1
|
Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BAS. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 2022; 608:346-352. [PMID: 35896745 DOI: 10.1038/s41586-022-04982-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - João F Botelho
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Departamento Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Nagaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Ryan M Carney
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | - Shiro Egawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Timothy B Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
| | | | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Hirasawa T, Kuratani S. A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. J Anat 2013; 222:504-17. [PMID: 23448284 PMCID: PMC3633340 DOI: 10.1111/joa.12037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 12/30/2022] Open
Abstract
The evolutionary origin of the diaphragm remains unclear, due to the lack of a comparable structure in other extant taxa. However, recent researches into the developmental mechanism of this structure have yielded new insights into its origin. Here we summarize current understanding regarding the development of the diaphragm, and present a possible scenario for the evolutionary acquisition of this uniquely mammalian structure. Recent developmental analyses indicate that the diaphragm and forelimb muscles are derived from a shared cell population during embryonic development. Therefore, the embryonic positions of forelimb muscle progenitors, which correspond to the position of the brachial plexus, likely played an important role in the evolution of the diaphragm. We surveyed the literature to reexamine the position of the brachial plexus among living amniotes and confirmed that the cervico-thoracic transition in ribs reflects the brachial plexus position. Using this osteological correlate, we concluded that the anterior borders of the brachial plexuses in the stem synapsids were positioned at the level of the fourth spinal nerve, suggesting that the forelimb buds were laid in close proximity of the infrahyoid muscles. The topology of the phrenic and suprascapular nerves of mammals is similar to that of subscapular and supracoracoid nerves, respectively, of the other amniotes, suggesting that the diaphragm evolved from a muscle positioned medial to the pectoral girdle (cf. subscapular muscle). We hypothesize that the diaphragm was acquired in two steps: first, forelimb muscle cells were incorporated into tissues to form a primitive diaphragm in the stem synapsid grade, and second, the diaphragm in cynodonts became entrapped in the region controlled by pulmonary development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|