1
|
Wu Q, Jin L, Duan C, Xu J, Peng S, Shen S, Pan Y, Lauridsen TL, Jeppesen E. Relationship between phosphorus stoichiometric homeostasis and deepwater adaptability of submerged macrophytes in Erhai Lake, China: Insights from allometric plasticity. WATER RESEARCH 2024; 267:122468. [PMID: 39303579 DOI: 10.1016/j.watres.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The state transition theory suggests that the decline of submerged macrophytes in shallow lakes is closely associated with reduced stoichiometric homeostasis, particularly phosphorus homeostasis (HP). The degradation typically progresses from deeper to shallower regions, indicating a potential positive correlation between the deepwater adaptability (DA) and HP values of submerged macrophytes. Here, we investigated the distribution pattern of submerged macrophytes across different water depths of Erhai Lake to test this hypothesis. The results revealed a significant positive correlation between the DA and HP values of submerged macrophytes. Allometric analysis indicated that the morphological plasticity of submerged macrophytes was linked to their HP. Species with higher HP values, like Potamogeton maackianus, had robust plasticity strategies, particularly "real plasticity", that enabled them to cope with deeper water stress. In contrast, species with lower HP values (Ceratophyllum demersum and Hydrilla verticillata) experienced nutrient declines, which hindered their adaptation. Additionally, species with higher HP values exhibited closer connections within the plant traits-environment network, indicating that their morphological plasticity adjustments allow better adaptation to the environmental changes caused by increasing water depth. These results confirm the relationship between DA and HP in submerged macrophytes and explain the mechanisms underlying the correlation, thus expanding regime shift theory.
Collapse
Affiliation(s)
- Qihang Wu
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650091, Yunnan, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, Yunnan, China
| | - Ling Jin
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650091, Yunnan, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, Yunnan, China
| | - Changqun Duan
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650091, Yunnan, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, Yunnan, China
| | - Jiaqing Xu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China
| | - Song Peng
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, China
| | - Shili Shen
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650091, Yunnan, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, Yunnan, China
| | - Ying Pan
- School of Ecology and Environmental Sciences, Yunnan University & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650091, Yunnan, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming 650091, Yunnan, China.
| | | | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Banaś K, Aksmann A, Płachno BJ, Kapusta M, Marciniak P, Ronowski R. Individual architecture and photosynthetic performance of the submerged form of Drosera intermedia Hayne. BMC PLANT BIOLOGY 2024; 24:449. [PMID: 38783181 PMCID: PMC11112915 DOI: 10.1186/s12870-024-05155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Drosera intermedia grows in acidic bogs in parts of valleys that are flooded in winter, and that often dry out in summer. It is also described as the sundew of the most heavily hydrated habitats in peatlands, and it is often found in water and even underwater. This sundew is the only one that can tolerate long periods of submersion, and more importantly produces a typical submerged form that can live in such conditions for many years. Submerged habitats are occupied by D. intermedia relatively frequently. The aim of the study was to determine the environmental conditions and architecture of individuals in the submerged form of D. intermedia. The features of the morphological and anatomical structure and chlorophyll a fluorescence of this form that were measured were compared with analogous ones in individuals that occurred in emerged and peatland habitats. The submerged form occurred to a depth of 20 cm. Compared to the other forms, its habitat had the highest pH (4.71-4.92; Me = 4.71), the highest temperature and substrate hydration, and above all, the lowest photosynthetically active radiation (PAR; 20.4-59.4%). This form differed from the other forms in almost all of the features of the plant's architecture. It is particularly noteworthy that it had the largest main axis height among all of the forms, which exceeded 18 cm. The number of living leaves in a rosette was notable (18.1 ± 8.1), while the number of dead leaves was very low (6.9 ± 3.8). The most significant differences were in the shape of its submerged leaves, in which the length of the leaf blade was the lowest of all of the forms (0.493 ± 0.15 mm; p < 0.001) and usually the widest. The stem cross-sectional area was noticeably smaller in the submerged form than in the other forms, the xylem was less developed and collaterally closed vascular bundles occurred. Our analysis of the parameters of chlorophyll fluorescence in vivo revealed that the maximum quantum yield of the primary photochemistry of photosystem II is the highest for the submerged form (Me = 0.681), the same as the maximum quantum yield of the electron transport (Me φE0 = 0.183). The efficiency of energy use per one active reaction center of photosystem II (RC) was the lowest in the submerged form (Me = 2.978), same as the fraction of energy trapped by one active RC (Me = 1.976) and the non-photochemical energy dissipation (DI0/RC; Me = 0.916). The ET0/RC parameter, associated with the efficiency of the energy utilization for electron transport by one RC, in the submerged plant reached the highest value (Me = 0.489). The submerged form of D. intermedia clearly differed from the emerged and peatland forms in its plant architecture. The submerged plants had a thinner leaf blade and less developed xylem than the other forms, however, their stems were much longer. The relatively high photosynthetic efficiency of the submerged forms suggests that most of the trapped energy is utilized to drive photosynthesis with a minimum energy loss, which may be a mechanism to compensate for the relatively small size of the leaf blade.
