1
|
Azuma W, Ishii HR, Masaki T. Height-related variations of leaf traits reflect strategies for maintaining photosynthetic and hydraulic homeostasis in mature and old Pinus densiflora trees. Oecologia 2019; 189:317-328. [DOI: 10.1007/s00442-018-4325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
|
2
|
Kuusk V, Niinemets Ü, Valladares F. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. TREE PHYSIOLOGY 2018; 38:543-557. [PMID: 29281105 DOI: 10.1093/treephys/tpx139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Pine (Pinus) species exhibit extensive variation in needle shape and size between juvenile (primary) and adult (secondary) needles (heteroblasty), but few studies have quantified the changes in needle morphological, anatomical and chemical traits upon juvenile-to-adult transition. Mediterranean pines keep juvenile needles longer than most other pines, implying that juvenile needles play a particularly significant role in seedling and sapling establishment in this environment. We studied needle anatomical, morphological and chemical characteristics in juvenile and different-aged adult needles in Mediterranean pines Pinus halepensis Mill., Pinus pinea L. and Pinus nigra J. F. Arnold subsp. salzmannii (Dunal) Franco hypothesizing that needle anatomical modifications upon juvenile-to-adult transition lead to a trade-off between investments in support and photosynthetic tissues, and that analogous changes occur with needle aging albeit to a lower degree. Compared with adult needles, juvenile needles of all species were narrower with 1.6- to 2.4-fold lower leaf dry mass per unit area, and had ~1.4-fold thinner cell walls, but needle nitrogen content per dry mass was similar among plant ages. Juvenile needles also had ~1.5-fold greater mesophyll volume fraction, ~3-fold greater chloroplast volume fraction and ~1.7-fold greater chloroplast exposed to mesophyll exposed surface area ratio, suggesting overall greater photosynthetic activity. Changes in needle traits were similar in aging adult needles, but the magnitude was generally less than the changes upon juvenile to adult transition. In adult needles, the fraction in support tissues scaled positively with known ranking of species tolerance of drought (P. halepensis > P. pinea > P. nigra). Across all species, and needle and plant ages, a negative correlation between volume fractions of mesophyll and structural tissues was observed, manifesting a trade-off between biomass investments in different needle functions. These results demonstrate that within the broad trade-off, juvenile and adult needle morphophysiotypes are separated by varying investments in support and photosynthetic functions. We suggest that the ecological advantage of the juvenile morphophysiotype is maximization of carbon gain of establishing saplings, while adult needle physiognomy enhances environmental stress tolerance of established plants.
Collapse
Affiliation(s)
- Vivian Kuusk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1 Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1 Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Fernando Valladares
- LINCGlobal, Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 dpdo, 28006 Madrid, Spain
- Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
3
|
Räim O, Kaurilind E, Hallik L, Merilo E. Why does needle photosynthesis decline with tree height in Norway spruce? PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:306-14. [PMID: 21974690 DOI: 10.1111/j.1438-8677.2011.00503.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Needle morphological, chemical and physiological characteristics of Norway spruce were studied in a forest chronosequence in Järvselja Experimental Forest, Estonia. Current-year shoots were sampled from upper canopy positions in five stands, ranging in height from 1.8 to 33.0 m (corresponding age range was 10-85 years). A/C(i) curves were determined to obtain maximum carboxylation rates (V(cmax)) and maximum rates of electron transport (J(max)). Needle nitrogen (N) partitioning into photosynthetic functions was calculated from the values of V(cmax), J(max) and leaf chlorophyll concentration. All needle size parameters (length, width, thickness, volume and cross-sectional areas of mesophyll and xylem) increased significantly with tree height. The needles of taller trees had lower mass-based N and chlorophyll concentrations (21% and 43% difference between shortest and tallest stands, respectively), but higher dry mass per area (35%), dry mass per volume (18%), number of cells per mesophyll cross-section area (40%) and partitioning of N into non-photosynthetic functions (12%). Light saturated net assimilation rate, V(cmax), J(max) and stomatal conductance decreased with tree age (35%, 16%, 12% and 29% difference, respectively). A path analysis model describing tree age-related reduction of photosynthetic capacity as a result of sink limitation provided the best fit to our data. However, since the path model corresponding to source limitation, where photosynthetic reduction derives from changes in needle structure and chemistry was not rejected, we conclude that the decline in photosynthesis with tree age results from several mechanisms (limited sink strength, stomatal and N limitation) operating simultaneously and sequentially.
