1
|
Matthews J, Pisauro MA, Jurgelis M, Müller T, Vassena E, Chong TTJ, Apps MAJ. Computational mechanisms underlying the dynamics of physical and cognitive fatigue. Cognition 2023; 240:105603. [PMID: 37647742 DOI: 10.1016/j.cognition.2023.105603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
The willingness to exert effort for reward is essential but comes at the cost of fatigue. Theories suggest fatigue increases after both physical and cognitive exertion, subsequently reducing the motivation to exert effort. Yet a mechanistic understanding of how this happens on a moment-to-moment basis, and whether mechanisms are common to both mental and physical effort, is lacking. In two studies, participants reported momentary (trial-by-trial) ratings of fatigue during an effort-based decision-making task requiring either physical (grip-force) or cognitive (mental arithmetic) effort. Using a novel computational model, we show that fatigue fluctuates from trial-to-trial as a function of exerted effort and predicts subsequent choices. This mechanism was shared across the domains. Selective to the cognitive domain, committing errors also induced momentary increases in feelings of fatigue. These findings provide insight into the computations underlying the influence of effortful exertion on fatigue and motivation, in both physical and cognitive domains.
Collapse
Affiliation(s)
- Julian Matthews
- RIKEN Center for Brain Science, Wako-shi, Saitama 351-0106, Japan; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia
| | - M Andrea Pisauro
- Centre for Human Brain Health, School of Psychology, University of Birmingham, United Kingdom; Institute for Mental Health, School of Psychology, University of Birmingham, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom
| | - Mindaugas Jurgelis
- Department of Experimental Psychology, University of Oxford, United Kingdom; School of Psychological Sciences, Monash University, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia
| | - Tanja Müller
- Department of Experimental Psychology, University of Oxford, United Kingdom; Zurich Center for Neuroeconomics, Department of Economics, University of Zürich, Switzerland
| | - Eliana Vassena
- Behavioural Science Institute, Radbound University, Netherlands
| | - Trevor T-J Chong
- School of Psychological Sciences, Monash University, Victoria 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia.
| | - Matthew A J Apps
- Centre for Human Brain Health, School of Psychology, University of Birmingham, United Kingdom; Institute for Mental Health, School of Psychology, University of Birmingham, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom; Christ Church, University of Oxford, United Kingdom.
| |
Collapse
|
2
|
Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol 2023; 325:H675-H686. [PMID: 37505474 PMCID: PMC10659323 DOI: 10.1152/ajpheart.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The cardiovascular response to exercise is largely determined by neurocirculatory control mechanisms that help to raise blood pressure and modulate vascular resistance which, in concert with regional vasodilatory mechanisms, promote blood flow to active muscle and organs. These neurocirculatory control mechanisms include a feedforward mechanism, known as central command, and three feedback mechanisms, namely, 1) the baroreflex, 2) the exercise pressor reflex, and 3) the arterial chemoreflex. The hemodynamic consequences of these control mechanisms result from their influence on the autonomic nervous system and subsequent alterations in cardiac output and vascular resistance. Although stimulation of the baroreflex inhibits sympathetic outflow and facilitates parasympathetic activity, central command, the exercise pressor reflex, and the arterial chemoreflex facilitate sympathetic activation and inhibit parasympathetic drive. Despite considerable understanding of the cardiovascular consequences of each of these mechanisms in isolation, the circulatory impact of their interaction, which occurs when various control systems are simultaneously activated (e.g., during exercise at altitude), has only recently been recognized. Although aging and cardiovascular disease (e.g., heart failure, hypertension) have both been recognized to alter the hemodynamic consequences of these regulatory systems, this review is limited to provide a brief overview on the action and interaction of neurocirculatory control mechanisms in health.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Angius L, Pageaux B, Crisafulli A, Hopker J, Marcora SM. Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors. Eur J Appl Physiol 2021; 122:141-155. [PMID: 34596759 PMCID: PMC8748374 DOI: 10.1007/s00421-021-04815-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Purpose This study investigated the effect of ischemic preconditioning (IP) on metaboreflex activation following dynamic leg extension exercise in a group of healthy participants. Method Seventeen healthy participants were recruited. IP and SHAM treatments (3 × 5 min cuff occlusion at 220 mmHg or 20 mmHg, respectively) were administered in a randomized order to the upper part of exercising leg’s thigh only. Muscle pain intensity (MP) and pain pressure threshold (PPT) were monitored while administrating IP and SHAM treatments. After 3 min of leg extension exercise at 70% of the maximal workload, a post-exercise muscle ischemia (PEMI) was performed to monitor the discharge group III/IV muscle afferents via metaboreflex activation. Hemodynamics were continuously recorded. MP was monitored during exercise and PEMI. Results IP significantly reduced mean arterial pressure compared to SHAM during metaboreflex activation (mean ± SD, 109.52 ± 7.25 vs. 102.36 ± 7.89 mmHg) which was probably the consequence of a reduced end diastolic volume (mean ± SD, 113.09 ± 14.25 vs. 102.42 ± 9.38 ml). MP was significantly higher during the IP compared to SHAM treatment, while no significant differences in PPT were found. MP did not change during exercise, but it was significantly lower during the PEMI following IP (5.10 ± 1.29 vs. 4.00 ± 1.54). Conclusion Our study demonstrated that IP reduces hemodynamic response during metaboreflex activation, while no effect on MP and PPT were found. The reduction in hemodynamic response was likely the consequence of a blunted venous return.
Collapse
Affiliation(s)
- Luca Angius
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK.
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK.
| | - Benjamin Pageaux
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médicine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Antonio Crisafulli
- The Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | - James Hopker
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Samuele Maria Marcora
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Kozlowski B, Pageaux B, Hubbard EF, St Peters B, Millar PJ, Power GA. Perception of effort during an isometric contraction is influenced by prior muscle lengthening or shortening. Eur J Appl Physiol 2021; 121:2531-2542. [PMID: 34080065 DOI: 10.1007/s00421-021-04728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Following a shortening or lengthening muscle contraction, torque produced in the isometric steady state is lower (residual torque depression; rTD) or higher (residual torque enhancement; rTE), respectively, compared to a purely isometric contraction at the same final muscle length and level of activation. This is referred to as the history dependence of force. When matching a given torque level, there is greater muscle activation (electromyography; EMG) following shortening and less activation following lengthening. Owing to these differences in neuromuscular activation, it is unclear whether perception of effort is altered by the history dependence of force during plantar-flexion. METHODS Experiment 1 tested whether perception of effort differed between the rTD and rTE state when torque was matched. Experiment 2 tested whether perception of effort differed between the rTD and rTE state when EMG was matched. Finally, experiment 3 tested whether EMG differed between the rTD and rTE state when perception of effort was matched. RESULTS When torque was matched, both EMG and perception of effort were higher in the rTD compared to rTE state. When EMG was matched, torque was lower in the rTD compared to rTE state while perception of effort did not differ between the two states. When perception of effort was matched, torque was lower in the rTD compared to rTE state and EMG did not differ between the two states. CONCLUSION The combined results from these experiments indicate that the history dependence of force alters one's perception of effort, dependent on the level of motor command.