Collapse
Affiliation(s)
- Krzysztof Banaś
- Department of Plant Ecology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza St., Gdańsk, PL, 80-308, Poland.
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza St., Gdańsk, 80-308, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Kraków, 9 Gronostajowa St., Kraków, 30-387, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 59 Wita Stwosza St., Gdańsk, 80-308, Poland
| | - Paweł Marciniak
- Department of Plant Ecology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza St., Gdańsk, PL, 80-308, Poland
| | - Rafał Ronowski
- Department of Plant Ecology, Faculty of Biology, University of Gdansk, 59 Wita Stwosza St., Gdańsk, PL, 80-308, Poland
| |
Collapse
|
3
|
Zhang X, Lin X, Wei D, Bao W, Hu B. Age Determination and Growth Characteristics of the Potentilla griffithii: A Comparison of Two Different Habitats in Western Sichuan Plateau, China. PLANTS (BASEL, SWITZERLAND) 2023; 12:2920. [PMID: 37631132 PMCID: PMC10459867 DOI: 10.3390/plants12162920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
This study proposes a rapid and non-destructive technique for determining the age of Potentilla griffithii individuals in the field by observing the sequence of leaf scars. Based on two- to three-year-old P. griffithii seedlings, planted in a common garden in the western Sichuan Plateau, China, the study found that the rates of basal leaf production were consistent, with leaves growing from March to April and falling off from October to December, leaving behind basal leaf scars. Thus, the age of individuals in situ could be determined by counting the leaf scars. Through this method, we determined the age structure and growth strategy of P. griffithii populations in two typical habitats in the western Sichuan Plateau. In open land habitats, the age structure of P. griffithii populations was relatively younger compared to understory habitats. In open land, P. griffithii tends to allocate more photosynthate terminal organs (leaves and fine roots) to absorbing more resources, as well as to its reproductive organs (flower stems and aggregate fruits), to expand the population. The P. griffithii population in the understory habitat is in its middle-age stage and concentrates more photosynthate in the coarse root part (e.g., the high coarse root mass fraction (FRMF)) to support the plant. Additionally, we found a significant correlation between P. griffithii plant age and various traits in open land habitats. Therefore, we conclude that plant age can be used as a good predictor of plant growth condition in open land. These results allow for predicting ecological processes, based on the ages and traits of P. griffithii plants, providing a theoretical basis to support the large-scale breeding of P. griffithii.
Collapse
Affiliation(s)
- Xiulong Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.Z.); (X.L.); (D.W.); (B.H.)
| | - Xingxing Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.Z.); (X.L.); (D.W.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Wei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.Z.); (X.L.); (D.W.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weikai Bao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.Z.); (X.L.); (D.W.); (B.H.)
| | - Bin Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.Z.); (X.L.); (D.W.); (B.H.)
