1
|
Torri F, Mancuso M, Siciliano G, Ricci G. Beyond Motor Neurons in Spinal Muscular Atrophy: A Focus on Neuromuscular Junction. Int J Mol Sci 2024; 25:7311. [PMID: 39000416 PMCID: PMC11242411 DOI: 10.3390/ijms25137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
5q-Spinal muscular atrophy (5q-SMA) is one of the most common neuromuscular diseases due to homozygous mutations in the SMN1 gene. This leads to a loss of function of the SMN1 gene, which in the end determines lower motor neuron degeneration. Since the generation of the first mouse models of SMA neuropathology, a complex degenerative involvement of the neuromuscular junction and peripheral axons of motor nerves, alongside lower motor neurons, has been described. The involvement of the neuromuscular junction in determining disease symptoms offers a possible parallel therapeutic target. This narrative review aims at providing an overview of the current knowledge about the pathogenesis and significance of neuromuscular junction dysfunction in SMA, circulating biomarkers, outcome measures and available or developing therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ, Pagarigan KT, Bradford AB, Ondeck CA, McNutt PM. Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 2023; 17:1226194. [PMID: 37650071 PMCID: PMC10463753 DOI: 10.3389/fncel.2023.1226194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.
Collapse
Affiliation(s)
- James B. Machamer
- BASF, Research Triangle Park, NC, United States
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | | | - Mallory J. Stenslik
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Kathleen T. Pagarigan
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aaron B. Bradford
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Celinia A. Ondeck
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Tejero R, Alsakkal M, Hennlein L, Lopez-Cabello AM, Jablonka S, Tabares L. Nifedipine Ameliorates Cellular Differentiation Defects of Smn-Deficient Motor Neurons and Enhances Neuromuscular Transmission in SMA Mice. Int J Mol Sci 2023; 24:ijms24087648. [PMID: 37108811 PMCID: PMC10146780 DOI: 10.3390/ijms24087648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In spinal muscular atrophy (SMA), mutations in or loss of the Survival Motor Neuron 1 (SMN1) gene reduce full-length SMN protein levels, which leads to the degeneration of a percentage of motor neurons. In mouse models of SMA, the development and maintenance of spinal motor neurons and the neuromuscular junction (NMJ) function are altered. Since nifedipine is known to be neuroprotective and increases neurotransmission in nerve terminals, we investigated its effects on cultured spinal cord motor neurons and motor nerve terminals of control and SMA mice. We found that application of nifedipine increased the frequency of spontaneous Ca2+ transients, growth cone size, cluster-like formations of Cav2.2 channels, and it normalized axon extension in SMA neurons in culture. At the NMJ, nifedipine significantly increased evoked and spontaneous release at low-frequency stimulation in both genotypes. High-strength stimulation revealed that nifedipine increased the size of the readily releasable pool (RRP) of vesicles in control but not SMA mice. These findings provide experimental evidence about the ability of nifedipine to prevent the appearance of developmental defects in SMA embryonic motor neurons in culture and reveal to which extent nifedipine could still increase neurotransmission at the NMJ in SMA mice under different functional demands.
Collapse
Affiliation(s)
- Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Mohammad Alsakkal
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Ana M Lopez-Cabello
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
4
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
5
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
6
|
Özerman-Edis B, Nurten A, Kara İ. Blockage of Voltage-Dependent Calcium Channels Affects Twitch Response of Rat Skeletal Muscle. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Badawi Y, Nishimune H. Impairment Mechanisms and Intervention Approaches for Aged Human Neuromuscular Junctions. Front Mol Neurosci 2020; 13:568426. [PMID: 33328881 PMCID: PMC7717980 DOI: 10.3389/fnmol.2020.568426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States.,Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Japan
| |
Collapse
|
8
|
Functional Postnatal Maturation of the Medial Olivocochlear Efferent-Outer Hair Cell Synapse. J Neurosci 2020; 40:4842-4857. [PMID: 32430293 DOI: 10.1523/jneurosci.2409-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers. The functional characteristics of the MOC-OHC synapse during maturation were assessed by electrophysiological and pharmacological methods in mouse organs of Corti at postnatal day 11 (P11)-P13, hearing onset in altricial rodents, and at P20-P22 when the OHCs are morphologically and functionally mature. Synaptic currents were recorded in whole-cell voltage-clamped OHCs while electrically stimulating the MOC fibers. A progressive increase in the number of functional MOC-OHC synapses, as well as in their strength and efficacy, was observed between P11-13 and P20-22. At hearing onset, the MOC-OHC synapse presented facilitation during MOC fibers high-frequency stimulation that disappeared at mature stages. In addition, important changes were found in the VGCC that are coupled to transmitter release. Ca2+ flowing in through L-type VGCCs contribute to trigger ACh release together with P/Q- and R-type VGCCs at P11-P13, but not at P20-P22. Interestingly, N-type VGCCs were found to be involved in this process at P20-P22, but not at hearing onset. Moreover, the degree of compartmentalization of calcium channels with respect to BK channels and presynaptic release components significantly increased from P11-P13 to P20-P22. These results suggest that the MOC-OHC synapse is immature at the onset of hearing.SIGNIFICANCE STATEMENT The functional expression of both VGCCs and BK channels, as well as their localization with respect to the presynaptic components involved in transmitter release, are key elements in determining synaptic efficacy. In this work, we show dynamic changes in the expression of VGCCs and Ca2+-dependent BK K+ channels coupled to ACh release at the MOC-OHC synapse and their shift in compartmentalization during postnatal maturation. These processes most likely set the short-term plasticity pattern and reliability of the MOC-OHC synapse on high-frequency activity.