Collapse
Affiliation(s)
- Benjamin Kozlowski
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
- Temerty Faculty of Medicine, Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Benjamin Pageaux
- École de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| | - Emma F Hubbard
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Benjamin St Peters
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A Power
- Neuromechanical Performance Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Morel B, Lapole T, Liotard C, Hautier C. Critical Peripheral Fatigue Thresholds Among Different Force-Velocity Conditions: An Individual-Based Model Approach. Front Physiol 2019; 10:875. [PMID: 31379595 PMCID: PMC6646582 DOI: 10.3389/fphys.2019.00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
During high intensity exercise, metabosensitive muscle afferents are thought to inhibit the motor drive command to restrict the level of peripheral fatigue to an individual's critical threshold. No evidence exists of an individual relationship between peripheral fatigue and the decrease in voluntary activation reached after prolonged all-out exercise. Moreover, there is no explanation for the previously reported large decrease in voluntary activation despite low metabolic stress during high force contractions. Thirteen active men completed two maximal intensity isokinetic knee extension tests (160 contractions) under conditions of low force - high velocity and high force - low velocity. Neuromuscular testing including maximal torque, evoked torque and voluntary activation, was done every 20 contractions. The exponential modeling of these variables over time allowed us to predict the stable state (asymptote) and the rate of decrease (curvature constant). For both high and low force contractions the evoked torque and voluntary activation asymptotes were negatively correlated (R 2 = 0.49 and R 2 = 0.46, respectively). The evoked torque asymptotes of the high and low force conditions were positively correlated (R 2 = 0.49). For the high force contractions, the evoked torque and voluntary activation curvature constant were negatively correlated (R 2 = 0.43). These results support the idea that a restrained central motor drive keeps peripheral fatigue under this threshold. Furthermore, an individual would show similar fatigue sensibility regardless of the force generated. These data also suggest that the decrease in voluntary activation might not have been triggered by peripheral perturbations during the first high force contractions.
Collapse
Affiliation(s)
- Baptiste Morel
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France.,Movement-Interactions-Performance, MIP, EA 4334, F-72000, Le Mans Université, Le Mans, France
| | - Thomas Lapole
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France
| | - Cyril Liotard
- EA 7424, F-42023, Laboratoire Interuniversitaire de Biologie de la Motricité, Universite de Lyon, Université Jean Monnet Saint-Étienne, Saint-Étienne, France
| | - Christophe Hautier
- EA7424, Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
6
|
Filogonio R, Orsolini KF, Castro SA, Oda GM, Rocha GC, Tavares D, Abe AS, Leite CAC. Evaluation of the sequence method as a tool to assess spontaneous baroreflex in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:374-381. [DOI: 10.1002/jez.2273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Renato Filogonio
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Karina F. Orsolini
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Samanta A. Castro
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Gustavo M. Oda
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Gabriella C. Rocha
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Driele Tavares
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| | - Augusto S. Abe
- Department of Zoology; State University of São Paulo (UNESP); Rio Claro São Paulo Brazil
| | - Cléo A. C. Leite
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos São Paulo Brazil
| |
Collapse
|
7
|
Moralez G, Jouett NP, Tian J, Zimmerman MC, Bhella P, Raven PB. Effect of centrally acting angiotensin converting enzyme inhibitor on the exercise-induced increases in muscle sympathetic nerve activity. J Physiol 2018; 596:2315-2332. [PMID: 29635787 PMCID: PMC6002210 DOI: 10.1113/jp274697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS The arterial baroreflex's operating point pressure is reset upwards and rightwards from rest in direct relation to the increases in dynamic exercise intensity. The intraneural pathways and signalling mechanisms that lead to upwards and rightwards resetting of the operating point pressure, and hence the increases in central sympathetic outflow during exercise, remain to be identified. We tested the hypothesis that the central production of angiotensin II during dynamic exercise mediates the increases in sympathetic outflow and, therefore, the arterial baroreflex operating point pressure resetting during acute and prolonged dynamic exercise. The results identify that perindopril, a centrally acting angiotensin converting enzyme inhibitor, markedly attenuates the central sympathetic outflow during acute and prolonged dynamic exercise. ABSTRACT We tested the hypothesis that the signalling mechanisms associated with the dynamic exercise intensity related increases in muscle sympathetic nerve activity (MSNA) and arterial baroreflex resetting during exercise are located within the central nervous system. Participants performed three randomly ordered trials of 70° upright back-supported dynamic leg cycling after ingestion of placebo and two different lipid soluble angiotensin converting enzyme inhibitors (ACEi): perindopril (high lipid solubility), captopril (low lipid solubility). Repeated measurements of whole venous blood (n = 8), MSNA (n = 7) and arterial blood pressures (n = 14) were obtained at rest and during an acute (SS1) and prolonged (SS2) bout of steady state dynamic exercise. Arterial baroreflex function curves were modelled at rest and during exercise. Peripheral venous superoxide concentrations measured by electron spin resonance spectroscopy were elevated during exercise and were not altered by ACEi at rest (P ≥ 0.4) or during exercise (P ≥ 0.3). Baseline MSNA and mean arterial pressure were unchanged at rest (P ≥ 0.1; P ≥ 0.8, respectively). However, during both SS1 and SS2, the centrally acting ACEi perindopril attenuated MSNA compared to captopril and the placebo (P < 0.05). Arterial pressures at the operating point and threshold pressures were decreased with perindopril from baseline to SS1 with no further changes in the operating point pressure during SS2 under all three conditions. These data suggest that centrally acting ACEi is significantly more effective at attenuating the increase in the acute and prolonged exercise-induced increases in MSNA.
Collapse
Affiliation(s)
- Gilbert Moralez
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital Dallas and The University of Texas Southwestern Medical CenterDallasTXUSA
| | - Noah P. Jouett
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| | - Jun Tian
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Paul Bhella
- Department of Cardiac Imaging at the John Peter Smith Health NetworkFort WorthTXUSA
- Department of Internal MedicineTCU and UNTHSC School of MedicineFort WorthTXUSA
| | - Peter B. Raven
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
8
|
Asahara R, Endo K, Liang N, Matsukawa K. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. Eur J Appl Physiol 2018; 118:1689-1702. [DOI: 10.1007/s00421-018-3901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
|
9
|
Hureau TJ, Weavil JC, Thurston TS, Broxterman RM, Nelson AD, Bledsoe AD, Jessop JE, Richardson RS, Wray DW, Amann M. Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. J Physiol 2018; 596:1373-1384. [PMID: 29388218 DOI: 10.1113/jp275465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/29/2018] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS We investigated the contribution of group III/IV muscle afferents to carotid baroreflex resetting during electrically evoked (no central command) and voluntary (requiring central command) isometric knee extension exercise. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive group III/IV leg muscle afferent feedback. Spontaneous carotid baroreflex control was assessed by loading and unloading the carotid baroreceptors with a variable pressure neck chamber. Group III/IV muscle afferents did not influence spontaneous carotid baroreflex responsiveness at rest or during exercise. Afferent feedback accounted for at least 50% of the exercise-induced increase in the carotid baroreflex blood pressure and heart rate operating points, adjustments that are critical for an appropriate cardiovascular response to exercise. These findings suggest that group III/IV muscle afferent feedback is, independent of central command, critical for the resetting of the carotid baroreflex blood pressure and heart rate operating points, but not for spontaneous baroreflex responsiveness. ABSTRACT This study sought to comprehensively investigate the role of metabolically and mechanically sensitive group III/IV muscle afferents in carotid baroreflex responsiveness and resetting during both electrically evoked (EVO, no central command) and voluntary (VOL, requiring central command) isometric single-leg knee-extension (15% of maximal voluntary contraction; MVC) exercise. Participants (n = 8) were studied under control conditions (CTRL) and following lumbar intrathecal fentanyl injection (FENT) to inhibit μ-opioid receptor-sensitive lower limb muscle afferents. Spontaneous carotid baroreflex control of mean arterial pressure (MAP) and heart rate (HR) were assessed following rapid 5 s pulses of neck pressure (NP, +40 mmHg) or suction (NS, -60 mmHg). Resting MAP (87 ± 10 mmHg) and HR (70 ± 8 bpm) were similar between CTRL and FENT conditions (P > 0.4). In terms of spontaneous carotid baroreflex responsiveness, FENT did not alter the change in MAP or HR responses to NP (+13 ± 5 mmHg, P = 0.85; +9 ± 3 bpm; P = 0.99) or NS (-13 ± 5 mmHg, P = 0.99; -24 ± 11 bpm; P = 0.49) at rest or during either exercise protocol, which were of a remarkably similar magnitude to rest. In contrast, FENT administration reduced the exercise-induced resetting of the operating point for MAP and HR during both EVO (116 ± 10 mmHg to 100 ± 15 mmHg and 93 ± 14 bpm to 82 ± 10 bpm) and VOL (107 ± 13 mmHg to 100 ± 17 mmHg and 89 ± 10 bpm to 72 ± 10 bpm) exercise bouts. Together, these findings document that group III/IV muscle afferent feedback is critical for the resetting of the carotid baroreflex MAP and HR operating points, independent of exercise-induced changes in central command, but not for spontaneous carotid baroreflex responsiveness.