| |
Collapse
|
4
|
Park HJ, Nam BE, Lee G, Kim SG, Joo Y, Kim JG. Ontogeny-dependent effects of elevated CO 2 and watering frequency on interaction between Aristolochia contorta and its herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156065. [PMID: 35597357 DOI: 10.1016/j.scitotenv.2022.156065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Effects of environmental change on plants can differ due to sequential changes in their life-history strategies (i.e., ontogenetic variations). The fitness of herbivorous insects by physiological changes of the host plant could be affected depending on their diet breadth. However, little is known regarding the combinational effects of plant ontogeny and climate change on plant-herbivore interactions. This study examined the plant ontogeny-dependent effects of climate change on the interaction between a host plant (Aristolochia contorta), its specialist herbivore (Sericinus montela), and a generalist herbivore (Spodoptera exigua). Plants were grown under a factorial design of two distinct CO2 concentrations (ambient, 400 ppm; elevated, 560 ppm) and two watering frequencies (control, once a week; increased, twice a week). Plant ontogeny ameliorated the effects of climate change by altering its defensive traits, where nutrient-related factors were cumulatively affected by climate change. Herbivore performance was assessed at three different plant ontogenetic stages (1st-year juvenile, 1st-year senescence, and 2nd-year juvenile). Elevated CO2 levels reduced the growth and survival of the specialist herbivore, whereas increased watering frequency partially alleviated this reduced performance. Generalist herbivore performance slightly increased under elevated CO2 levels with progressing ontogenetic stages. The effects of climate change, both elevated CO2 and increased watering frequency were weaker in 2nd-year juveniles than in 1st-year juveniles. Elevated CO2 levels detrimentally affected the nutritional quality of A. contorta leaves. The effects of climate change on both specialist and generalist herbivore performance differed as plant ontogenetic stage proceeded. Increased growth rates and survival of the generalist herbivore at the latter ontogenetic stage might negatively affect the population dynamics of a specialist herbivore. This study suggests that biases are possible when the plant-herbivore interaction under a changing environment is predicted from a singular plant ontogenetic stage.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo Eun Nam
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngsung Joo
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea; Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul 08826, Republic of Korea; Center for Education Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Zhang X, Zhao N, Zhou C, Lu J, Wang X. Seedling age of Abies georgei var. smithii reveals functional trait coordination in high-altitude habitats in southeast tibet. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.955663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional trait-based plant ecology is often used to study plant survival strategies and growth processes. In this work, the variation regularity of functional traits and their correlations were studied in Abies georgei var. smithii seedlings of different seedling ages found along the altitude gradient (3,800–4,400 m) in Sejila Mountain, Southeast Tibet. The following functional traits of seedlings in five age classes were determined: above-ground functional traits∼leaf thickness (T), leaf area (LA), specific leaf area (SLA), and leaf dry matter content (LDMC); below-ground functional traits∼specific stem length (SSL), specific root length (SRL), specific root surface area (SRA), root tissue density (RTD), and root dry matter content (RDMC). Results showed that (1) except for LDMC, most of the functional traits of the seedlings at different altitudes showed a regular change trend over time. The changes in traits caused by seedling age had significant effects on other traits (p < 0.05). Altitude only had significant effects on T, LA, SLA, SRA, RTD, and RDMC (p < 0.05). (2) The correlation between the above- and below-ground traits was more significant in 5-6-year-old seedlings than in other age classes (p < 0.05). Principal component analysis (PCA) results showed that LA and SLA were the dominant traits of fir seedlings in five age categories Pearson correlation analysis indicated a correlation between RTD and above-ground traits, thus validating the correlation between the above- and below-ground traits of seedlings of Abies georgei var. smithii of different ages. (3) Available potassium, total potassium, and total organic carbon (TOC) had the greatest influence on the traits of 5-6-year-old seedlings. This study revealed that the functional traits of Abies georgei var. smithii seedlings at different altitudesdynamically change with seedling age. The findings help in understanding the growth strategies of seedlings during early development. Future research on the combination of soil factors and seedling traits will provide a theoretical basis for artificial cultivation and protection of native vegetation.
Collapse
|
6
|
Mechanism of Riparian Vegetation Growth and Sediment Transport Interaction in Floodplain: A Dynamic Riparian Vegetation Model (DRIPVEM) Approach. WATER 2019. [DOI: 10.3390/w12010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ecological dynamics of riparian areas interact with sediment transport in river systems, which plays an active role in riparian vegetation growth in the floodplain. The fluvial dynamics, hydraulics, hydro-meteorological and geomorphological characteristics of rivers are associated with sediment transport in river systems and around the riparian area. The flood disturbance, sediment with nutrients and seeds transported by river, sediment deposition, and erosion phenomena in the floodplain change the bare land area to vegetation area and vice versa. The difference in riparian vegetation area in the river floodplain is dependent on the sediment grain size distribution which is deposited in the river floodplain. Mathematical models describing vegetation growth in a short period exist in literature, but long-term modelling and validations are still lacking. In order to cover long-term vegetation growth modelling, a Dynamic Riparian Vegetation Model (DRIPVEM) was proposed. This paper highlights the existing modelling technique of DRIPVEM coupled with a Dynamic Herbaceous Model used to establish the interactive relationship of sediment grain sizes and riparian vegetation in the floodplain.
