the digestive tract motility without action potentials. Methodology/Principal Findings In this report, we used combined neuropharmacological and biochemical approaches to elucidate some steps of the mechanism that conveys excitation along the nerves fibres without action potentials. This mechanism requires the production of ceramide in membrane lipid rafts, which triggers in the cytoplasm an increase in intracellular calcium concentration, followed by activation of a neuronal nitric oxide synthase leading to local production of nitric oxide, and then to guanosine cyclic monophosphate. This sequence of second messengers is activated in cascade from rafts to rafts to ensure conduction of the excitation along the nerve fibres. Conclusions/Significance Our results indicate that second messengers are involved in neuronal conduction of excitation without action potentials. This mechanism represents the first evidence—to our knowledge—that excitation is carried along nerves independently of electrical signals. This unexpected ceramide-based conduction of excitation without action potentials along the autonomic nerve fibres opens up new prospects in our understanding of neuronal functioning.
Collapse
Affiliation(s)
- Caroline Fasano
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - François Tercé
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Niel
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Hang Thi Thu Nguyen
- Laboratoire de Chimie Biologique Appliquée, UMR-INRA 1111, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Abel Hiol
- Laboratoire de Chimie Biologique Appliquée, UMR-INRA 1111, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
| | - Justine Bertrand-Michel
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Nicole Mallet
- Plateau Technique de Lipidomique, INSERM IFR 30/Toulouse Génopole, INSERM U563, Hôpital Purpan, Toulouse, France
| | - Xavier Collet
- INSERM U563, Département Lipoprotéines et Médiateurs Lipidiques, IFR 30, CPTP, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Miolan
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153-INRA 1147, Institut Fédératif de Recherche Jean Roche IFR 11, Université Paul Cézanne, Aix-Marseille III, Faculté des Sciences et Techniques, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Ercoli J, Miolan JP, Niel JP, Quinson N. Presynaptic GABA-A receptors prevent depression of nicotinic transmission in rabbit coeliac ganglion neurones. Eur J Neurosci 2007; 25:1307-18. [PMID: 17425557 DOI: 10.1111/j.1460-9568.2007.05382.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the involvement of GABA-A receptors in the modulation of the nicotinic transmission of central origin in isolated rabbit coeliac ganglia. Our study was performed in vitro and the electrical activity of the ganglionic neurones was recorded using intracellular recording techniques. During iterative stimulation of the splanchnic nerves, the synaptic action potential probability decreased gradually, indicating a depression of the nicotinic activation. Pharmacological agents acting at GABA-A receptors modulated the action potential probability during the train of pulses. Muscimol (a GABA-A receptor agonist), diazepam (a benzodiazepine site agonist) and 1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride (a GABA uptake blocker) increased this probability. Conversely, gabazine or bicuculline (two GABA-A receptor antagonists), picrotoxin (a picrotoxin site agonist) and flumazenil (a benzodiazepine site antagonist) reduced it. These results demonstrate that endogenous GABA, released during the train of pulses, facilitates the central nicotinic activation of the ganglionic neurones by acting on GABA-A receptors. Muscimol also reduced the amplitude ratio of excitatory postsynaptic potentials triggered during the paired-pulse protocol without any change in postsynaptic properties. This result is consistent with a presynaptic action of GABA-A receptors. Our study shows that presynaptic GABA-A receptors facilitate the central nicotinic activation of prevertebral ganglionic neurones and thus play a novel role in the integrative properties of the sympathetic prevertebral ganglia.
Collapse
Affiliation(s)
- Jennifer Ercoli
- Laboratoire de Physiologie Neurovégétative, UMR Université Paul Cézanne Aix-Marseille III-CNRS-INRA, Faculté des Sciences et Techniques, 13397 Marseille cedex 20, France
| | | | | | | |
Collapse
|
9
|
Abstract
Phosphodiesterase 5 terminates the cellular actions of the second messenger molecule cyclic GMP; inhibitors of phosphodiesterase 5 will therefore increase and prolong the actions of endogenous substances that signal via the cyclic GMP pathway, including nitric oxide released as a neurotransmitter from nitrergic nerves. To date, the most widely used phosphodiesterase 5 inhibitors, zaprinast and sildenafil, have proved vital in the elucidation of the widespread role of cyclic GMP in nitrergic transmission and, specifically in the case of sildenafil, have provided a major breakthrough in the treatment of erectile dysfunction in men. Although still a matter of debate, early evidence indicates that sildenafil may also be of benefit in some forms of sexual dysfunction in women. The remarkable clinical success of sildenafil has prompted the search for further novel phosphodiesterase 5 inhibitors which might be used to enhance nitrergic function in other disease states.
Collapse
Affiliation(s)
- A Gibson
- Messengers and Signalling Research Group, School of Biomedical Sciences, King's College London, Hodgkin Building, Guys Campus, SE1 9RT, London, UK.
| |
Collapse
|
10
|
Quinson N, Niel JP, Miolan JP. Nitric oxide released by gastric mechanoreceptors modulates nicotinic activation of coeliac plexus neurons in the rabbit. Eur J Neurosci 2000; 12:1521-4. [PMID: 10762381 DOI: 10.1046/j.1460-9568.2000.00056.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects on the nicotinic activation of the coeliac plexus neurons of nitric oxide (NO) released within the coeliac plexus by gastric mechanoreceptors, in particular during gastroduodenal inhibitory reflex, were assessed. This study was performed in the rabbit on an in vitro preparation of the coeliac plexus connected to the stomach and the duodenum. The electrical activity of ganglionic neurons was recorded with intracellular recording techniques. Water-filled balloons were used for gastric distensions and recording of duodenal motility. When a 10-s train of pulses (20-40Hz) of supramaximal intensity was applied to the splanchnic nerves, gradual depression of nicotinic activation occurred. Gastric distension (50 mL, 7.5 min) modulated this depression phenomenon by inhibiting or facilitating the nicotinic activation. In the neurons impaled during the recording of duodenal motility, gastric distension triggered an inhibition of nicotinic activation concomitantly with a gastroduodenal inhibitory reflex organized by the coeliac plexus. If the gastric distensions were performed while the coeliac plexus was superfused by a NO scavenger, the nicotinic activation was unaffected and the gastroduodenal inhibitory reflex was abolished. Moreover, when the coeliac plexus was superfused with an inhibitor of nitric oxide synthase, gastric distensions were without effect on the nicotinic activation. These results demonstrate that NO released within the coeliac plexus by gastric mechanoreceptors, in particular during the gastroduodenal inhibitory reflex, modulates the central nicotinic activation of coeliac plexus neurons, so NO released within a prevertebral ganglion by gastric afferent fibres, in particular during the organization by this ganglion of a reflex regulating the gastrointestinal tract motility, also exerts a gating of the central inputs to the ganglionic neurons.
Collapse
Affiliation(s)
- N Quinson
- Département de Physiologie et Neurophysiologie, ESA-CNRS 6034, Faculté des Sciences et Techniques de Saint Jérôme, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|