Collapse
Affiliation(s)
- Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA
| | - Joshua C Weavil
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - D Walter Wray
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City VA Medical Center, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Doorduin J, Nollet JL, Roesthuis LH, van Hees HWH, Brochard LJ, Sinderby CA, van der Hoeven JG, Heunks LMA. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am J Respir Crit Care Med 2017; 195:1033-1042. [DOI: 10.1164/rccm.201605-1016oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | - Laurent J. Brochard
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | - Christer A. Sinderby
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Farra SD, Cheung SS, Thomas SG, Jacobs I. Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS One 2017; 12:e0171119. [PMID: 28257415 PMCID: PMC5336231 DOI: 10.1371/journal.pone.0171119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to clarify if Ratings of Perceived Exertion (RPE) and self-selected exercise intensity are sensitive not only to alterations in the absolute level of arterial saturation (SPO2) but also the rate of change in SPO2. Twelve healthy participants (31.6 ± 3.9 y, 175.5 ± 7.7 cm, 73.3 ± 10.3 kg, 51 ± 7 mL·kg-1·min-1 [Formula: see text]) exercised four times on a cycle ergometer, freely adjusting power output (PO) to maintain RPE at 5 on Borg's 10-point scale with no external feedback to indicate their exercise intensity. The fraction of inspired oxygen (FIO2) was reduced during three of those trials such that SPO2 decreased during exercise from starting values (>98%) to 70%. These trials were differentiated by the time over which the desaturation occurred: 3.9 ± 1.4 min, -8.7 ± 4.2%•min-1 (FAST), 11.0 ± 3.7 min, -2.8 ± 1.3%•min-1 (MED), and 19.5 ± 5.8 min, -1.5 ± 0.8%•min-1 (SLOW) (P < 0.001). Compared to stable PO throughout the control condition (no SPO2 manipulation), PO significantly decreased across the experimental conditions (FAST = 2.8 ± 2.1 W•% SPO2-1; MED = 2.5 ± 1.8 W•% SPO2-1; SLOW = 1.8 ± 1.6 W•% SPO2-1; P < 0.001). The rates of decline in PO during FAST and MED were similar, with both greater than SLOW. Our results confirm that decreases in absolute SPO2 impair exercise performance and that a faster rate of oxygen desaturation magnifies that impairment.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Cheung
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, Brock University, St. Catherines, Ontario, Canada
| | - Scott G. Thomas
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Hureau TJ, Romer LM, Amann M. The 'sensory tolerance limit': A hypothetical construct determining exercise performance? Eur J Sport Sci 2016; 18:13-24. [PMID: 27821022 DOI: 10.1080/17461391.2016.1252428] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuromuscular fatigue compromises exercise performance and is determined by central and peripheral mechanisms. Interactions between the two components of fatigue can occur via neural pathways, including feedback and feedforward processes. This brief review discusses the influence of feedback and feedforward mechanisms on exercise limitation. In terms of feedback mechanisms, particular attention is given to group III/IV sensory neurons which link limb muscle with the central nervous system. Central corollary discharge, a copy of the neural drive from the brain to the working muscles, provides a signal from the motor system to sensory systems and is considered a feedforward mechanism that might influence fatigue and consequently exercise performance. We highlight findings from studies supporting the existence of a 'critical threshold of peripheral fatigue', a previously proposed hypothesis based on the idea that a negative feedback loop operates to protect the exercising limb muscle from severe threats to homeostasis during whole-body exercise. While the threshold theory remains to be disproven within a given task, it is not generalisable across different exercise modalities. The 'sensory tolerance limit', a more theoretical concept, may address this issue and explain exercise tolerance in more global terms and across exercise modalities. The 'sensory tolerance limit' can be viewed as a negative feedback loop which accounts for the sum of all feedback (locomotor muscles, respiratory muscles, organs, and muscles not directly involved in exercise) and feedforward signals processed within the central nervous system with the purpose of regulating the intensity of exercise to ensure that voluntary activity remains tolerable.
Collapse
Affiliation(s)
- Thomas J Hureau
- a Department of Medicine , University of Utah , Salt Lake City , UT , USA
| | - Lee M Romer
- b Centre for Human Performance, Exercise and Rehabilitation, Department of Life Sciences , Brunel University London , UK
| | - Markus Amann
- a Department of Medicine , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
14
|
Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Saltin B, Boushel R. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports 2016; 25 Suppl 4:144-57. [PMID: 26589128 DOI: 10.1111/sms.12604] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax) in nine males. Systemic VC, peak cardiac output (Qpeak) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated myocardial oxygen demand were 22%, 12%, and 14% higher, respectively, during maximal AC than LP. Trunk VC was reduced to similar values at Wmax. At Wmax, muscle mass-normalized VC and fractional O2 extraction were lower in the arm than the leg muscles. However, this was compensated for during AC by raising perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise to exhaustion depend mostly on the relative intensity of exercise and are limb-specific.
Collapse
Affiliation(s)
- J A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain.,The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - J González-Alonso
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Sports Medicine and Human Performance, Brunel University London, Uxbridge, UK
| | - J W Helge
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Søndergaard
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - T Munch-Andersen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - B Saltin
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - R Boushel
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Fadel PJ. Reflex control of the circulation during exercise. Scand J Med Sci Sports 2016; 25 Suppl 4:74-82. [PMID: 26589120 DOI: 10.1111/sms.12600] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/01/2022]
Abstract
Appropriate cardiovascular and hemodynamic adjustments are necessary to meet the metabolic demands of working skeletal muscle during exercise. Alterations in the sympathetic and parasympathetic branches of the autonomic nervous system are fundamental in ensuring these adjustments are adequately made. Several neural mechanisms are responsible for the changes in autonomic activity with exercise and through complex interactions, contribute to the cardiovascular and hemodynamic changes in an intensity-dependent manner. This short review is from a presentation made at the Saltin Symposium June 2-4, 2015 in Copenhagen, Denmark. As such, the focus will be on reflex control of the circulation with an emphasis on the work of the late Dr. Bengt Saltin. Moreover, a concerted effort is made to highlight the novel and insightful concepts put forth by Dr. Saltin in his last published review article on the regulation of skeletal muscle blood flow in humans. Thus, the multiple roles played by adenosine triphosphate (ATP) including its ability to induce vasodilatation, override sympathetic vasoconstriction and stimulate skeletal muscle afferents (exercise pressor reflex) are discussed and a conceptual framework is set suggesting a major role of ATP in blood flow regulation during exercise.