Collapse
Affiliation(s)
- O Räim
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
4
|
Guédon Y, Caraglio Y, Heuret P, Lebarbier E, Meredieu C. Analyzing growth components in trees. J Theor Biol 2007; 248:418-47. [PMID: 17631316 DOI: 10.1016/j.jtbi.2007.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/29/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022]
Abstract
Observed growth, as given, for instance, by the length of successive annual shoots along the main axis of a plant, is mainly the result of two components: an ontogenetic component and an environmental component. An open question is whether the ontogenetic component along an axis at the growth unit or annual shoot scale takes the form of a trend or of a succession of phases. Various methods of analysis ranging from exploratory analysis (symmetric smoothing filters, sample autocorrelation functions) to statistical modeling (multiple change-point models, hidden semi-Markov chains and hidden hybrid model combining Markovian and semi-Markovian states) are applied to extract and characterize both the ontogenetic and environmental components using contrasted examples. This led us in particular to favor the hypothesis of an ontogenetic component structured as a succession of stationary phases and to highlight phase changes of high magnitude in unexpected situations (for instance, when growth globally decreases). These results shed light in a new way on botanical concepts such as "phase change" and "morphogenetic gradient".
Collapse
Affiliation(s)
- Yann Guédon
- CIRAD, UMR DAP and INRIA, Virtual Plants, TA A-96/02, 34398 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Cooley AM, Reich A, Rundel P. Leaf support biomechanics of neotropical understory herbs. AMERICAN JOURNAL OF BOTANY 2004; 91:573-581. [PMID: 21653413 DOI: 10.3732/ajb.91.4.573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plants in light-limited tropical rainforest understories face an important carbon allocation trade-off: investment of available carbon into photosynthetic tissue should be advantageous, while risk of damage and mortality from falling debris favors investment into nonphotosynthetic structural tissue. We examined the modulus of rupture (σ(max)), Young's modulus of elasticity (E), and flexural stiffness (F) of stems and petioles in 14 monocot species from six families. These biomechanical properties were evaluated with respect to habitat, rates of leaf production, clonality, and growth form. Species with higher E and σ(max), indicating greater resistance per unit area to bending and breaking, respectively, tended to be shade-tolerant, slow growing, and nonclonal. This result is consistent with an increase in carbon allocation to structural tissue in shade-tolerant species at the expense of photosynthetic tissue and growth. Forest- edge species were weaker per unit area (had a lower E), but had higher flexural stiffness due to increases in stem and petiole diameter. While this is inefficient in requiring more carbon per unit of structural support, it may enable forest-edge species to support larger and heavier leaves. Our results emphasize the degree to which biomechanical traits vary with ecological niche and illustrate suites of characteristics associated with different carbon allocation strategies.
Collapse
Affiliation(s)
- Arielle M Cooley
- Organization for Tropical Studies, La Selva Biological Station, Interlink 341, P.O. Box 02-5635, Miami, Florida 33102-5635 USA
| | | | | |
Collapse
|
7
|
|
8
|
Sellin A. Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 45:115-131. [PMID: 11275220 DOI: 10.1016/s0098-8472(00)00086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Morphological and stomatal responses of Norway spruce (Picea abies) foliage to light availability were studied in respect to shoot age. Needle minor diameter (D(1), anatomical width), major diameter (D(2), anatomical thickness), dry weight (M), and tissue density index (I(D)) increased, and needle flatness (Fl) and specific leaf area (SLA) decreased with foliage age, while shade foliage demonstrated higher morphological plasticity as compared to sun foliage. Needle minor diameter, dry weight, and the ratio of total to projected leaf area increased, and needle flatness and specific leaf area decreased with daily average photosynthetic photon flux density (Q(D)). The current-year foliage exhibited the highest variation with irradiance, while the morphological plasticity decreased with needle ageing. The morphological characteristics of needles were independent of irradiance if Q(D) was above 300 µmol m(-2) s(-1). D(1) was the only linear needle characteristic which significantly changed with light availability within a canopy, and thus determined needle flatness, SLA, as well as the ratio of total to projected leaf area (TLA/PLA). Needle flatness was a characteristic responding most sensitively to the photosynthetic photon flux density, R(2) was 0.68, 0.44, and 0.49 for the current-year, 1-year-old, and 2-year-old foliage, respectively. TLA/PLA ranged from 2.2 to 4.0 depending on D(1). Variation in SLA in response to light availability can be attributed to changes both in needle shape and tissue density. Stomatal responses to photosynthetic photon flux density (Q(P)) depended on foliage type (sun or shade) and age. Sun needles demonstrated higher daily maximum leaf conductances to water vapour compared to shade needles. The shade needles responded more sensitively to changes in Q(P) at dawn and sunset than the sun needles, while older needles of both foliage types exhibited faster stomatal responses. The light-saturation of leaf conductance (g(L)) was achieved by 20 µmol m(-2) s(-1) for shade foliage, and approximately by 50 µmol m(-2) s(-1) for sun foliage. As a rule, g(L) changed in response to irradiance faster in the evening, i.e. at decreasing irradiance. Stomata were not usually completely closed in the dark before sunrise and after sunset, the phenomenon being more pronounced in older shoots and sun needles. Nightly water losses from spruce foliage are attributable primarily to older shoots, and are related to age-dependent changes in stomatal responsiveness.