Collapse
|
7
|
Magwanga RO, Kirungu JN, Lu P, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Agong SG, Wang K, Liu F. Knockdown of ghAlba_4 and ghAlba_5 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1292. [PMID: 31681384 PMCID: PMC6804553 DOI: 10.3389/fpls.2019.01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/29/2023]
Abstract
We found 33, 17, and 20 Alba genes in Gossypium hirsutum, Gossypium arboretum, and Gossypium raimondii, respectively. The Alba protein lengths ranged from 62 to 312 aa, the molecular weight (MW) from 7.003 to 34.55 kDa, grand average hydropathy values of -1.012 to 0.609 and isoelectric (pI) values of -3 to 11. Moreover, miRNAs such as gra-miR8770 targeted four genes, gra-miR8752 and gra-miR8666 targeted three genes, and each and gra-miR8657 a, b, c, d, e targeted 10 genes each, while the rests targeted 1 to 2 genes each. Similarly, various cis-regulatory elements were detected with significant roles in enhancing abiotic stress tolerance, such as CBFHV (RYCGAC) with a role in cold stress acclimation among others. Two genes, Gh_D01G0884 and Gh_D01G0922, were found to be highly induced under water deficit and salt stress conditions. Through virus-induced gene silencing (VIGS), the VIGS cotton plants were found to be highly susceptible to both water deficit and salt stresses; the VIGS plants exhibited a significant reduction in root growth, low cell membrane stability (CMS), saturated leaf weight (SLW), chlorophyll content levels, and higher excised leaf water loss (ELWL). Furthermore, the stress-responsive genes and ROS scavenging enzymes were significantly reduced in the VIGS plants compared to either the wild type (WT) and or the positively controlled plants. The VIGS plants registered higher concentration levels of hydrogen peroxide and malondialdehyde, with significantly lower levels of the various antioxidants evaluated an indication that the VIGS plants were highly affected by salt and drought stresses. This result provides a key foundation for future exploration of the Alba proteins in relation to abiotic stress.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Joy Nyangasi Kirungu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Pu Lu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xiaoyan Cai
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yanchao Xu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Xingxing Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Zhongli Zhou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Yuqing Hou
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Stephen Gaya Agong
- School of Biological and Physical Sciences (SBPS), Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Bondo, Kenya
| | - Kunbo Wang
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| | - Fang Liu
- Chinese Academy of Agricultural Science (ICR, CAAS) /State Key Laboratory of Cotton Biology, Institute of Cotton Research, Anyang, China
| |
Collapse
|
8
|
Fan Z, Chen B, Liao H, Zhou G, Peng S. The effect of allometric partitioning on herbivory tolerance in four species in South China. Ecol Evol 2019; 9:11647-11656. [PMID: 31695875 PMCID: PMC6822029 DOI: 10.1002/ece3.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
Herbivory tolerance can offset the negative effects of herbivory on plants and plays an important role in both immigration and population establishment. Biomass reallocation is an important potential mechanism of herbivory tolerance. To understand how biomass allocation affects plant herbivory tolerance, it is necessary to distinguish the biomass allocations resulting from environmental gradients or plant growth. There is generally a tight balance between the amounts of biomass invested in different organs, which must be analyzed by means of an allometric model. The allometric exponent is not affected by individual growth and can reflect the changes in biomass allocation patterns of different parts. Therefore, the allometric exponent was chosen to study the relationship between biomass allocation pattern and herbivory tolerance. We selected four species (Wedelia chinensis, Wedelia trilobata, Merremia hederacea, and Mikania micrantha), two of which are invasive species and two of which are accompanying native species, and established three herbivory levels (0%, 25% and 50%) to compare differences in allometry. The biomass allocation in stems was negatively correlated with herbivory tolerance, while that in leaves was positively correlated with herbivory tolerance. Furthermore, the stability of the allometric exponent was related to tolerance, indicating that plants with the ability to maintain their biomass allocation patterns are more tolerant than those without this ability, and the tendency to allocate biomass to leaves rather than to stems or roots helps increase this tolerance. The allometric exponent was used to remove the effects of individual development on allocation pattern, allowing the relationship between biomass allocation and herbivory tolerance to be more accurately explored. This research used an allometric model to fit the nonlinear process of biomass partitioning during the growth and development of plants and provides a new understanding of the relationship between biomass allocation and herbivory tolerance.