Collapse
Affiliation(s)
- P J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
16
|
Matsukawa K, Ishii K, Asahara R, Idesako M. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat. J Appl Physiol (1985) 2016; 121:932-943. [PMID: 27539494 DOI: 10.1152/japplphysiol.00299.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/11/2016] [Indexed: 11/22/2022] Open
Abstract
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Volianitis S, Secher NH. Cardiovascular control during whole body exercise. J Appl Physiol (1985) 2016; 121:376-90. [PMID: 27311439 PMCID: PMC5007320 DOI: 10.1152/japplphysiol.00674.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure.
Collapse
Affiliation(s)
- Stefanos Volianitis
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Niels H Secher
- The Copenhagen Muscle Research Center, Department of Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Asahara R, Kadowaki A, Wakasugi R, Takahashi M. Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise. J Appl Physiol (1985) 2016; 120:1424-33. [DOI: 10.1152/japplphysiol.00103.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% ( P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident ( P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology and
| | | | - Nan Liang
- Department of Integrative Physiology and
| | - Kana Endo
- Department of Integrative Physiology and
| | | | | | | | | | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
|
20
|
Cardiovascular Reflexes Activity and Their Interaction during Exercise. BIOMED RESEARCH INTERNATIONAL 2015; 2015:394183. [PMID: 26557662 PMCID: PMC4628760 DOI: 10.1155/2015/394183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Cardiac output and arterial blood pressure increase during dynamic exercise notwithstanding the exercise-induced vasodilation due to functional sympatholysis. These cardiovascular adjustments are regulated in part by neural reflexes which operate to guarantee adequate oxygen supply and by-products washout of the exercising muscles. Moreover, they maintain adequate perfusion of the vital organs and prevent excessive increments in blood pressure. In this review, we briefly summarize neural reflexes operating during dynamic exercise with particular emphasis on their interaction.
Collapse
|
21
|
Abstract
The perception of physical effort is relatively unaffected by the suppression of sensory afferences, indicating that this function relies mostly on the processing of the central motor command. Neural signals in the supplementary motor area (SMA) correlate with the intensity of effort, suggesting that the motor signal involved in effort perception could originate from this area, but experimental evidence supporting this view is still lacking. Here, we tested this hypothesis by disrupting neural activity in SMA, in primary motor cortex (M1), or in a control site by means of continuous theta-burst transcranial magnetic stimulation, while measuring effort perception during grip forces of different intensities. After each grip force exertion, participants had the opportunity to either accept or refuse to replicate the same effort for varying amounts of reward. In addition to the subjective rating of perceived exertion, effort perception was estimated on the basis of the acceptance rate, the effort replication accuracy, the influence of the effort exerted in trial t on trial t+1, and pupil dilation. We found that disruption of SMA activity, but not of M1, led to a consistent decrease in effort perception, whatever the measure used to assess it. Accordingly, we modeled effort perception in a structural equation model and found that only SMA disruption led to a significant alteration of effort perception. These findings indicate that effort perception relies on the processing of a signal originating from motor-related neural circuits upstream of M1 and that SMA is a key node of this network.
Collapse
|
22
|
Michelini LC, O'Leary DS, Raven PB, Nóbrega ACL. Neural control of circulation and exercise: a translational approach disclosing interactions between central command, arterial baroreflex, and muscle metaboreflex. Am J Physiol Heart Circ Physiol 2015; 309:H381-92. [PMID: 26024683 PMCID: PMC4631530 DOI: 10.1152/ajpheart.00077.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/18/2015] [Indexed: 01/13/2023]
Abstract
The last 100 years witnessed a rapid and progressive development of the body of knowledge concerning the neural control of the cardiovascular system in health and disease. The understanding of the complexity and the relevance of the neuroregulatory system continues to evolve and as a result raises new questions. The purpose of this review is to articulate results from studies involving experimental models in animals as well as in humans concerning the interaction between the neural mechanisms mediating the hemodynamic responses during exercise. The review describes the arterial baroreflex, the pivotal mechanism controlling mean arterial blood pressure and its fluctuations along with the two main activation mechanisms to exercise: central command (parallel activation of central somatomotor and autonomic descending pathways) and the muscle metaboreflex, the metabolic component of exercise pressor reflex (feedback from ergoreceptors within contracting skeletal muscles). In addition, the role of the cardiopulmonary baroreceptors in modulating the resetting of arterial baroreflex is identified, and the mechanisms in the central nervous system involved with the resetting of baroreflex function during dynamic exercise are also described. Approaching a very relevant clinical condition, the review also presents the concept that the impaired arterial baroreflex function is an integral component of the metaboreflex-mediated exaggerated sympathetic tone in subjects with heart failure. This increased sympathetic activity has a major role in causing the depressed ventricular function observed during submaximal dynamic exercise in these patients. The potential contribution of a metaboreflex arising from respiratory muscles is also considered.
Collapse
Affiliation(s)
- Lisete C Michelini
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Peter B Raven
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Antonio C L Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil
| |
Collapse
|
23
|
|
24
|
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Rapid onset pressor and sympathetic responses to static handgrip in older hypertensive adults. J Hum Hypertens 2014; 29:402-8. [PMID: 25471615 DOI: 10.1038/jhh.2014.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Exaggerated pressor and muscle sympathetic nerve activity (MSNA) responses have been reported during static handgrip in hypertensive (HTN) adults. Recent work suggests that such responses may occur much more rapidly in HTN patients; however, this has not been extensively studied. Thus, we examined the blood pressure (BP) and MSNA responses at the immediate onset of muscle contraction and tested the hypothesis that older HTN adults would exhibit rapid onset pressor and sympathetic responses compared with normotensive (NTN) adults. Heart rate (HR), BP (Finometer) and MSNA (peroneal microneurography) were retrospectively analyzed in 15 HTN (62 ± 1 years; resting BP 153 ± 3/91 ± 5 mm Hg) and 23 age-matched NTN (60 ± 1 years; resting BP 112 ± 1/67 ± 2 mm Hg) subjects during the first 30 s of static handgrip at 30 and 40% of maximal voluntary contraction (MVC). HTN adults demonstrated exaggerated increases in mean BP during the first 10 s of both 30% (NTN: Δ1 ± 1 vs HTN: Δ7 ± 2 mm Hg; P < 0.05) and 40% (NTN: Δ2 ± 1 vs HTN: Δ8 ± 2 mm Hg; P < 0.05) intensity handgrip. Likewise, HTN adults exhibited atypical increases in MSNA within 10 s. Increases in HR were also greater in HTN adults at 10 s of 30% MVC handgrip, although not at 40% MVC. There were no group differences in 10 s pressor or sympathetic responses to a cold pressor test, suggesting no differences in generalized sympathetic responsiveness. Thus, static handgrip evokes rapid onset pressor and sympathetic responses in older HTN adults. These findings suggest that older HTN adults likely have greater cardiovascular risk even during short duration activities of daily living that contain an isometric component.