Collapse
|
9
|
Badawi Y, Nishimune H. Super-resolution microscopy for analyzing neuromuscular junctions and synapses. Neurosci Lett 2020; 715:134644. [PMID: 31765730 PMCID: PMC6937598 DOI: 10.1016/j.neulet.2019.134644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
10
|
Tejero R, Balk S, Franco-Espin J, Ojeda J, Hennlein L, Drexl H, Dombert B, Clausen JD, Torres-Benito L, Saal-Bauernschubert L, Blum R, Briese M, Appenzeller S, Tabares L, Jablonka S. R-Roscovitine Improves Motoneuron Function in Mouse Models for Spinal Muscular Atrophy. iScience 2020; 23:100826. [PMID: 31981925 PMCID: PMC6992996 DOI: 10.1016/j.isci.2020.100826] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/08/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmission defects and motoneuron degeneration are hallmarks of spinal muscular atrophy, a monogenetic disease caused by the deficiency of the SMN protein. In the present study, we show that systemic application of R-Roscovitine, a Cav2.1/Cav2.2 channel modifier and a cyclin-dependent kinase 5 (Cdk-5) inhibitor, significantly improved survival of SMA mice. In addition, R-Roscovitine increased Cav2.1 channel density and sizes of the motor endplates. In vitro, R-Roscovitine restored axon lengths and growth cone sizes of Smn-deficient motoneurons corresponding to enhanced spontaneous Ca2+ influx and elevated Cav2.2 channel cluster formations independent of its capability to inhibit Cdk-5. Acute application of R-Roscovitine at the neuromuscular junction significantly increased evoked neurotransmitter release, increased the frequency of spontaneous miniature potentials, and lowered the activation threshold of silent terminals. These data indicate that R-Roscovitine improves Ca2+ signaling and Ca2+ homeostasis in Smn-deficient motoneurons, which is generally crucial for motoneuron differentiation, maturation, and function. R-Roscovitine prolongs survival of SMA mice R-Roscovitine increases Ca2+ influx and growth cone size of SMA motoneurons R-Roscovitine beneficially affects neurotransmission in SMA motor nerve terminals R-Roscovitine wakes up dormant synapses of SMA motoneurons
Collapse
Affiliation(s)
- Rocio Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julio Franco-Espin
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Jorge Ojeda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Hans Drexl
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Benjamin Dombert
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jan-Dierk Clausen
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Laura Torres-Benito
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain
| | | | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany; Core Unit SysMed, University of Würzburg, 97080 Würzburg, Germany
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain.
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
11
|
Stephani F, Scheuer V, Eckrich T, Blum K, Wang W, Obermair GJ, Engel J. Deletion of the Ca 2+ Channel Subunit α 2δ3 Differentially Affects Ca v2.1 and Ca v2.2 Currents in Cultured Spiral Ganglion Neurons Before and After the Onset of Hearing. Front Cell Neurosci 2019; 13:278. [PMID: 31293392 PMCID: PMC6606706 DOI: 10.3389/fncel.2019.00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated Ca2+ channels are composed of a pore-forming α1 subunit and auxiliary β and α2δ subunits, which modulate Ca2+ current properties and channel trafficking. So far, the partial redundancy and specificity of α1 for α2δ subunits in the CNS have remained largely elusive. Mature spiral ganglion (SG) neurons express α2δ subunit isoforms 1, 2, and 3 and multiple Ca2+ channel subtypes. Differentiation and in vivo functions of their endbulb of Held synapses, which rely on presynaptic P/Q channels (Lin et al., 2011), require the α2δ3 subunit (Pirone et al., 2014). This led us to hypothesize that P/Q channels may preferentially co-assemble with α2δ3. Using a dissociated primary culture, we analyzed the effects of α2δ3 deletion on somatic Ca2+ currents (ICa) of SG neurons isolated at postnatal day 20 (P20), when the cochlea is regarded to be mature. P/Q currents were the dominating steady-state Ca2+ currents (54% of total) followed by T-type, L-type, N-type, and R-type currents. Deletion of α2δ3 reduced P/Q- and R-type currents by 60 and 38%, respectively, whereas L-type, N-type, and T-type currents were not altered. A subset of ICa types was also analyzed in SG neurons isolated at P5, i.e., before the onset of hearing (P12). Both L-type and N-type current amplitudes of wildtype SG neurons were larger at P5 compared with P20. Deletion of α2δ3 reduced L-type and N-type currents by 23 and 44%, respectively. In contrast, small P/Q currents, which were just being up-regulated at P5, were unaffected by the lack of α2δ3. In summary, α2δ3 regulates amplitudes of L- and N-type currents of immature cultured SG neurons, whereas it regulates P/Q- and R-type currents at P20. Our data indicate a developmental switch from dominating somatic N- to P/Q-type currents in cultured SG neurons. A switch from N- to P/Q-type channels, which has been observed at several central synapses, may also occur at developing endbulbs of Held. In this case, reduction of both neonatal N- (P5) and more mature P/Q-type currents (around/after hearing onset) may contribute to the impaired morphology and function of endbulb synapses in α2δ3-deficient mice.
Collapse
Affiliation(s)
- Friederike Stephani
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Veronika Scheuer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Wenying Wang
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
12
|
Kearney G, Zorrilla de San Martín J, Vattino LG, Elgoyhen AB, Wedemeyer C, Katz E. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse. J Neurosci 2019; 39:3360-3375. [PMID: 30755493 PMCID: PMC6495135 DOI: 10.1523/jneurosci.2746-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the CNS. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day 0 (P0) to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins. To evaluate whether there are associated changes in the properties of ACh release during this period, we used a cochlear preparation from mice of either sex at P4, P6-P7, and P9-P11 and monitored transmitter release from MOC terminals in voltage-clamped IHCs in the whole-cell configuration. The quantum content increased 5.6× from P4 to P9-P11 due to increases in the size and replenishment rate of the readily releasable pool of synaptic vesicles without changes in their probability of release or quantum size. This strengthening in transmission was accompanied by changes in short-term plasticity properties, which switched from facilitation at P4 to depression at P9-P11. We have previously shown that at P9-P11, ACh release is supported by P/Q- and N-type voltage-gated calcium channels (VGCCs) and negatively regulated by BK potassium channels activated by Ca2+ influx through L-type VGCCs. We now show that at P4 and P6-P7, release is mediated by P/Q-, R- and L-type VGCCs. Interestingly, L-type VGCCs have a dual role: they both support release and fuel BK channels, suggesting that at immature stages presynaptic proteins involved in release are less compartmentalized.SIGNIFICANCE STATEMENT During postnatal development before the onset of hearing, cochlear inner hair cells (IHCs) present spontaneous Ca2+ action potentials that release glutamate at the first auditory synapse in the absence of sound stimulation. The IHC Ca2+ action potential frequency pattern, which is crucial for the correct establishment and function of the auditory system, is regulated by the efferent medial olivocochlear (MOC) system that transiently innervates IHCs during this period. We show here that developmental changes in synaptic strength and synaptic plasticity properties at the MOC-IHC synapse upon MOC fiber activation at different frequencies might be crucial for tightly shaping the pattern of afferent activity during this critical period.