Collapse
Affiliation(s)
- Zhe‐Xuan Fan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Bao‐Ming Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Hui‐Xuan Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Guo‐Hao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Shao‐Lin Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhou ProvinceChina
| |
Collapse
|
9
|
Fazlioglu F, Bonser SP. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2016.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Uchiya P, Escaray FJ, Bilenca D, Pieckenstain F, Ruiz OA, Menéndez AB. Salt effects on functional traits in model and in economically important Lotus species. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:703-709. [PMID: 27007305 DOI: 10.1111/plb.12455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution.
Collapse
Affiliation(s)
- P Uchiya
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Buenos Aires, Argentina
| | - F J Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Buenos Aires, Argentina
| | - D Bilenca
- IEGEBA, UBA-CONICET - Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - F Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Buenos Aires, Argentina
| | - O A Ruiz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Buenos Aires, Argentina
| | - A B Menéndez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, PROPLAME-PRHIDEB (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Peng Y, Yang Y. Allometric biomass partitioning under nitrogen enrichment: Evidence from manipulative experiments around the world. Sci Rep 2016; 6:28918. [PMID: 27349584 PMCID: PMC4923945 DOI: 10.1038/srep28918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022] Open
Abstract
Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.
Collapse
Affiliation(s)
- Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
12
|
Munné-Bosch S. Perennial roots to immortality. PLANT PHYSIOLOGY 2014; 166:720-5. [PMID: 24563283 PMCID: PMC4213100 DOI: 10.1104/pp.114.236000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/21/2014] [Indexed: 05/23/2023]
Abstract
Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.
Collapse
Affiliation(s)
- Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Miller RE, Gleadow RM, Cavagnaro TR. Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum? PLANT, CELL & ENVIRONMENT 2014; 37:929-942. [PMID: 24118061 DOI: 10.1111/pce.12209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P-limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P-limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.
Collapse
Affiliation(s)
- Rebecca E Miller
- Melbourne School of Land and Environment, University of Melbourne Burnley Campus, Richmond, Victoria, 3121, Australia
| | | | | |
Collapse
|
14
|
Abstract
As a plant shoot develops, it produces different types of leaves, buds, and internodes, and eventually acquires the capacity to produce structures involved in sexual reproduction. Morphological and anatomical traits that change in coordinated fashion at a predictable time in vegetative development allow this process to be divided into several more-or-less discrete phases; the transition between these phases is termed "vegetative phase change." Vegetative phase change is regulated by a decrease in the expression of the related microRNAs, miR156, and miR157, which act by repressing the expression of squamosa promoter binding protein/SBP-like (SBP/SPL) transcription factors. SBP/SPL proteins regulate a wide variety of processes in shoot development, including flowering time and inflorescence development. Answers to long-standing questions about the relationship between vegetative and reproductive maturation have come from genetic analyses of the transcriptional and posttranscriptional regulatory networks in which these proteins are involved. Studies conducted over several decades indicate that carbohydrates have a significant effect on phase-specific leaf traits, and recent research suggests that sugar may be the leaf signal that promotes vegetative phase change.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Xie J, Tang L, Wang Z, Xu G, Li Y. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLoS One 2012; 7:e41502. [PMID: 22911802 PMCID: PMC3404046 DOI: 10.1371/journal.pone.0041502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.