Collapse
|
26
|
Matsukawa K, Ishii K, Kadowaki A, Ishida T, Idesako M, Liang N. Signal transduction of aortic and carotid sinus baroreceptors is not modified by central command during spontaneous motor activity in decerebrate cats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R735-46. [DOI: 10.1152/ajpregu.00538.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory has suggested that central command provides selective inhibition of the cardiomotor component of aortic baroreflex at the start of exercise, preserving carotid sinus baroreflex. It is postulated that central command may modify the signal transduction of aortic baroreceptors, so as to decrease aortic baroreceptor input to the cardiovascular centers, and, thereby, can cause the selective inhibition of aortic baroreflex. To test the hypothesis, we directly analyzed the responses in multifiber aortic nerve activity (AoNA) and carotid sinus nerve activity (CsNA) during spontaneous motor activity in decerebrate, paralyzed cats. The increases of 62–104% in mean AoNA and CsNA were found during spontaneous motor activity, in proportion to a rise of 35 ± 3 mmHg (means ± SE) in mean arterial blood pressure (MAP), and had an attenuating tendency by restraining heart rate (HR) at the lower intrinsic frequency of 154 ± 6 beats/min. Brief occlusion of the abdominal aorta was conducted before and during spontaneous motor activity to produce a mechanically evoked increase in MAP and, thereby, to examine the stimulus-response relationship of arterial baroreceptors. Although the sensitivity of the MAP-HR baroreflex curve was markedly blunted during spontaneous motor activity, the stimulus-response relationships of AoNA and CsNA were not influenced by spontaneous motor activity, irrespective of the absence or presence of the HR restraint. Thus, it is concluded that aortic and carotid sinus baroreceptors can code beat-by-beat blood pressure during spontaneous motor activity in decerebrate cats and that central command is unlikely to modulate the signal transduction of arterial baroreceptors.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akito Kadowaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tomoko Ishida
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
27
|
Rossman MJ, Garten RS, Venturelli M, Amann M, Richardson RS. The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2014; 306:R934-40. [PMID: 24740653 DOI: 10.1152/ajpregu.00043.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.
Collapse
Affiliation(s)
- Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; and
| | - Massimo Venturelli
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; and Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
28
|
Christian RJ, Bishop DJ, Billaut F, Girard O. The role of sense of effort on self-selected cycling power output. Front Physiol 2014; 5:115. [PMID: 24744734 PMCID: PMC3978313 DOI: 10.3389/fphys.2014.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/08/2014] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We explored the effects of the sense of effort and accompanying perceptions of peripheral discomfort on self-selected cycle power output under two different inspired O2 fractions. METHODS On separate days, eight trained males cycled for 5 min at a constant subjective effort (sense of effort of '3' on a modified Borg CR10 scale), immediately followed by five 4-s progressive submaximal (sense of effort of "4, 5, 6, 7, and 8"; 40 s between bouts) and two 4-s maximal (sense of effort of "10"; 3 min between bouts) bouts under normoxia (NM: fraction of inspired O2 [FiO2] 0.21) and hypoxia (HY: [FiO2] 0.13). Physiological (Heart Rate, arterial oxygen saturation (SpO2) and quadriceps Root Mean Square (RMS) electromyographical activity) and perceptual responses (overall peripheral discomfort, difficulty breathing and limb discomfort) were recorded. RESULTS Power output and normalized quadriceps RMS activity were not different between conditions during any exercise bout (p > 0.05) and remained unchanged across time during the constant-effort cycling. SpO2 was lower, while heart rate and ratings of perceived difficulty breathing were higher under HY, compared to NM, at all time points (p < 0.05). During the constant-effort cycling, heart rate, overall perceived discomfort, difficulty breathing and limb discomfort increased with time (all p < 0.05). All variables (except SpO2) increased along with sense of effort during the brief progressive cycling bouts (all p < 0.05). During the two maximal cycling bouts, ratings of overall peripheral discomfort displayed an interaction between time and condition with ratings higher in the second bout under HY vs. NM conditions. CONCLUSION During self-selected, constant-effort and brief progressive, sub-maximal, and maximal cycling bouts, mechanical work is regulated in parallel to the sense of effort, independently from peripheral sensations of discomfort.
Collapse
Affiliation(s)
- Ryan J. Christian
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
- Aspetar - Athlete Health and Performance Research Centre, Qatar Orthopaedic and Sports Medicine HospitalDoha, Qatar
| | - David J. Bishop
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
| | - François Billaut
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria UniversityMelbourne, VIC, Australia
- Départment de Kinésiology, Université LavalQuébec, QC, Canada
| | - Olivier Girard
- Aspetar - Athlete Health and Performance Research Centre, Qatar Orthopaedic and Sports Medicine HospitalDoha, Qatar
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
29
|
Ichinose M, Maeda S, Kondo N, Nishiyasu T. Blood pressure regulation II: what happens when one system must serve two masters--oxygen delivery and pressure regulation? Eur J Appl Physiol 2013; 114:451-65. [PMID: 23846841 DOI: 10.1007/s00421-013-2691-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
During high-intensity dynamic exercise, O2 delivery to active skeletal muscles is enhanced through marked increases in both cardiac output and skeletal muscle blood flow. When the musculature is vigorously engaged in exercise, the human heart lacks the pumping capacity to meet the blood flow demands of both the skeletal muscles and other organs such as the brain. Vasoconstriction must therefore be induced through activation of sympathetic nervous activity to maintain blood flow to the brain and to produce the added driving pressure needed to increase flow to the skeletal muscles. In this review, we first briefly summarize the local vascular and neural control mechanisms operating during high-intensity exercise. This is followed by a review of the major neural mechanisms regulating blood pressure during high-intensity exercise, focusing mainly on the integrated activities of the arterial baroreflex and muscle metaboreflex. In high cardiac output situations, such as during high-intensity dynamic exercise, small changes in total peripheral resistance can induce large changes in blood pressure, which means that rapid and fine regulation is necessary to avoid unacceptable drops in blood pressure. To accomplish this rapid regulation, arterial baroreflex function may be modulated in various ways through activation of the muscle metaboreflex and/or other neural mechanisms. Moreover, this modulation of the arterial baroreflex may change over the time course of an exercise bout, or to accommodate changes in exercise intensity. Within this model, integration of arterial baroreflex modulation with other neural mechanisms plays an important role in cardiovascular control during high-intensity exercise.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | | | | | | |
Collapse
|
30
|
New insights into the effects of age and sex on arterial baroreflex function at rest and during dynamic exercise in humans. Auton Neurosci 2012; 172:13-22. [PMID: 23151515 DOI: 10.1016/j.autneu.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The arterial baroreflex (ABR) performs an important role in regulating blood pressure (BP) both at rest and during exercise, by carefully orchestrating autonomic neural activity to the heart and blood vessels. Reduced ABR sensitivity (i.e., gain) has been associated with increased cardiovascular risk, cardiac electrical instability and orthostatic intolerance, while 'normal' ABR function during exercise is important for ensuring an appropriate cardiovascular response is elicited. Previous studies examining the influence of age and sex on resting ABR function in humans have primarily used pharmacological methods (e.g., modified Oxford technique) to change BP and alter baroreceptor input. With this approach only reflex control of heart rate and sympathetic nerve activity may be evaluated, and as such the influence of age and sex on ABR control of BP per se remains incompletely understood. Furthermore, the majority of previous studies examining ABR function during exercise have principally assessed young men. Whether these findings can be extrapolated to young women or older men and women remains unclear. Recently the potential for age and sex to modulate the integrative neural control of the cardiovascular system is becoming appreciated. This review article will provide a detailed update of such recent advances into our understanding of the effects of age and sex on ABR control of BP both at rest and during dynamic exercise in humans.