Collapse
Affiliation(s)
- Graciela Kearney
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier Zorrilla de San Martín
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas G Vattino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, 1121 Ciudad Autónoma de Buenos Aires, Argentina, and
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Ciudad Autónoma de Buenos Aires, Argentina,
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
|
14
|
Bucchia M, Merwin SJ, Re DB, Kariya S. Limitations and Challenges in Modeling Diseases Involving Spinal Motor Neuron Degeneration in Vitro. Front Cell Neurosci 2018; 12:61. [PMID: 29559895 PMCID: PMC5845677 DOI: 10.3389/fncel.2018.00061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic conditions involving degeneration of spinal motor neurons (MNs), such as amyotrophic lateral sclerosis, sarcopenia, and spinal cord injury, mostly occur in individuals whose spinal MNs are fully mature. There is currently no effective treatment to prevent death or promote axonal regeneration of the spinal MNs affected in these patients. To increase our understanding and find a cure for such conditions, easily controllable and monitorable cell culture models allow for a better dissection of certain molecular and cellular events that cannot be teased apart in whole organism models. To date, various types of spinal MN cultures have been described. Yet these models are all based on the use of immature neurons or neurons uncharacterized for their degree of maturity after being isolated and cultured. Additionally, studying only MNs cannot give a comprehensive and complete view of the neurodegenerative processes usually involving other cell types. To date, there is no confirmed in vitro model faithfully emulating disease or injury of the mature spinal MNs. In this review, we summarize the different limitations of currently available culture models, and discuss the challenges that have to be overcome for developing more reliable and translational platforms for the in vitro study of spinal MN degeneration.
Collapse
Affiliation(s)
- Monica Bucchia
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Samantha J Merwin
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University Medical Center, New York, NY, United States
| | - Shingo Kariya
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2018; 25:4703-4716. [PMID: 28173138 DOI: 10.1093/hmg/ddw297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of infant mortality. The disease is characterized by progressive muscle weakness and paralysis of axial and proximal limb muscles. It is caused by homozygous loss or mutation of the SMN1 gene, which codes for the Survival Motor Neuron (SMN) protein. In mouse models of the disease, neurotransmitter release is greatly impaired, but the molecular mechanisms of the synaptic dysfunction and the basis of the selective muscle vulnerability are unknown. In the present study, we investigated these open questions by comparing the molecular and functional properties of nerve terminals in severely and mildly affected muscles in the SMNΔ7 mouse model. We discovered that synaptotagmin-1 (Syt1) was developmentally downregulated in nerve terminals of highly affected muscles but not in low vulnerable muscles. Additionally, the expression levels of synaptotagmin-2 (Syt2), and its interacting protein, synaptic vesicle protein 2 (SV2) B, were reduced in proportion to the degree of muscle vulnerability while other synaptic proteins, such as syntaxin-1B (Stx1B) and synaptotagmin-7 (Syt7), were not affected. Consistently with the extremely low levels of both Syt-isoforms, and SV2B, in most affected neuromuscular synapses, the functional analysis of neurotransmission revealed highly reduced evoked release, altered short-term plasticity, low release probability, and inability to modulate normally the number of functional release sites. Together, we propose that the strong reduction of Syt2 and SV2B are key factors of the functional synaptic alteration and that the physiological downregulation of Syt1 plays a determinant role in muscle vulnerability in SMA.
Collapse
Affiliation(s)
- Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Mario Lopez-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| |
Collapse
|
16
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
17
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
18
|
Hurtado E, Cilleros V, Nadal L, Simó A, Obis T, Garcia N, Santafé MM, Tomàs M, Halievski K, Jordan CL, Lanuza MA, Tomàs J. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front Mol Neurosci 2017; 10:147. [PMID: 28572757 PMCID: PMC5436293 DOI: 10.3389/fnmol.2017.00147] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/01/2017] [Indexed: 01/09/2023] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | | | - Cynthia L Jordan
- Neuroscience Program, Michigan State UniversityMichigan, MI, United States
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
19
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
20
|
Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 2016; 6:27935. [PMID: 27321892 PMCID: PMC4913281 DOI: 10.1038/srep27935] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022] Open
Abstract
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Collapse
|
21
|
Shakirzyanova A, Valeeva G, Giniatullin A, Naumenko N, Fulle S, Akulov A, Atalay M, Nikolsky E, Giniatullin R. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions. Neurobiol Aging 2016; 38:73-81. [DOI: 10.1016/j.neurobiolaging.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
|
22
|
Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels. Proc Natl Acad Sci U S A 2016; 113:1068-73. [PMID: 26755585 DOI: 10.1073/pnas.1524650113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.
Collapse
|
23
|
Inchauspe CG, Pilati N, Di Guilmi MN, Urbano FJ, Ferrari MD, van den Maagdenberg AMJM, Forsythe ID, Uchitel OD. Familial hemiplegic migraine type-1 mutated cav2.1 calcium channels alter inhibitory and excitatory synaptic transmission in the lateral superior olive of mice. Hear Res 2014; 319:56-68. [PMID: 25481823 DOI: 10.1016/j.heares.2014.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM pathology.
Collapse
Affiliation(s)
- Carlota González Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | - Nadia Pilati
- Dept Cell Physiology & Pharmacology, University of Leicester, LE1 9HN, UK.
| | - Mariano N Di Guilmi
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Francisco J Urbano
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ian D Forsythe
- Dept Cell Physiology & Pharmacology, University of Leicester, LE1 9HN, UK
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
24
|
Katz E, Elgoyhen AB. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front Syst Neurosci 2014; 8:224. [PMID: 25520631 PMCID: PMC4251319 DOI: 10.3389/fnsys.2014.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern.