Collapse
Affiliation(s)
- Jiangbo Xie
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lisong Tang
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People’s Republic of China
| | - Zhongyuan Wang
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guiqing Xu
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People’s Republic of China
| | - Yan Li
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
17
|
Valluru R, Link J, Claupein W. Consequences of early chilling stress in two Triticum species: plastic responses and adaptive significance. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:641-51. [PMID: 22309058 DOI: 10.1111/j.1438-8677.2011.00540.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenotypic plasticity of two primitive wheat species (Triticum monococcum L. and Triticum dicoccum S.) was studied in response to early chilling stress. Selection pressure differentials, gradients and plasticity costs on plant morphogenesis, growth and reserve carbohydrate consumption were estimated. Regression analysis was applied to investigate differential developmental changes and patterns between treatments. Four-day-old seedlings of T. monococcum and T. dicoccum, differing in plant stature and reserve carbohydrates, were given an early chilling temperature (4 °C for 42 day) and compared with control plants grown at 23 °C. Early chilling stress resulted in a significant increase in leaf mass ratio (LMR) and relative growth rate (RGR), a reduction in flag leaf size, total biomass, specific leaf area (SLA) and reserve carbohydrate storage at flowering, together with advanced onset of flowering. Selection pressure within the early chilling environment favoured early flowering, smaller SLA, higher LMR and lower reserve carbohydrates, suggesting the observed responses were adaptive. Furthermore, a regression of daily cumulative plant biomass derived from a crop growth simulation model (CERES-Wheat) on crop vegetation period revealed a divergent developmental pattern in early-chilled plants. Using selection pressure gradient analysis, we found similar responses among these traits, except for SLA and sucrose, indicating that these two traits have indirect effects on fitness. Thus, the total effects of SLA and reserve sucrose on relative fitness seem to be buffered via the rapid growth rate in chilled plants. While lower SLA may reduce early chilling stress effects at an individual leaf level, a higher LMR and use of reserve carbohydrates indicated that compensatory growth of chilled plants during the recovery period relied on the concerted action of altered resource allocation and reserve carbohydrate consumption. However, a significant cost of plasticity was evident only for flowering time, LMR and fructan levels in the early chilling environment. Our results demonstrate that morphological and intrinsic developmental (ontogenetic) patterns in two Triticum species respond to early chilling stress.
Collapse
Affiliation(s)
- R Valluru
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
18
|
Quintero C, Bowers MD. Changes in plant chemical defenses and nutritional quality as a function of ontogeny in Plantago lanceolata (Plantaginaceae). Oecologia 2011; 168:471-81. [DOI: 10.1007/s00442-011-2114-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
|
19
|
Mägi M, Semchenko M, Kalamees R, Zobel K. Limited phenotypic plasticity in range-edge populations: a comparison of co-occurring populations of two Agrimonia species with different geographical distributions. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:177-184. [PMID: 21143739 DOI: 10.1111/j.1438-8677.2010.00342.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increased importance of genetic drift and selection for stress resistance have been predicted to lead to a reduction in the degree of phenotypic plasticity in populations at margins of a species' geographical range, relative to those in the centre. We examined the effect of population positioning within the species range on degree of active morphological plasticity to vegetation shade. Importantly, we discriminated between active, size-independent morphological adjustments in response to shade and passive changes in morphology caused by the dependence of morphological traits on plant size, as only the former are considered to be adaptive. Two closely related and ecologically similar Agrimonia species were examined in the same geographical location, where one species reaches the edge of its distribution (Agrimonia pilosa) and the other does not (A. eupatoria). Plasticity to light availability is likely to be advantageous for both species as they occupy habitats with variable light conditions. However, we hypothesised that high levels of environmental stress should lead to reduced active plasticity in marginal compared with more central populations. Agrimonia eupatoria exhibited active adjustments in leaf morphology in response to tree shade, and in elongation of stems and inflorescences in response to herbaceous shade. In contrast, A. pilosa exhibited very limited active plasticity. High active plasticity allowed A. eupatoria to retain constant shoot growth in a wide range of light conditions, while the lack of active plasticity in A. pilosa resulted in a strong dependence of shoot growth on light availability. We propose that high levels of environmental stress in marginal areas of a species' range may lead to a significant reduction in the degree of active plasticity. Our results clearly indicate that discrimination between active and passive plasticity is crucial for reaching valid conclusions about differences in adaptive plasticity between marginal and non-marginal populations.