Collapse
|
31
|
Matsukawa K, Ishii K, Kadowaki A, Liang N, Ishida T. Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity. Am J Physiol Heart Circ Physiol 2012; 303:H464-74. [PMID: 22730386 DOI: 10.1152/ajpheart.01133.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan.
| | | | | | | | | |
Collapse
|
32
|
Cortelli P, Lombardi C, Montagna P, Parati G. Baroreflex modulation during sleep and in obstructive sleep apnea syndrome. Auton Neurosci 2012; 169:7-11. [PMID: 22465134 DOI: 10.1016/j.autneu.2012.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/19/2012] [Accepted: 02/29/2012] [Indexed: 12/15/2022]
Abstract
This review focuses on the complex integration between cardiovascular reflexes and central autonomic influences controlling physiological sleep-dependent changes in arterial blood pressure and heart rate. A brief introduction on the anatomic and functional organization of the arterial baroreflex and the methods available to assess its function in humans is followed by an analysis of the functional interaction between autonomic nervous system and sleep mechanisms at the highest levels of brain organization. An insight into these interactions is important to shed light on the physiopathology of the most frequent complications of obstructive sleep apnea syndrome, such as sustained arterial hypertension, and excessive daytime sleepiness.
Collapse
Affiliation(s)
- P Cortelli
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Dipartimento di Scienze Neurologiche, Alma Mater Studiorum - Università di Bologna, Italy
| | | | | | | |
Collapse
|
33
|
Fadel PJ, Raven PB. Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol 2011; 97:39-50. [PMID: 22002871 DOI: 10.1113/expphysiol.2011.057554] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After considerable debate and key experimental evidence, the importance of the arterial baroreflex in contributing to and maintaining the appropriate neural cardiovascular adjustments to exercise is now well accepted. Indeed, the arterial baroreflex resets during exercise in an intensity-dependent manner to continue to regulate blood pressure as effectively as at rest. Studies have indicated that the exercise resetting of the arterial baroreflex is mediated by both the feedforward mechanism of central command and the feedback mechanism associated with skeletal muscle afferents (the exercise pressor reflex). Another perhaps less appreciated neural mechanism involved in evoking and maintaining neural cardiovascular responses to exercise is the cardiopulmonary baroreflex. The limited information available regarding the cardiopulmonary baroreflex during exercise provides evidence for a role in mediating sympathetic nerve activity and blood pressure responses. In addition, recent investigations have demonstrated an interaction between cardiopulmonary baroreceptors and the arterial baroreflex during dynamic exercise, which contributes to the magnitude of exercise-induced increases in blood pressure as well as the resetting of the arterial baroreflex. Furthermore, neural inputs from the cardiopulmonary baroreceptors appear to play an important role in establishing the operating point of the arterial baroreflex. This symposium review highlights recent studies in these important areas indicating that the interactions of four neural mechanisms (central command, the exercise pressor reflex, the arterial baroreflex and cardiopulmonary baroreflex) are integral in mediating the neural cardiovascular adjustments to exercise.
Collapse
Affiliation(s)
- Paul J Fadel
- Department of Medical Pharmacology and Physiology, MA415 Medical Sciences Building, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
34
|
Hartwich D, Dear WE, Waterfall JL, Fisher JP. Effect of muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity during exercise in humans. J Physiol 2011; 589:6157-71. [PMID: 21969452 DOI: 10.1113/jphysiol.2011.219964] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We sought to determine whether the activation of metabolically sensitive skeletal muscle afferents (muscle metaboreflex) is a potential mechanism for the decrease in spontaneous cardiac baroreflex sensitivity (cBRS) during exercise in humans. In protocol 1, 15 male subjects (22 ± 1 years) performed steady-state leg cycling at low (26 ± 4 W) and moderate workloads (105 ± 7 W), under free-flow conditions and with partial flow restriction (bilateral thigh cuff inflation at 100 mmHg) to evoke muscle metaboreflex activation during exercise. In protocol 2, rhythmic handgrip exercise at 35% maximum voluntary contraction was performed with progressive upper arm cuff inflation (0, 80, 100 and 120 mmHg) to elicit graded metaboreflex activation. Both protocols were followed by post-exercise ischaemia (PEI) to isolate the muscle metaboreflex. Leg cycling-induced increases in HR and mean BP were augmented by partial flow restriction (P < 0.05 vs. free flow), while HR and mean BP both remained elevated during PEI (P < 0.05 vs. rest). Leg cycling evoked an intensity-dependent decrease in cBRS (16 ± 2, 7 ± 1 and 2 ± 0.2 ms mmHg(-1) at rest, low and moderate workloads, respectively; P < 0.05), which was further reduced with partial flow restriction (by -2.6 ± 0.8 and -0.4 ± 0.1 ms mmHg(-1) at low and moderate workloads). cBRS remained suppressed during PEI following leg cycling with partial flow restriction (4 ± 1 ms mmHg(-1); P < 0.05 vs. rest). cBRS was unchanged during handgrip under free-flow conditions, handgrip with partial flow restriction and PEI following handgrip (P > 0.05 vs. rest). These data indicate that the activation of metabolically sensitive skeletal muscle afferents (muscle metaboreflex) decreases cardiac baroreflex responsiveness during leg cycling exercise in humans.
Collapse
Affiliation(s)
- Doreen Hartwich
- School of Sport and Exercise Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
35
|
Faisal A, Beavers KR, Hughson RL. O2 uptake and blood pressure regulation at the onset of exercise: interaction of circadian rhythm and priming exercise. Am J Physiol Heart Circ Physiol 2010; 299:H1832-42. [DOI: 10.1152/ajpheart.00762.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythm has an influence on several physiological functions that contribute to athletic performance. We tested the hypothesis that circadian rhythm would affect blood pressure (BP) responses but not O2 uptake (V̇o2) kinetics during the transitions to moderate and heavy cycling exercises. Nine male athletes (peak V̇o2: 60.5 ± 3.2 ml·kg−1·min−1) performed multiple rides of two different cycling protocols involving sequences of 6-min bouts at moderate or heavy intensities interspersed by a 20-W baseline in the morning (7 AM) and evening (5 PM). Breath-by-breath V̇o2 and beat-by-beat BP estimated by finger cuff plethysmography were measured simultaneously throughout the protocols. Circadian rhythm did not affect V̇o2 onset kinetics determined from the phase II time constant (τ2) during either moderate or heavy exercise bouts with no prior priming exercise (τ2 moderate exercise: morning 22.5 ± 4.6 s vs. evening 22.2 ± 4.6 s and τ2 heavy exercise: morning 26.0 ± 2.7 s vs. evening 26.2 ± 2.6 s, P > 0.05). Priming exercise induced the same robust acceleration in V̇o2 kinetics during subsequent moderate and heavy exercise in the morning and evening. A novel finding was an overshoot in BP (estimated from finger cuff plethysmography) in the first minutes of each moderate and heavy exercise bout. After the initial overshoot, BP declined in association with increased skin blood flow between the third and sixth minute of the exercise bout. Priming exercise showed a greater effect in modulating the BP responses in the evening. These findings suggest that circadian rhythm interacts with priming exercise to lower BP during exercise after an initial overshoot with a greater influence in the evening associated with increased skin blood flow.
