1
|
Yamakawa S, Hejnol A. Ecdysteroid-dependent molting in tardigrades. Curr Biol 2024; 34:5804-5812.e4. [PMID: 39566498 DOI: 10.1016/j.cub.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Although molting is a defining feature of the most species-rich animal taxa-the Ecdysozoa, including arthropods, tardigrades, nematodes, and others1,2-its evolutionary background remains enigmatic. In pancrustaceans, such as insects and decapods, molting is regulated by the ecdysteroid (Ecd) hormone and its downstream cascade (Figure 1A, see also the text).3,4,5 However, whether Ecd-dependent molting predates the emergence of the arthropods and represents an ancestral machinery in ecdysozoans remains unclear. For example, involvement of the Ecd hormone in molting regulation has been suggested only in some parasitic nematodes outside of arthropods,6,7 and insect Ecd synthesis and receptor genes are lacking in some ecysozoan lineages (Figure S1A).8,9,10 In this study, we investigated the role of Ecd in the molting process of the tardigrade Hypsibius exemplaris. We show that the endogenous Ecd level periodically increases during the molting cycle of H. exemplaris. The pulse treatment with exogenous Ecd induced molting, whereas an antagonist of the Ecd receptor suppressed the molting. Our spatial and temporal gene expression analysis revealed the putative regulatory organs and Ecd downstream cascades. We demonstrate that tardigrade molting is regulated by the Ecd hormone, supporting the ancestry of Ecd-dependent molting in panarthropods. Furthermore, we were able to identify the putative neural center of molting regulation in tardigrades. This region may be homologous to the neural center in the protocerebrum of pancrustaceans and represent an ancestral state of panarthropods. Together, our results suggest that Ecd-dependent molting evolved in the early-late Ediacaran, 22-76 million years earlier than previously suggested.11.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| | - Andreas Hejnol
- Institute of Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
2
|
Lawan I, Umbuzeiro GDA, Lyndon AR, Henry TB. Developing behavioural ecotoxicology assessment methods in the tropical marine amphipod, Parhyale hawaiensis: A study with benzo[a]pyrene (BaP). MARINE POLLUTION BULLETIN 2024; 209:117142. [PMID: 39432986 DOI: 10.1016/j.marpolbul.2024.117142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Toxicant-induced behavioural changes provide important insights into environmental toxicity, particularly in vulnerable tropical marine habitats. However, ecotoxicological knowledge of organisms in these environments is insufficient. We aimed to develop innovative and cost-effective ecotoxicology methods using Parhyale hawaiensis as a tropical model organism. Adult P. hawaiensis were exposed to aqueous benzo[a]pyrene (BaP) (2 μM) and dietary BaP (50, 250, or 1250 μg BaP/g diet). Survival (24 to 96 h) and behavioural responses (21d) to foraging, reproduction, and predator avoidance were studied. Aqueous and dietary exposures to benzo[a]pyrene (BaP) did not affect survival but induced significant immobility with effective concentration (EC50 ± SE, 96 h at 11.89 ± 1.19 μM). Relative to the control group, aqueous exposure to 2 μM and dietary exposure to 250 and 1250 μg BaP/g feed resulted in statistically significant behavioural changes. These included a 55-76 % reduction in feeding rates, 133 % increase in chemosensation time, 60-122 % drop in moulting frequency, 200 % delay in precopulatory activity, 50-83 % decrease in geotactic activity, and 300-400 % increase in phototactic activity (all significant at p ≤ 0.05). The methods developed in this study are cost-effective, sensitive, and readily integrated into other endpoint analyses, reinforcing the potential of P. hawaiensis as a tropical ecotoxicology model for detecting toxicant-induced behavioural responses and enhancing marine risk assessments.
Collapse
Affiliation(s)
- Ibrahim Lawan
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | | | - Alastair Robert Lyndon
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom; Department of Forestry Wildlife and Fisheries, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
3
|
He Y, Ganguly A, Lindgren S, Quispe L, Suvanto C, Zhao K, Candolin U. Carry-over effect of artificial light at night on daytime mating activity in an ecologically important detritivore, the amphipod Gammarus pulex. J Exp Biol 2024; 227:jeb246682. [PMID: 38516876 DOI: 10.1242/jeb.246682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Artificial light at night (ALAN) is a growing environmental problem influencing the fitness of individuals through effects on their physiology and behaviour. Research on animals has primarily focused on effects on behaviour during the night, whereas less is known about effects transferred to daytime. Here, we investigated in the lab the impact of ALAN on the mating behaviour of an ecologically important freshwater amphipod, Gammarus pulex, during both daytime and nighttime. We manipulated the presence of ALAN and the intensity of male-male competition for access to females, and found the impact of ALAN on mating activity to be stronger during daytime than during nighttime, independent of male-male competition. At night, ALAN only reduced the probability of precopula pair formation, while during the daytime, it both decreased general activity and increased the probability of pair separation after pair formation. Thus, ALAN reduced mating success in G. pulex not only directly, through effects on mating behaviour at night, but also indirectly through a carry-over effect on daytime activity and the ability to remain in precopula. These results emphasise the importance of considering delayed effects of ALAN on organisms, including daytime activities that can be more important fitness determinants than nighttime activities.