Collapse
Affiliation(s)
- Maris Mägi
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
20
|
Smith EA, Collette SB, Boynton TA, Lillrose T, Stevens MR, Bekker MF, Eggett D, St Clair SB. Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones. TREE PHYSIOLOGY 2011; 31:68-77. [PMID: 21389003 DOI: 10.1093/treephys/tpq100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phenotypic variation in plant traits is strongly influenced by genetic and environmental factors. Over the life span of trees, developmental factors may also strongly influence leaf phenotypes. The objective of this study was to fill gaps in our understanding of developmental influences on patterns of phenotypic trait variation among different-aged ramets within quaking aspen (Populus tremuloides Michx.) clones. We hypothesized that phenotypic variation in leaf functional traits is strongly influenced by developmental cues as trees age. We surveyed eight aspen clones, each with eight distinct age classes ranging from 1 to 160 years in age, and selected three ramets per age class for sample collection. Leaf traits measured included photosynthesis, stomatal conductance, water use efficiency, specific leaf area, and concentrations of N, phosphorus, sucrose, starch, condensed tannins and phenolic glycosides. Using regression analysis, we examined the relationships between ramet age and expression of leaf functional traits. The data showed significant correlations between ramet age and 10 of the 12 phenotypic traits measured. Eight of the phenotypic traits demonstrated a non-linear relationship in which large changes in phenotype occurred in the early stages of ramet development and stabilized thereafter. Water relations, nutrient concentration, leaf gas exchange and phenolic glycosides tended to decrease from early to late development, whereas sucrose, condensed tannin concentrations and water use efficiency increased with ramet age. We hypothesize that ontogenetically derived phenotypic variation leads to fitness differentials among different-aged ramets, which may have important implications for clone fitness. Age-related increases in phenotypic diversity may partially underlie aspen's ability to tolerate the large environmental gradients that span its broad geographical range.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Halpern SL, Adler LS, Wink M. Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 2010; 163:961-71. [PMID: 20461411 DOI: 10.1007/s00442-010-1651-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant's environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.
Collapse
Affiliation(s)
- Stacey L Halpern
- Biology Department, Pacific University, 2043 College Way, Forest Grove, OR 97116, USA.
| | | | | |
Collapse
|
22
|
Useche A, Shipley B. Interspecific correlates of plasticity in relative growth rate following a decrease in nitrogen availability. ANNALS OF BOTANY 2010; 105:333-9. [PMID: 19942581 PMCID: PMC2814757 DOI: 10.1093/aob/mcp284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Nitrogen availability varies greatly over short time scales. This requires that a well-adapted plant modify its phenotype by an appropriate amount and at a certain speed in order to maximize growth and fitness. To determine how plastic ontogenetic changes in each trait interact and whether or not these changes are likely to maximize growth, ontogenetic changes in relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and root weight ratio (RWR), before and after a decrease in nitrogen supply, were studied in 14 herbaceous species. METHODS Forty-four plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly decreased from 1 to 0.01 mm during the growth period. KEY RESULTS AND CONCLUSIONS In the treatment series, and in comparison with the control, NAR and RGR decreased, RWR increased, and SLA did not change except for the timing of ontogenetic change. Species having greater increases in the maximum rate of change in RWR also had smaller reductions in RGR; plasticity in RWR is therefore adaptive. In contrast, species which showed a greater decrease in NAR showed stronger reductions in RGR; plasticity in NAR is therefore not adaptive. Plasticity in RGR was not related to plasticity in SLA. There were no significant relationships among the plasticities in NAR, RWR or SLA. Potentially fast-growing species experienced larger reductions in RGR following the nitrogen reduction. These results suggest that competitive responses to interspecific competition for nitrogen might be positively correlated with the plasticity in the maximum rate of change in RWR in response to a reduction in nitrogen supply.
Collapse
|
23
|
Tao J, Luo ZY, Msangi CI, Shu XS, Wen L, Liu SP, Zhou CQ, Liu RX, Hu WX. Relationships among genetic makeup, active ingredient content, and place of origin of the medicinal plant Gastrodia tuber. Biochem Genet 2009; 47:8-18. [PMID: 19037723 DOI: 10.1007/s10528-008-9201-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gastrodia tuber and its component gastrodin have many pharmacological effects. The chemical fingerprints and gastrodin contents of eight Gastrodia populations were determined, and the genomic DNA polymorphism of the populations was investigated. Genetic distance coefficients among the populations were calculated using the DNA polymorphism data. A dendrogram of the genetic similarities between the populations was constructed using the genetic distance coefficients. The results indicated that the genomic DNA of Gastrodia tubers was highly polymorphic; the eight populations clustered into three major groups, and the gastrodin content varied greatly among these groups. There were obvious correlations among genetic makeup, gastrodin content, and place of origin. The ecological environments in Guizhou and Shanxi may be conducive to evolution and to gastrodin biosynthesis, and more suitable for cultivation of Gastrodia tubers. These findings may provide a scientific basis for overall genetic resource management and for the selection of locations for cultivating Gastrodia tubers.