Collapse
Affiliation(s)
- Azmy Faisal
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Keith R. Beavers
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L. Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
36
|
Fisher JP, Kim A, Young CN, Fadel PJ. Carotid baroreflex control of arterial blood pressure at rest and during dynamic exercise in aging humans. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1241-7. [PMID: 20826707 DOI: 10.1152/ajpregu.00462.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterial baroreflex is fundamental for evoking and maintaining appropriate cardiovascular adjustments to exercise. We sought to investigate how aging influences carotid baroreflex regulation of blood pressure (BP) during dynamic exercise. BP and heart rate (HR) were continuously recorded at rest and during leg cycling performed at 50% HR reserve in 15 young (22 ± 1 yr) and 11 older (61 ± 2 yr) healthy subjects. Five-second pulses of neck pressure and neck suction from +40 to -80 Torr were applied to determine the full carotid baroreflex stimulus response curve and examine baroreflex resetting during exercise. Although the maximal gain of the modeled stimulus response curve was similar in both groups at rest and during exercise, in older subjects the operating point (OP) was located further away from the centering point (CP) and toward the reflex threshold, both at rest (OP minus CP; -10 ± 3 older vs. 0 ± 2 young mmHg, P < 0.05) and during exercise (OP minus CP; -10 ± 2 older vs. 1 ± 3 young mmHg, P < 0.05). In agreement, older subjects demonstrated a reduced BP response to neck pressure (simulated carotid hypotension) and a greater BP response to neck suction (simulated carotid hypertension). In addition, the magnitude of the upward and rightward resetting of the carotid baroreflex-BP stimulus response curve with exercise was ∼40% greater in older individuals. These data indicate that despite a maintained maximal gain, the ability of the carotid baroreflex to defend against a hypotensive challenge is reduced, whereas responses to hypertensive stimuli are greater with advanced age, both at rest and during exercise.
Collapse
Affiliation(s)
- James P Fisher
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
37
|
Shiba S, Okawa H, Uenishi H, Koike Y, Yamauchi K, Asayama K, Nakamura T, Tajima F. Longitudinal changes in physical capacity over 20 years in athletes with spinal cord injury. Arch Phys Med Rehabil 2010; 91:1262-6. [PMID: 20684908 DOI: 10.1016/j.apmr.2010.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the longitudinal changes in physical capacity over 20 years in athletes with spinal cord injury (SCI). DESIGN Longitudinal study (20-y follow-up). SETTING Laboratory setting. PARTICIPANTS Persons with SCI (N=7). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Maximum oxygen consumption Vo(2)max) measured in 1986-1988 and in 2006. RESULTS Subjects with SCI maintained stable Vo(2)max in 2006. Six of the 7 continued various wheelchair sports activities, while 1 person quit sports activities 1 year after the baseline study. The latter person showed reduced Vo(2)max by 53%, while 2 persons who continued strenuous wheelchair sports activities showed increased Vo(2)max by 43% and 45% after 20 years. CONCLUSION The results indicated that physical capacity reflected the level of sports activity in subjects with SCI who maintained sports activities.
Collapse
Affiliation(s)
- Sumiko Shiba
- Department of Rehabilitation Medicine, Wakayama Medical University School of Medicine, Wakayama City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Vorluni L, Volianitis S. Interaction of cardiac and muscle mechanical afferents on baroreflex control of the sinus node during dynamic exercise. Scand J Med Sci Sports 2009; 20:434-40. [DOI: 10.1111/j.1600-0838.2009.00902.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol (1985) 2009; 106:2060-2. [PMID: 18483166 DOI: 10.1152/japplphysiol.90378.2008] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Raven PB. Recent advances in baroreflex control of blood pressure during exercise in humans: an overview. Med Sci Sports Exerc 2009; 40:2033-6. [PMID: 19018210 DOI: 10.1249/mss.0b013e318180bc41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides an overview of the history behind the physiological concepts defining the role of the arterial baroreflexes and their regulation of arterial blood pressure during dynamic exercise. Initially, the case is made as to "why the arterial baroreflexes must be involved with blood pressure regulation during exercise." Subsequently, the historical animal and human experiments performed from the late 19th century to the present day describing how the two major neural mechanisms "central command" and "exercise pressor reflex" and their involvement in "resetting" are reviewed. These historical experiments have resulted in the development of a hypothetical model identifying the major factors involved in baroreflex resetting, and these factors are described. The four manuscripts presented in these proceedings address a new set of questions. These new questions address the importance of the baroreflex control of muscle sympathetic nerve activity and vasomotor tone in the regulation of blood flow, not only in the systemic vasculature but also in the cerebral and cutaneous vasculatures.
Collapse
Affiliation(s)
- Peter B Raven
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
42
|
Hellsten Y, Krustrup P, Iaia FM, Secher NH, Bangsbo J. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1106-12. [PMID: 19193948 DOI: 10.1152/ajpregu.90477.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged knee-extensor exercise (18 W) during control conditions and with cisatracurium blockade, as well as with cisatracurium blockade with prior glycopyrrone infusion. Thigh blood flow and vascular conductance in control and with cisatracurium infusion were similar at rest and during passive movement of the leg, but higher (P < 0.05) during exercise with cisatracurium than in control (3.83 +/- 0.42 vs. 2.78 +/- 0.21 l/min and 26.9 +/- 3.4 vs. 21.8 +/- 2.0 ml.min(-1).mmHg(-1) at the end of exercise). Thigh oxygen uptake was similar in control and with cisatracurium infusion both at rest and during exercise, being 354 +/- 33 and 406 +/- 34 ml/min, at the end of exercise. Combined infusion of cisatracurium and glycopyrrone caused a similar increase in blood flow as cisatracurium infusion alone. The current results demonstrate that neuromuscular blockade leads to enhanced thigh blood flow and vascular conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperemia or for the enhanced blood flow during neuromuscular blockade. The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibers.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Exercise and Sport Sciences, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
ICHINOSE MASASHI, SAITO MITSURU, KONDO NARIHIKO, NISHIYASU TAKESHI. Baroreflex and Muscle Metaboreflex. Med Sci Sports Exerc 2008; 40:2037-45. [DOI: 10.1249/mss.0b013e318180bc59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Yamamoto K, Kawada T, Kamiya A, Takaki H, Shishido T, Sunagawa K, Sugimachi M. Muscle mechanoreflex augments arterial baroreflex-mediated dynamic sympathetic response to carotid sinus pressure. Am J Physiol Heart Circ Physiol 2008; 295:H1081-H1089. [DOI: 10.1152/ajpheart.00023.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the muscle mechanoreflex is one of the pressor reflexes during exercise, its interaction with dynamic characteristics of the arterial baroreflex remains to be quantitatively analyzed. In anesthetized, vagotomized, and aortic-denervated rabbits ( n = 7), we randomly perturbed isolated carotid sinus pressure (CSP) using binary white noise while recording renal sympathetic nerve activity (SNA) and arterial pressure (AP). We estimated the transfer functions of the baroreflex neural arc (CSP to SNA) and peripheral arc (SNA to AP) under conditions of control and muscle stretch of the hindlimb (5 kg of tension). The muscle stretch increased the dynamic gain of the neural arc while maintaining the derivative characteristics [gain at 0.01 Hz: 1.0 ± 0.2 vs. 1.4 ± 0.6 arbitrary units (au)/mmHg, gain at 1 Hz: 1.7 ± 0.6 vs. 2.7 ± 1.4 au/mmHg; P < 0.05, control vs. stretch]. In contrast, muscle stretch did not affect the peripheral arc. In the time domain, muscle stretch augmented the steady-state response at 50 s (−1.1 ± 0.3 vs. −1.7 ± 0.7 au; P < 0.05, control vs. stretch) and negative peak response (−2.1 ± 0.5 vs. −3.1 ± 1.5 au; P < 0.05, control vs. stretch) in the SNA step response. A simulation experiment using the results indicated that the muscle mechanoreflex would accelerate the closed-loop AP regulation via the arterial baroreflex.