Collapse
Affiliation(s)
- Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Departamento de Fisiología, Biología Molecular y Celular "Prof. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
25
|
Chand KK, Lee KM, Schenning MP, Lavidis NA, Noakes PG. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J Physiol 2014; 593:245-65. [PMID: 25556799 DOI: 10.1113/jphysiol.2014.284133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Neuromuscular junctions from β2-laminin-deficient mice exhibit lower levels of calcium sensitivity. Loss of β2-laminin leads to a failure in switching from N- to P/Q-type voltage-gated calcium channel (VGCC)-mediated transmitter release that normally occurs with neuromuscular junction maturation. The motor nerve terminals from β2-laminin-deficient mice fail to up-regulate the expression of P/Q-type VGCCs clusters and down-regulate N-type VGCCs clusters, as they mature. There is decreased co-localisation of presynaptic specialisations in β2-laminin-deficient neuromuscular junctions as a consequence of lesser P/Q-type VGCC expression. These findings support the idea that β2-laminin is critical in the organisation and maintenance of active zones at the neuromuscular junction via its interaction with P/Q-type VGCCs, which aid in stabilisation of the synapse. β2-laminin is a key mediator in the differentiation and formation of the skeletal neuromuscular junction. Loss of β2-laminin results in significant structural and functional aberrations such as decreased number of active zones and reduced spontaneous release of transmitter. In vitro β2-laminin has been shown to bind directly to the pore forming subunit of P/Q-type voltage-gated calcium channels (VGCCs). Neurotransmission is initially mediated by N-type VGCCs, but by postnatal day 18 switches to P/Q-type VGCC dominance. The present study investigated the changes in neurotransmission during the switch from N- to P/Q-type VGCC-mediated transmitter release at β2-laminin-deficient junctions. Analysis of the relationship between quantal content and extracellular calcium concentrations demonstrated a decrease in the calcium sensitivity, but no change in calcium dependence at β2-laminin-deficient junctions. Electrophysiological studies on VGCC sub-types involved in transmitter release indicate N-type VGCCs remain the primary mediator of transmitter release at matured β2-laminin-deficient junctions. Immunohistochemical analyses displayed irregularly shaped and immature β2-laminin-deficient neuromuscular junctions when compared to matured wild-type junctions. β2-laminin-deficient junctions also maintained the presence of N-type VGCC clustering within the presynaptic membrane, which supported the functional findings of the present study. We conclude that β2-laminin is a key regulator in development of the NMJ, with its loss resulting in reduced transmitter release due to decreased calcium sensitivity stemming from a failure to switch from N- to P/Q-type VGCC-mediated synaptic transmission.
Collapse
Affiliation(s)
- Kirat K Chand
- School of Biomedical Sciences, The University of Queensland, St Lucia, 4067, Australia
| | | | | | | | | |
Collapse
|
26
|
Presynaptic NCAM is required for motor neurons to functionally expand their peripheral field of innervation in partially denervated muscles. J Neurosci 2014; 34:10497-510. [PMID: 25100585 DOI: 10.1523/jneurosci.0697-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The function of neural cell adhesion molecule (NCAM) expression in motor neurons during axonal sprouting and compensatory reinnervation was explored by partially denervating soleus muscles in mice lacking presynaptic NCAM (Hb9(cre)NCAM(flx)). In agreement with previous studies, the contractile force of muscles in wild-type (NCAM(+/+)) mice recovered completely 2 weeks after 75% of the motor innervation was removed because motor unit size increased by 2.5 times. In contrast, similarly denervated muscles in Hb9(cre)NCAM(flx) mice failed to recover the force lost due to the partial denervation because motor unit size did not change. Anatomical analysis indicated that 50% of soleus end plates were completely denervated 1-4 weeks post-partial denervation in Hb9(cre)NCAM(flx) mice, while another 25% were partially reinnervated. Synaptic vesicles (SVs) remained at extrasynaptic regions in Hb9(cre)NCAM(flx) mice rather than being distributed, as occurs normally, to newly reinnervated neuromuscular junctions (NMJs). Electrophysiological analysis revealed two populations of NMJs in partially denervated Hb9(cre)NCAM(flx) soleus muscles, one with high (mature) quantal content, and another with low (immature) quantal content. Extrasynaptic SVs in Hb9(cre)NCAM(flx) sprouts were associated with L-type voltage-dependent calcium channel (L-VDCC) immunoreactivity and maintained an immature, L-VDCC-dependent recycling phenotype. Moreover, acute nifedipine treatment potentiated neurotransmission at newly sprouted NMJs, while chronic intraperitoneal treatment with nifedipine during a period of synaptic consolidation enhanced functional motor unit expansion in the absence of presynaptic NCAM. We propose that presynaptic NCAM bridges a critical link between the SV cycle and the functional expansion of synaptic territory through the regulation of L-VDCCs.
Collapse
|
27
|
Activity-dependent neurotrophin signaling underlies developmental switch of Ca2+ channel subtypes mediating neurotransmitter release. J Neurosci 2014; 33:18755-63. [PMID: 24285882 DOI: 10.1523/jneurosci.3161-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At the nerve terminal, neurotransmitter release is triggered by Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs). During postnatal development, VGCC subtypes in the nerve terminal switch at many synapses. In immature rodent cerebella, N-type and P/Q-type VGCCs mediate GABAergic neurotransmission from Purkinje cells (PCs) to deep nuclear cells, but as animals mature, neurotransmission becomes entirely P/Q-type dependent. We reproduced this developmental switch in rat cerebellar slice culture to address the underlying mechanism. Chronic block of cerebellar neuronal activity with tetrodotoxin (TTX) in slice culture, or in vivo, reversed the switch, leaving neurotransmission predominantly N-type channel-dependent. Brain-derived neurotrophic factor or neurotrophin-4 rescued this TTX effect, whereas pharmacological blockade of neurotrophin receptors mimicked the TTX effect. In PC somata, unlike in presynaptic terminals, TTX had no effect on the proportion of Ca(2+) channel subtype currents. We conclude that neuronal activity activates the neurotrophin-TrkB signaling pathway, thereby causing the N-to-P/Q channel switch in presynaptic terminals.
Collapse
|
28
|
Nishimune H, Stanford JA, Mori Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 2013; 49:315-24. [PMID: 24122772 DOI: 10.1002/mus.24095] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
Abstract
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS 3051, HLSIC Room 2073, Kansas City, Kansas, 66160, USA
| | | | | |
Collapse
|
29
|
Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission. J Neurosci 2013; 33:7384-92. [PMID: 23616544 DOI: 10.1523/jneurosci.5839-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA. However, positional cloning of a mutant line with compromised neuromuscular function identified a mutation in a P/Q- rather than N-type channel. Cloning and heterologous expression of this P/Q-type channel confirmed a block by ω-conotoxin GVIA raising the likelihood that all vertebrates, including frog, use the P/Q-type calcium channel for neuromuscular transmission. In addition, our P/Q defective mutant line offered a means of testing the ability of roscovitine, known to potentiate frog neuromuscular transmission, to mediate behavioral and functional rescue. Acute treatment led to rapid improvement of both, pointing to potential therapeutic benefit for myasthenic disorders involving calcium channel dysfunction.