Collapse
Affiliation(s)
- Jun Tao
- School of Biology and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410076, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Forster MA, Bonser SP. Heteroblastic development and the optimal partitioning of traits among contrasting environments in Acacia implexa. ANNALS OF BOTANY 2009; 103:95-105. [PMID: 18978364 PMCID: PMC2707286 DOI: 10.1093/aob/mcn210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/29/2008] [Accepted: 09/16/2008] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Optimal partitioning theory (OPT) predicts plants will allocate biomass to organs where resources are limiting. Studies of OPT focus on root, stem and leaf mass ratios where roots and stems are often further sub-divided into organs such as fine roots/tap roots or branches/main stem. Leaves, however, are rarely sub-divided into different organs. Heteroblastic species develop juvenile and adult foliage and provide an opportunity of sub-dividing leaf mass ratio into distinct organs. Acacia implexa (Mimosaceae) is a heteroblastic species that develops compound (juvenile), transitional and phyllode (adult) leaves that differ dramatically in form and function. The aims of the present study were to grow A. implexa to examine patterns of plastic development of whole-plant and leaf traits under the OPT framework. METHODS Plants were grown in a glasshouse under contrasting nutrient, light and water environments in a full factorial design. Allocation to whole-plant and leaf-level traits was measured and analysed with multivariate statistics. KEY RESULTS Whole-plant traits strongly followed patterns predicted by OPT. Leaf-level traits showed a more complex pattern in response to experimental treatments. Compound leaves on low nutrient plants had significantly lower specific leaf area (SLA) and were retained for longer as quantified by a significantly greater compound leaf mass ratio after 120 d. There was no significant difference in SLA of compound leaves in the light treatment, yet transitional SLA was significantly higher under the low light treatment. The timing of heteroblastic shift from compound to transitional leaves was significantly delayed only in the low light treatment. Therefore, plants in the light treatment responded at the whole-plant level by adjusting allocation to productive compound leaves and at the leaf-level by adjusting SLA. There were no significant SLA differences in the water treatment despite strong trends at the whole-plant level. CONCLUSION Explicitly sub-dividing leaves into different types provided greater insights into OPT.
Collapse
Affiliation(s)
- Michael A Forster
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
25
|
|
26
|
Burns JH. Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2006; 16:1367-76. [PMID: 16937804 DOI: 10.1890/1051-0761(2006)016[1367:raeata]2.0.co;2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Understanding the traits of invasive species may improve the ability to predict, prevent, and manage invasions. I compared morphological and performance traits of five congeneric pairs of invasive and noninvasive Commelinaceae across a factorial experiment using a range of water and nutrient availabilities. Invasive species had greater fecundity and vegetative reproduction than their noninvasive relatives. The invasive species also had higher relative growth rates, greater specific leaf area, and more plastic root-to-shoot ratios than noninvasive species. However, whether a trait was associated with invasiveness often depended on both environment and relatedness. Invasives had greater sexual and vegetative reproduction, higher specific leaf area, and greater relative growth rates than noninvasive congeners, but only in some environments. Differences between invasive and noninvasive taxa were greatest at high nutrient availabilities. These results suggest that studies of invasive species' traits must incorporate information on conditions under which the trait was measured. In addition, incorporating information on relatedness improved our ability to detect associations between species traits, such as specific leaf area and relative growth rate, and invasiveness, suggesting that such information may be required for a complete understanding of what makes a species invasive.
Collapse
Affiliation(s)
- Jean H Burns
- Department of Biological Science, Florida State University, Tallahassee 32306-1100, USA.
| |
Collapse
|
27
|
Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecol Res 2006. [DOI: 10.1007/s11284-006-0017-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
METCALF CJE, REES M, ALEXANDER JM, ROSE K. Growth-survival trade-offs and allometries in rosette-forming perennials. Funct Ecol 2006. [DOI: 10.1111/j.1365-2435.2006.01084.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Affiliation(s)
- Sonia E Sultan
- Biology Department, Wesleyan University, CT 06459-0170, USA.
| |
Collapse
|