Collapse
Affiliation(s)
- Yuhan He
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Anirban Ganguly
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Susan Lindgren
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Laura Quispe
- Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - Corinne Suvanto
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| |
Collapse
|
4
|
Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci Rep 2020; 10:18695. [PMID: 33122728 PMCID: PMC7596225 DOI: 10.1038/s41598-020-75568-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Gammarus roeselii Gervais, 1835 is a morphospecies with a wide distribution range in Europe. The Balkan Peninsula is known as an area of pre-Pleistocene cryptic diversification within this taxon, resulting in at least 13 Molecular Operational Taxonomic Units (MOTUs). The morphospecies diversified there during Neogene and has probably invaded other parts of the continent very recently, in postglacial or even historical times. Thus, the detailed goals of our study were to (1) identify which lineage(s) colonized Central-Western Europe (CWE), (2) determine their possible geographical origin, (3) verify, whether the colonisation was associated with demographic changes. In total, 663 individuals were sequenced for the cytochrome oxidase I (COI) barcoding fragment and 137 individuals for the internal transcribed spacer II (ITS2). We identified two MOTUs in the study area with contrasting Barcode Index Number and haplotype diversities. The Pannonian Basin (PB) appeared to be a potential ice age refugium for the species, while CWE was colonised by a single lineage (also present in PB), displaying low genetic diversity. Our results suggest that G. roeselii is a relatively recent coloniser in CWE, starting demographic expansion around 10 kya.
Collapse
|
5
|
Use of X-ray micro-computed tomography to study the moult cycle of the freshwater amphipod Gammarus pulex. ZOOLOGY 2020; 143:125833. [PMID: 33059306 DOI: 10.1016/j.zool.2020.125833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
Stages of the moult cycle of the amphipod Gammarus pulex have been previously characterised based on the examination of either apolysis of the 3rd dactyl, or the whole body and eye appearance. In the current study the aim was to compare these two established moult staging techniques with a novel X-ray micro-computed tomography (micro-CT) scan method. The micro-CT provides information on the degree of calcification of the external integument and of the internal structures, such as the gastric mill. The degree of calcification is predicted to change during the moult cycle. Successful micro-CT scans were obtained from 80 G. pulex specimens and the radiological appearance of the 28 specimens immediately immersed in 4 % PFA were not different to the 52 specimens stored in 4 % PFA for at least 28 days prior to scanning. These specimens could be classified into moult stages A, B, C, early D or late D based on the degree of calcification. Good agreement was obtained between all three methods of moult stage classification if fresh specimens were used, but if specimens had been preserved in 4% Paraformaldehyde (PFA) for more than 24 hours the loss of colour from the whole body and eye meant these methods were not suitable. This is the first time that a micro-CT method has been used to study G. pulex and shows that this method of moult staging is accurate and reliable.
Collapse
|
6
|
Castiglioni DDS, Limberger M, Castro VDS, Ubessi F. Population and reproductive traits of a freshwater amphipod (Crustacea, Peracarida, Hyalellidae) from northwest of the state of Rio Grande do Sul, Brazil. BIOTA NEOTROPICA 2020. [DOI: 10.1590/1676-0611-bn-2019-0872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The study of population and reproductive traits provides information about the ecological structure of natural populations. This study aimed to characterize dynamics and reproductive traits of Hyalella palmeirensis from a natural pond from southern Brazil. The amphipods were sampled monthly (August 2012 to July 2013) by a person with the aid of a hand net for 20 minutes. Ovigerous females and pre-copulatory pairs were individualized in the field. A total of 12,325 individuals were sampled, being 1,421 males, 6,983 females (including 215 ovigerous females) and 3,921 juveniles. Paired and unpaired males were significantly greater in size than females. There was a positive correlation between body size (CL) of paired males and females. Males and females showed bimodal distribution. Total sex ratio favored females, and these were more frequent in almost all months. Ovigerous females and precopulatory pairs were found throughout the year, but with high frequency in winter and autumn, respectively, characterizing a seasonal reproduction. Juveniles were sampled throughout the year, with greater intensity in the spring. The mean fecundity was 19.6 ± 4.34 eggs. No reduction in the number of eggs was observed during embryonic development. The results observed in H. palmeirensis demonstrate that this species has a population and reproductive dynamics very similar to other species of Hyalella already analyzed in southern Brazil. Moreover, it can be seen that although the H. palmeirensis occurs in an environment with anthropic influence (soy cultivation,) the population is managing to remain in the area, with reproduction and recruitment in most months of year.
Collapse
|
7
|
Arambourou H, Fuertes I, Vulliet E, Daniele G, Noury P, Delorme N, Abbaci K, Barata C. Fenoxycarb exposure disrupted the reproductive success of the amphipod Gammarus fossarum with limited effects on the lipid profile. PLoS One 2018; 13:e0196461. [PMID: 29702662 PMCID: PMC5922543 DOI: 10.1371/journal.pone.0196461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
Insect growth regulator insecticides mimic the action of hormones on the growth and development of insect pests. However, they can affect the development of non-target arthropods. In the present study, we tested the effects of the growth regulator insecticide fenoxycarb on several endpoints in the freshwater crustacean Gammarus fossarum (Amphipoda). Females carrying embryos in their open brood pouch were exposed to 50 μg L-1 fenoxycarb throughout the entire oogenesis (i.e. 21 days). After exposure, newborn individuals from exposed embryos were removed from the maternal open brood pouch for lipidomic analysis, while males were added to assess the reproductive success. After fertilization, the lipid profile, energy reserve content (lipids, proteins and glycogen), and activity of phenoloxidase − an enzyme involved in the immune response − were measured in females. No significant effect of fenoxycarb exposure was observed on the lipid profile of both newborn individuals and females, while reproductive success was severely impaired in exposed females. Particularly, precopulatory behavior was significantly reduced and fertilized eggs were unviable. This study highlighted the deleterious effects of the insect growth regulator fenoxycarb on gammarid reproduction, which could have severe repercussions on population dynamics.
Collapse
Affiliation(s)
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Gaëlle Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Patrice Noury
- Irstea Lyon, Riverly Research Unit, Villeurbanne, France
| | | | | | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
8
|
|