Collapse
|
30
|
Stable respiratory activity requires both P/Q-type and N-type voltage-gated calcium channels. J Neurosci 2013; 33:3633-45. [PMID: 23426690 DOI: 10.1523/jneurosci.6390-11.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P/Q-type voltage-gated calcium channels (Ca(v)2.1) play critical presynaptic and postsynaptic roles throughout the nervous system and have been implicated in a variety of neurological disorders. Here we report that mice with a genetic ablation of the Ca(v)2.1 pore-forming α(1A) subunit (α(1A)⁻/⁻) encoded by CACNA1a (Jun et al., 1999) suffer during postnatal development from increasing breathing disturbances that lead ultimately to death. Breathing abnormalities include decreased minute ventilation and a specific loss of sighs, which was associated with lung atelectasis. Similar respiratory alterations were preserved in the isolated in vitro brainstem slice preparation containing the pre-Bötzinger complex. The loss of Ca(v)2.1 was associated with an alteration in the functional dependency on N-type calcium channels (Ca(v)2.2). Blocking N-type calcium channels with conotoxin GVIA had only minor effects on respiratory activity in slices from control (CT) littermates, but abolished respiratory activity in all slices from α(1A)⁻/⁻ mice. The amplitude of evoked EPSPs was smaller in inspiratory neurons from α(1A)⁻/⁻ mice compared with CTs. Conotoxin GVIA abolished all EPSPs in inspiratory neurons from α(1A)⁻/⁻ mice, while the EPSP amplitude was reduced by only 30% in CT mice. Moreover, neuromodulation was significantly altered as muscarine abolished respiratory network activity in α(1A)⁻/⁻ mice but not in CT mice. We conclude that excitatory synaptic transmission dependent on N-type and P/Q-type calcium channels is required for stable breathing and sighing. In the absence of P/Q-type calcium channels, breathing, sighing, and neuromodulation are severely compromised, leading to early mortality.
Collapse
|
31
|
Nishimune H. Active zones of mammalian neuromuscular junctions: formation, density, and aging. Ann N Y Acad Sci 2013; 1274:24-32. [PMID: 23252894 DOI: 10.1111/j.1749-6632.2012.06836.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, 66160, USA.
| |
Collapse
|
32
|
Cano R, Torres-Benito L, Tejero R, Biea AI, Ruiz R, Betz WJ, Tabares L. Structural and functional maturation of active zones in large synapses. Mol Neurobiol 2012; 47:209-19. [PMID: 22992975 DOI: 10.1007/s12035-012-8347-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 11/29/2022]
Abstract
Virtually all functions of the nervous system rely upon synapses, the sites of communication between neurons and between neurons and other cells. Synapses are complex structures, each one comprising hundreds of different types of molecules working in concert. They are organized by adhesive and scaffolding molecules that align presynaptic vesicular release sites, namely, active zones, with postsynaptic neurotransmitter receptors, thereby allowing rapid and reliable intercellular communication. Most synapses are relatively small, and acting alone exerts little effect on their postsynaptic partners. Some, however, are much larger and stronger, reliably driving the postsynaptic cell to its action potential threshold, acting essentially as electrical relays of excitation. These large synapses are among the best understood, and two of these are the subject of this review, namely, the vertebrate neuromuscular junction and the calyx of Held synapse in the mammalian auditory pathway of the brain stem. Both synapses undergo through a complex and well-coordinated maturation process, during which time the molecular elements and the biophysical properties of the secretory machinery are continuously adjusted to the synapse size and to the functional requirements. We here review the morphological and functional changes occurring during postnatal maturation, noting particular similarities and differences between these two large synapses.
Collapse
Affiliation(s)
- Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sanchez Pizjuan 4, 41009, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Nishimune H, Numata T, Chen J, Aoki Y, Wang Y, Starr MP, Mori Y, Stanford JA. Active zone protein Bassoon co-localizes with presynaptic calcium channel, modifies channel function, and recovers from aging related loss by exercise. PLoS One 2012; 7:e38029. [PMID: 22701595 PMCID: PMC3368936 DOI: 10.1371/journal.pone.0038029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/02/2012] [Indexed: 12/03/2022] Open
Abstract
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca2+ influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.
Collapse
MESH Headings
- Aging/metabolism
- Aging/physiology
- Animals
- Calcium/metabolism
- Calcium Channels, N-Type
- Calcium Channels, P-Type/genetics
- Calcium Channels, P-Type/metabolism
- Calcium Channels, Q-Type/genetics
- Calcium Channels, Q-Type/metabolism
- Cell Line
- Cricetinae
- Gene Expression Regulation/physiology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/physiology
- Patch-Clamp Techniques
- Physical Conditioning, Animal/physiology
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, Kansas, United States of America
- * E-mail: (HN); (YM); (JAS)
| | - Tomohiro Numata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Jie Chen
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, Kansas, United States of America
| | - Yudai Aoki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| | - Yonghong Wang
- Department of Molecular & Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, United States of America
| | - Miranda P. Starr
- Department of Molecular & Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, United States of America
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
- * E-mail: (HN); (YM); (JAS)
| | - John A. Stanford
- Department of Molecular & Integrative Physiology, University of Kansas Medical School, Kansas City, Kansas, United States of America
- * E-mail: (HN); (YM); (JAS)
| |
Collapse
|
34
|
Abbinanti MD, Harris-Warrick RM. Serotonin modulates multiple calcium current subtypes in commissural interneurons of the neonatal mouse. J Neurophysiol 2012; 107:2212-9. [PMID: 22279189 DOI: 10.1152/jn.00768.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium currents are critical to the intrinsic properties of neurons and the networks that contain them. These currents make attractive targets for neuromodulation. Here, we examine the serotonergic modulation of specific calcium current subtypes in neonatal (P0-5) intersegmental commissural interneurons (CINs), members of the hindlimb locomotor central pattern generator in the mouse spinal cord. Previous work in our lab showed that serotonin (5-HT) excited CINs in part by reducing a calcium current and thus indirectly reducing the calcium-activated potassium current (Diaz-Rios et al. 2007). We have determined which calcium currents are targets of serotonin modulation. Utilizing whole cell voltage clamp and toxins to specific calcium current subtypes, we found that N- and P/Q-type currents comprise over 60% of the overall calcium current. Blockade of each of these subtypes alone with either ω-conotoxin GVIA or ω-agatoxin TK was unable to occlude 5-HT's reduction of the calcium current. However, coapplication of both blockers together fully occluded 5-HT's reduction of the calcium current. Thus, 5-HT decreases both N- and P/Q-type calcium current to excite neonatal CINs.