Collapse
|
46
|
Ichinose M, Saito M, Fujii N, Ogawa T, Hayashi K, Kondo N, Nishiyasu T. Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling. J Physiol 2008; 586:2753-66. [PMID: 18403425 DOI: 10.1113/jphysiol.2007.150060] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We tested the hypotheses that arterial baroreflex (ABR) control over muscle sympathetic nerve activity (MSNA) in humans does not remain constant throughout a bout of leg cycling ranging in intensity from very mild to exhausting. ABR control over MSNA (burst incidence, burst strength and total MSNA) was evaluated by analysing the relationship between beat-to-beat spontaneous variations in diastolic arterial pressure (DAP) and MSNA in 15 healthy subjects at rest and during leg cycling in a seated position at five workloads: very mild (10 W), mild (82 +/- 5.0 W), moderate (126 +/- 10.2 W), heavy (156 +/- 14.3 W), and exhausting (190 +/- 21.2 W). The workload was incremented every 6 min. The linear relationships between DAP and MSNA variables were significantly shifted downward during very mild exercise, but then shifted progressively upward as exercise intensity increased. During heavy and exhausting exercise, moreover, the DAP-MSNA relationships were also significantly shifted rightward from the resting relationship. The sensitivity of ABR control over burst incidence and total MSNA was significantly lower during very mild exercise than during rest, and the sensitivity of the burst incidence control remained lower than the resting level at all higher exercise intensities. By contrast, the sensitivity of the total MSNA control recovered to the resting level during mild and moderate exercise, and was significantly increased during heavy and exhausting exercise (versus rest). We conclude that, in humans, ABR control over MSNA is not uniform throughout a leg cycling exercise protocol in which intensity was varied from very mild to exhausting. We suggest that this non-uniformity of ABR function is one of the mechanisms by which sympathetic and cardiovascular responses are matched to the exercise intensity.
Collapse
Affiliation(s)
- Masashi Ichinose
- Faculty of Human Development, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Fisher JP, Young CN, Fadel PJ. Effect of muscle metaboreflex activation on carotid-cardiac baroreflex function in humans. Am J Physiol Heart Circ Physiol 2008; 294:H2296-304. [PMID: 18326794 DOI: 10.1152/ajpheart.91497.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whether the activation of metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) influences cardiac baroreflex responsiveness remains incompletely understood. A potential explanation for contrasting findings of previous reports may be related to differences in the magnitude of muscle metaboreflex activation utilized. Therefore, the present study was designed to investigate the influence of graded intensities of muscle metaboreflex activation on cardiac baroreflex function. In eight healthy subjects (24 +/- 1 yr), the graded isolation of the muscle metaboreflex was achieved by post-exercise ischemia (PEI) following moderate- (PEI-M) and high- (PEI-H) intensity isometric handgrip performed at 35% and 45% maximum voluntary contraction, respectively. Beat-to-beat heart rate (HR) and blood pressure were measured continuously. Rapid pulse trains of neck pressure and neck suction (+40 to -80 Torr) were applied to derive carotid baroreflex stimulus-response curves. Mean blood pressure increased significantly from rest during PEI-M (+13 +/- 3 mmHg) and was further augmented during PEI-H (+26 +/- 4 mmHg), indicating graded metaboreflex activation. However, the operating point gain and maximal gain (-0.51 +/- 0.09, -0.48 +/- 0.13, and -0.49 +/- 0.12 beats.min(-1).mmHg(-1) for rest; PEI-M and PEI-H) of the carotid-cardiac baroreflex function curve were unchanged from rest during PEI-M and PEI-H (P > 0.05 vs. rest). Furthermore, the carotid-cardiac baroreflex function curve was progressively reset rightward from rest to PEI-M to PEI-H, with no upward resetting. These findings suggest that the muscle metaboreflex contributes to the resetting of the carotid baroreflex control of HR; however, it would appear not to influence carotid-cardiac baroreflex responsiveness in humans, even with high-intensity activation during PEI.
Collapse
Affiliation(s)
- James P Fisher
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|
48
|
Marcora SM, Bosio A, de Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol 2008; 294:R874-83. [DOI: 10.1152/ajpregu.00678.2007] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (−18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 ( n = 10). In study 2 ( n = 14), test duration (871 ± 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 ± 278 s) compared with control (750 ± 281 s) ( P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles.
Collapse
|
49
|
Ogoh S, Fisher JP, Raven PB, Fadel PJ. Arterial baroreflex control of muscle sympathetic nerve activity in the transition from rest to steady-state dynamic exercise in humans. Am J Physiol Heart Circ Physiol 2007; 293:H2202-9. [PMID: 17675569 DOI: 10.1152/ajpheart.00708.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to investigate arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) in the transition from rest to steady-state dynamic exercise. This was accomplished by assessing the relationship between spontaneous variations in diastolic blood pressure (DBP) and MSNA at rest and during the time course of reaching steady-state arm cycling at 50% peak oxygen uptake (V̇o2peak). Specifically, DBP-MSNA relations were examined in eight subjects (25 ± 1 yr) at the start of unloaded arm cycling and then during the initial and a later period of arm cycling once the 50% V̇o2peak work rate was achieved. Heart rate and arterial blood pressure were progressively increased throughout exercise. Although resting MSNA [16 ± 2 burst/min; 181 ± 36 arbitrary units (au) total activity] was unchanged during unloaded cycling, MSNA burst frequency and total activity were significantly elevated during the initial (27 ± 4 burst/min; 367 ± 76 au; P < 0.05) and later (36 ± 7 burst/min; 444 ± 91 au; P < 0.05) periods of exercise. The relationships between DBP and burst incidence, burst strength, and total MSNA were progressively shifted rightward from unloaded to the initial to the later period of 50% V̇o2peak arm cycling without any changes in the slopes of the linear regressions (i.e., ABR sensitivity). Thus a continuous and dynamic resetting of the ABR control of MSNA occurred during the transition from rest to steady-state dynamic exercise. These findings indicate that the ABR control of MSNA was well maintained throughout dynamic exercise in humans, progressively being reset to operate around the exercise-induced elevations in blood pressure and MSNA without any changes in reflex sensitivity.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
50
|
Fisher JP, Ogoh S, Young CN, Keller DM, Fadel PJ. Exercise intensity influences cardiac baroreflex function at the onset of isometric exercise in humans. J Appl Physiol (1985) 2007; 103:941-7. [PMID: 17585044 DOI: 10.1152/japplphysiol.00412.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.
Collapse
Affiliation(s)
- James P Fisher
- Department of Medical Pharmacology and Physiology, MA415 Medical Sciences Bldg., University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|