Collapse
Affiliation(s)
- A Sellin
- Department of Botany and Ecology, University of Tartu, Lai 40, 51005, Tartu, Estonia
| |
Collapse
|
9
|
|
10
|
Niinemets Ü, Kull O, Tenhunen JD. Variability in Leaf Morphology and Chemical Composition as a Function of Canopy Light Environment in Coexisting Deciduous Trees. INTERNATIONAL JOURNAL OF PLANT SCIENCES 1999; 160:837-848. [PMID: 10506464 DOI: 10.1086/314180] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Morphology, chemical composition, and photosynthetic capacity of leaf laminas were investigated in Populus tremula L. and Tilia cordata Mill. along a canopy light gradient. Variables determining the thickness of boundary layer for heat and water exchange at a given wind speed-effective leaf width (Ww) and length (Wd)-scaled positively with daily integrated quantum flux density averaged over the season (Qint, mol m-2 d-1) in T. cordata, but Wd decreased and Ww was constant with increasing Qint in P. tremula, bringing about a moderately improved capacity for convective cooling at greater irradiances in the latter species. Foliar stable carbon isotope discrimination (Delta) decreased with increasing Qint, demonstrating that, possibly because of more severe foliar water stress, leaves operated at a lower intercellular CO2 concentration in the upper canopy. Further analysis of foliar characteristics provided additional evidence of the interaction between water stress and Qint. Leaf dry matter content and both components of lamina dry mass per area (MA)-lamina thickness and density (dry mass per unit volume, rhoB)-increased with increasing Qint in both species. The rhoB and lamina dry matter content were also positively related to lamina carbon concentration, variability in which along the canopy was related to changes in carbon-rich lignin concentration. Since both increases in lamina density and lignin concentration improve leaf tolerance of low-water potentials, these foliar modifications were interpreted as indicative of acclimation to enhanced water limitations in high light. For the whole material, foliar nitrogen concentrations decreased with increasing rhoB, suggesting that an improvement of foliar mechanical strength may result in declining foliar assimilative potential. However, foliar photosynthetic electron transport capacity per unit area increased with increasing rhoB, possibly because increases in rhoB with light are not only attributable to greater cell wall lignification but also to denser packing of leaf cells, in particular, in fractional increases in palisade tissues with Qint. Because of a positive scaling of leaf thickness and density with total tree height, MA was greater in taller trees of T. cordata, foliage of which also had lower Delta and was likely to function with less open stomata. In summary, we conclude that leaf water stress, which scales with both Qint and total tree height, is a major factor altering foliage structure and assimilative capacity.
Collapse
|
11
|
|
12
|
Crossley A, Sheppard LJ, Cape JN, Smith RI, Harvey FJ. Stem growth reduction in mature Sitka spruce trees exposed to acid mist. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1997; 96:185-193. [PMID: 15093418 DOI: 10.1016/s0269-7491(97)00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/1996] [Accepted: 01/24/1997] [Indexed: 05/24/2023]
Abstract
An eighteen-year-old clone of Sitka spruce (Picea sitchensis (Bong.) Carr) growing in the field was used to evaluate the whole tree response of 'mature' Sitka spruce to acid mist treatment. The mist, an equimolar mixture of H(2)SO(4) and NH(4)NO(3) at pH 2.5 with or without particles (soda glass ballotini < 20 microm diameter), was applied twice weekly (equivalent to 4 mm precipitation week(-1)) throughout the growing season, May-November 1990-1992. The annual dose of S, N, H applied as mist (at 51, 48 and 3.3 kg ha(-1), respectively) was 2.5 times that measured in the Scottish uplands. Throughout the experiment there was no evidence of visible injury symptoms, yet there was a highly significant reduction (p < 0.02) in the stem-area increment relative to the stem area at the start, measured using vernier dendrometer bands. There was no significant difference between the (acid mist + particle) and the acid mist only treatments. The mean relative stem-area increment over two complete growing seasons (1991-1992) was 65% for control trees, but only 53% for acid-misted trees.
Collapse
Affiliation(s)
- A Crossley
- Institute of Terrestrial Ecology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | | | | | | | | |
Collapse
|
13
|
Abstract
The shoot system in plants progresses through several discrete phases during its development. Changes in the timing of these phases have important consequences for the morphogenesis of the shoot and are likely to be important in plant evolution. Genetic analysis of phase change in herbaceous plants, such as maize and Arabidopsis, has defined some of the genes involved in this phenomenon and has suggested a model for the regulation of this key feature of plant development.
Collapse
Affiliation(s)
- E J Lawson
- Department of Biology, University of Pennsylvania, Philadephia 19104-6018, USA
| | | |
Collapse
|