Collapse
Affiliation(s)
- Matthew D Abbinanti
- Dept. of Neurobiology and Behavior, Mudd Hall, Cornell Univ., Ithaca, NY 14853, USA
| | | |
Collapse
|
35
|
Nishimune H. Molecular mechanism of active zone organization at vertebrate neuromuscular junctions. Mol Neurobiol 2011; 45:1-16. [PMID: 22135013 DOI: 10.1007/s12035-011-8216-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 02/08/2023]
Abstract
Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, 3901 Rainbow Blvd., MS 3051, HLSIC Rm. 2073, Kansas City, KS 66160, USA.
| |
Collapse
|
36
|
Gonzalez LE, Kotler ML, Vattino LG, Conti E, Reisin RC, Mulatz KJ, Snutch TP, Uchitel OD. Amyotrophic lateral sclerosis-immunoglobulins selectively interact with neuromuscular junctions expressing P/Q-type calcium channels. J Neurochem 2011; 119:826-38. [PMID: 21883225 DOI: 10.1111/j.1471-4159.2011.07462.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca(V) 2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca(2+)) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca(V) 2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca(2+) channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent.
Collapse
Affiliation(s)
- Laura E Gonzalez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, IFIBYNE-CONICET, UBA, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Autoimmunity in amyotrophic lateral sclerosis: past and present. Neurol Res Int 2011; 2011:497080. [PMID: 21826267 PMCID: PMC3150148 DOI: 10.1155/2011/497080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting particularly motor neurons for which no cure or effective treatment is available. Although the cause of ALS remains unknown, accumulative evidence suggests an autoimmune mechanism of pathogenesis. In this paper, we will summarize the current research related to autoimmunity in the sporadic form of ALS and discuss the potential underlying pathogenic mechanisms and perspectives. Presented data supports the view that humoral immune responses against motor nerve terminals can initiate a series of physiological changes leading to alteration of calcium homeostasis. In turn, loss of calcium homeostasis may induce neuronal death through apoptotic signaling pathways. Additional approaches identifying specific molecular features of this hypothesis are required, which will hopefully allow us to develop techniques of early diagnosis and effective therapies.
Collapse
|
38
|
Giugovaz-Tropper B, González-Inchauspe C, Di Guilmi MN, Urbano FJ, Forsythe ID, Uchitel OD. P/Q-type calcium channel ablation in a mice glycinergic synapse mediated by multiple types of Ca²+ channels alters transmitter release and short term plasticity. Neuroscience 2011; 192:219-30. [PMID: 21718757 DOI: 10.1016/j.neuroscience.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
Ca(v)2.1 channels (P/Q-type) play a prominent role in controlling neurotransmitter release. Transgenic mice in which the α1A pore-forming subunit of Ca(v)2.1 channels is ablated (KO) provide a powerful tool to study Ca(v)2.1 function in synaptic transmission in vivo. Whole-cell patch clamp was used to measure inhibitory glycinergic postsynaptic currents (IPSCs) from the lateral superior olive (LSO). Comparing wild-type (WT) and KO mice, we investigated the relevance of P/Q-type calcium channels at a glycinergic synapse mediated by multiple types of Ca(2+) channels, in opposition to synapses where only this type of Ca(2+) channels are in charge of transmitter release. We found that in KO mice, N-type and L-type Ca(2+) channels control synaptic transmission, resulting in a functional but reduced glycinergic transmitter release. Pair pulse facilitation of synaptic currents is retained in KO mice, even when synaptic transmission is driven by either N or L-type calcium channels alone, in contrast with lack of this phenomenon in other synapses which are exclusively mediated by P/Q-type channels. Thus, pointing a difference between P/Q- and N-type channels present in single or multiple types of calcium channels driven synapses. Significant alterations in short-term synaptic plasticity were observed. KO mice exhibited a stronger short term depression (STD) of IPSCs during repetitive stimulation at high frequency and recovered with a larger time constant compared to WT mice. Finally, transmitter release at the LSO synapse from KO mice was strongly modulated by presynaptic GTP-binding protein-coupled receptor γ-aminobutyric acid type B (GABA(B)).
Collapse
Affiliation(s)
- B Giugovaz-Tropper
- Instituto de Fisiología, Biología molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Calcium channels link the muscle-derived synapse organizer laminin β2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J Neurosci 2011; 31:512-25. [PMID: 21228161 DOI: 10.1523/jneurosci.3771-10.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse formation requires the organization of presynaptic active zones, the synaptic vesicle release sites, in precise apposition to postsynaptic neurotransmitter receptor clusters; however, the molecular mechanisms responsible for these processes remain unclear. Here, we show that P/Q-type and N-type voltage-dependent calcium channels (VDCCs) play essential roles as scaffolding proteins in the organization of presynaptic active zones. The neuromuscular junction of double knock-out mice for P/Q- and N-type VDCCs displayed a normal size but had significantly reduced numbers of active zones and docked vesicles and featured an attenuation of the active-zone proteins Bassoon, Piccolo, and CAST/Erc2. Consistent with this phenotype, direct interactions of the VDCC β1b or β4 subunits and the active zone-specific proteins Bassoon or CAST/Erc2 were confirmed by immunoprecipitation. A decrease in the number of active zones caused by a loss of presynaptic VDCCs resembled the pathological conditions observed in the autoimmune neuromuscular disorder Lambert-Eaton myasthenic syndrome. At the synaptic cleft of double knock-out mice, we also observed a decrease of the synaptic organizer laminin β2 protein, an extracellular ligand of P/Q- and N-type VDCCs. However, the transcription level of laminin β2 did not decrease in double knock-out mice, suggesting that the synaptic accumulation of laminin β2 protein required its interaction with presynaptic VDCCs. These results suggest that presynaptic VDCCs link the target-derived synapse organizer laminin β2 to active-zone proteins and function as scaffolding proteins to anchor active-zone proteins to the presynaptic membrane.
Collapse
|
40
|
Wersinger E, Fuchs PA. Modulation of hair cell efferents. Hear Res 2010; 279:1-12. [PMID: 21187136 DOI: 10.1016/j.heares.2010.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 02/01/2023]
Abstract
Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic α9α10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells.
Collapse
Affiliation(s)
- Eric Wersinger
- The Center for Hearing and Balance, Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
41
|
Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse. J Neurosci 2010; 30:12157-67. [PMID: 20826678 DOI: 10.1523/jneurosci.2541-10.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast, and inhibitory. This efferent synapse is mediated by the nicotinic alpha9alpha10 receptor coupled to the activation of SK2 Ca(2+)-activated K(+) channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q- and N-type voltage-gated calcium channels (VGCCs), omega-agatoxin IVA and omega-conotoxin GVIA, respectively, we show that Ca(2+) entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca(2+) entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca(2+)-activated K(+) channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels that are known to curtail the duration of the terminal action potential in several types of neurons.
Collapse
|
42
|
Zhang XL, Gold MS. Dihydropyridine block of voltage-dependent K+ currents in rat dorsal root ganglion neurons. Neuroscience 2009; 161:184-94. [PMID: 19289157 DOI: 10.1016/j.neuroscience.2009.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
The dihydropyridines nifedipine, nimodipine and Bay K 8644 are widely used as pharmacological tools to assess the contribution of L-type voltage-gated Ca(2+) channels to a variety of neuronal processes including synaptic transmission, excitability and second messenger signaling. These compounds are still used in neuronal preparations despite evidence from cardiac tissue and heterologous expression systems that they block several voltage-dependent K(+) (Kv) channels. Both because these compounds have been used to assess the relative contribution of L-type Ca(2+) channels to several different processes in dorsal root ganglion (DRG) neurons and because a relatively wide variety of Kv channels present in other neuronal populations is present in DRG neurons, we determined the extent to which dihydropyridines block Kv currents in these neurons. Standard whole cell patch clamp techniques were used to study acutely disassociated adult rat DRG neurons. All three dihydropyridines tested blocked Kv currents in DRG neurons; IC(50) values (concentration resulting in an inhibition that is 50% of maximum) for nifedipine and nimodipine-induced block of sustained Kv currents were 14.5 and 6.6 microM, respectively. The magnitude of sustained current block was 44+/-1.6%, 60+/-2%, and 56+/-2.9% with 10 microM nifedipine, nimodipine and Bay K 8644, respectively. Current block was occluded by neither 4-aminopyridine (5 mM) nor tetraethylammonium (135 mM). Dihydropyridine-induced block of Kv currents was not associated with a shift in the voltage-dependence of current activation or inactivation, the recovery from inactivation, or voltage dependent block. However, there was a small use-dependence to the dihydropyridine-induced block. Our results suggest that several types of Kv channels in DRG neurons are blocked by mechanisms distinct from those underlying block of Kv channels in cardiac myocytes. Importantly, our results suggest that if investigators wish to explore the contribution of L-type Ca(2+) channels to neuronal function, they should consider alternative strategies for the manipulation of these channels than the use of dihydropyridines.
Collapse
Affiliation(s)
- X-L Zhang
- Department of Anesthesiology, University of Pittsburgh, 3500 Terrace Street, Room E1440 BST, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
43
|
Marine Toxins Potently Affecting Neurotransmitter Release. MARINE TOXINS AS RESEARCH TOOLS 2009; 46:159-86. [DOI: 10.1007/978-3-540-87895-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Ruiz R, Casañas JJ, Südhof TC, Tabares L. Cysteine string protein-alpha is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse. Eur J Neurosci 2008; 27:3118-31. [PMID: 18598257 DOI: 10.1111/j.1460-9568.2008.06301.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine string protein (CSPalpha) is a synaptic vesicle protein present in most central and peripheral nervous system synapses. Previous studies demonstrated that the deletion of CSPalpha results in postnatal sensorial and motor impairment and premature lethality. To understand the participation of CSPalpha in neural function in vertebrates, we have studied the properties of synaptic transmission of motor terminals in wild-type and CSPalpha knockout mice. Our results demonstrate that, in the absence of CSPalpha, fast Ca2+-triggered release was not affected at postnatal day (P)14 but was dramatically reduced at P18 and P30 without a change in release kinetics. Although mutant terminals also exhibited a reduction in functional vesicle pool size by P30, further analysis showed that neurotransmission could be 'rescued' by high extracellular [Ca2+] or by the presence of a phorbol ester, suggesting that an impairment in the fusion machinery, or in vesicle recycling, was not the primary cause of the dysfunction of this synapse. The specific shift to the right of the Ca2+ dependence of synchronous release, and the lineal dependence of secretion on extracellular [Ca2+] in mutant terminals after P18, suggests that CSPalpha is indispensable for a normal Ca2+ sensitivity of exocytosis in vertebrate mature synapses.
Collapse
Affiliation(s)
- R Ruiz
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sanchez Pizjuan 4, 41009 Seville, Spain
| | | | | | | |
Collapse
|
45
|
Urbano FJ, Pagani MR, Uchitel OD. Calcium channels, neuromuscular synaptic transmission and neurological diseases. J Neuroimmunol 2008; 201-202:136-44. [PMID: 18678414 DOI: 10.1016/j.jneuroim.2008.06.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 01/20/2023]
Abstract
Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.
Collapse
Affiliation(s)
- Francisco J Urbano
- Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología y Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428-Buenos Aires, Argentina
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
47
|
Inchauspe CG, Forsythe ID, Uchitel OD. Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. J Physiol 2007; 584:835-51. [PMID: 17823210 PMCID: PMC2277003 DOI: 10.1113/jphysiol.2007.139683] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
P/Q-type and N-type calcium channels mediate transmitter release at rapidly transmitting central synapses, but the reasons for the specific expression of one or the other in each particular synapse are not known. Using whole-cell patch clamping from in vitro slices of the auditory brainstem we have examined presynaptic calcium currents (I(pCa)) and glutamatergic excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse from transgenic mice in which the alpha(1A) pore-forming subunit of the P/Q-type Ca(2+) channels is ablated (KO). The power relationship between Ca(2+) influx and quantal output was studied by varying the number of Ca(2+) channels engaged in triggering release. Our results have shown that more overlapping Ca(2+) channel domains are required to trigger exocytosis when N-type replace P/Q-type calcium channels suggesting that P/Q type Ca(2+) channels are more tightly coupled to synaptic vesicles than N-type channels, a hypothesis that is verified by the decrease in EPSC amplitudes in KO synapses when the slow Ca(2+) buffer EGTA-AM was introduced into presynaptic calyces. Significant alterations in short-term synaptic plasticity were observed. Repetitive stimulation at high frequency generates short-term depression (STD) of EPSCs, which is not caused by presynaptic Ca(2+) current inactivation neither in WT or KO synapses. Recovery after STD is much slower in the KO than in the WT mice. Synapses from KO mice exhibit reduced or no EPSC paired-pulse facilitation and absence of facilitation in their presynaptic N-type Ca(2+) currents. Simultaneous pre- and postsynaptic double patch recordings indicate that presynaptic Ca(2+) current facilitation is the main determinant of facilitation of transmitter release. Finally, KO synapses reveal a stronger modulation of transmitter release by presynaptic GTP-binding protein-coupled receptors (gamma-aminobutyric acid type B receptors, GABA(B), and adenosine). In contrast, metabotropic glutamate receptors (mGluRs) are not functional at the synapses of these mice. These experiments reinforce the idea that presynaptic Ca(2+) channels expression may be tuned for speed and modulatory control through differential subtype expression.
Collapse
Affiliation(s)
- Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
48
|
Glitsch MD. Spontaneous neurotransmitter release and Ca2+--how spontaneous is spontaneous neurotransmitter release? Cell Calcium 2007; 43:9-15. [PMID: 17382386 DOI: 10.1016/j.ceca.2007.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/15/2022]
Abstract
Neurotransmitter release from neurons takes place at specialized structures called synapses. Action potential-evoked exocytosis requires Ca(2+) influx through voltage-gated Ca(2+) channels. Spontaneous vesicle fusion occurs both in the absence of action potentials and without any apparent stimulus and is hence thought to be Ca(2+)-independent. However, increasing evidence shows that this form of neurotransmitter discharge can be modulated by changes in intracellular Ca(2+) concentration, suggesting that it is not truly spontaneous. This idea is supported by the fact that spontaneous release can be modulated by interfering with proteins involved in the exocytotic process. Interestingly, modulation of spontaneous discharge at the level of the release machinery is not always accompanied by corresponding modulation of action potential-evoked release, suggesting that two independent processes may underlie spontaneous and action potential-evoked exocytosis, at least at some synapses. This provides an attractive model whereby cells can modulate the two forms of neurotransmitter liberation, which often serve different physiological roles, independently of each other.
Collapse
Affiliation(s)
- Maike D Glitsch
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
49
|
Mann MA, Das S, Zhang J, Wagner M, Fischbach GD. Neuregulin effect on quantal content dissociated from effect on miniature endplate potential amplitude. J Neurophysiol 2006; 96:671-6. [PMID: 16835362 DOI: 10.1152/jn.00225.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Members of the neuregulin family of signaling proteins increase transcription of acetylcholine receptor (AChR) subunit genes in muscle fibers and the number of AChRs in the muscle membrane. In adult mice heterozygous for targeted deletion of type I neuregulins (Ig-NRG(+/-)), postsynaptic AChR density was decreased and transmitter release was increased. We examined the relationship between functional AChR density and ACh release in postnatal day 7 (P7), P14, and adult NRG-deficient mice. Here we report that changes in postsynaptic sensitivity and transmitter release are not temporally coupled during postnatal development in Ig-NRG-deficient mice. Although miniature endplate potential (MEPP) amplitude was decreased compared with control in P7 Ig-NRG(+/-) mice, quantum content was not increased. Quantum content was increased in adult heterozygotes despite normal MEPP amplitudes. Thus, during postnatal maturation, both quantal size and quantum content were influenced by decreased Ig-NRG expression, although the effects were dissociated in time.
Collapse
Affiliation(s)
- Mary Anne Mann
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
50
|
Pardo NE, Hajela RK, Atchison WD. Acetylcholine release at neuromuscular junctions of adult tottering mice is controlled by N-(cav2.2) and R-type (cav2.3) but not L-type (cav1.2) Ca2+ channels. J Pharmacol Exp Ther 2006; 319:1009-20. [PMID: 16982704 DOI: 10.1124/jpet.106.108670] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mutation in the alpha(1A) subunit gene of the P/Q-type (Ca(v)2.1) Ca(2+) channel present in tottering (tg) mice causes ataxia and motor seizures that resemble absence epilepsy in humans. P/Q-type Ca(2+)channels are primarily involved in acetylcholine (ACh) release at mammalian neuromuscular junctions. Unmasking of L-type (Ca(v)1.1-1.2) Ca(2+) channels occurs in cerebellar Purkinje cells of tg mice. However, whether L-type Ca(2+) channels are also up-regulated at neuromuscular junctions of tg mice is unknown. We characterized thoroughly the pharmacological sensitivity of the Ca(2+) channels, which control ACh release at adult tg neuromuscular junctions. Block of N- and R-type (Ca(v)2.2-2.3), but not L-type Ca(2+) channels, significantly reduced quantal content of end-plate potentials in tg preparations. Neither resting nor KCl-evoked miniature end-plate potential frequency differed significantly between tg and wild type (WT). Immunolabeling of Ca(2+) channel subunits alpha(1A), alpha(1B), alpha(1C), and alpha(1E) revealed an apparent increase of alpha(1B), and alpha(1E) staining, at tg but not WT neuromuscular junctions. This presumably compensates for the deficit of P/Q-type Ca(2+)channels, which localized presynaptically at WT neuromuscular junctions. No alpha(1C) subunits juxtaposed with pre- or postsynaptic markers at either WT or tg neuromuscular junctions. Thus, in adult tg mice, immunocytochemical and electrophysiological data indicate that N- and R-type channels both assume control of ACh release at motor nerve terminals. Recruitment of alternate subtypes of Ca(2+) channels to control transmitter release seems to represent a commonly occurring method of neuronal plasticity. However, it is unclear which conditions underlie recruitment of Ca(v)2 as opposed to Ca(v)1-type Ca(2+) channels.
Collapse
Affiliation(s)
- Nicole E Pardo
- Department of Pharmacology and Toxicology, Michigan State University, B-331 Life Sciences Bldg., East Lansing, MI 48824-1317, USA
| | | | | |
Collapse
|