1
|
Vanrell MA, Novaes LR, Afonso A, Arroyo J, Simón-Porcar V. Ecological correlates of population genetics in Linum suffruticosum, an heterostylous polyploid and taxonomic complex endemic to the Western Mediterranean Basin. AOB PLANTS 2024; 16:plae027. [PMID: 39005727 PMCID: PMC11244263 DOI: 10.1093/aobpla/plae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
Linum suffruticosum s.l. is a taxonomic complex widespread in the Western Mediterranean basin. The complex is characterized by a high phenotypic and cytogenetic diversity, and by a unique three-dimensional heterostyly system that makes it an obligate outcrosser. We studied the patterns of genetic diversity and structure of populations throughout the entire distribution of L. suffruticosum s.l. with microsatellite markers. We analysed their relationships with various biological and ecological variables, including the morph ratio and sex organ reciprocity of populations measured with a novel multi-dimensional method. Populations consistently showed an approximate 1:1 morph ratio with high sex organ reciprocity and high genetic diversity. We found high genetic differentiation of populations, showing a pattern of isolation by distance. The Rif mountains in NW Africa were the most important genetic barrier. The taxonomic treatment within the group was not related to the genetic differentiation of populations, but to their environmental differentiation. Genetic diversity was unrelated to latitude, elevation, population size, niche suitability or breeding system. However, there was a clear influence of ploidy level on the genetic diversity of populations, and a seeming centre-periphery pattern in its distribution. Our results suggest that polyploidization events, high outcrossing rates, isolation by distance and important geographical barriers to gene flow have played major roles in the microevolutionary history of this species complex.
Collapse
Affiliation(s)
- Maria Antònia Vanrell
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Letícia R Novaes
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Ana Afonso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Juan Arroyo
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | - Violeta Simón-Porcar
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| |
Collapse
|
2
|
Gutiérrez-Valencia J, Zervakis PI, Postel Z, Fracassetti M, Losvik A, Mehrabi S, Bunikis I, Soler L, Hughes PW, Désamoré A, Laenen B, Abdelaziz M, Pettersson OV, Arroyo J, Slotte T. Genetic Causes and Genomic Consequences of Breakdown of Distyly in Linum trigynum. Mol Biol Evol 2024; 41:msae087. [PMID: 38709782 PMCID: PMC11114476 DOI: 10.1093/molbev/msae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue. Building on a high-quality genome assembly, we show that L. trigynum harbors a genomic region homologous to the dominant haplotype of the distyly supergene conferring long stamens and short styles in L. tenue, suggesting that loss of distyly first occurred in a short-styled individual. In contrast to homostylous Primula and Fagopyrum, L. trigynum harbors no fixed loss-of-function mutations in coding sequences of S-linked distyly candidate genes. Instead, floral gene expression analyses and controlled crosses suggest that mutations downregulating the S-linked LtWDR-44 candidate gene for male self-incompatibility and/or anther height could underlie homostyly and self-compatibility in L. trigynum. Population genomic analyses of 224 whole-genome sequences further demonstrate that L. trigynum is highly self-fertilizing, exhibits significantly lower genetic diversity genome-wide, and is experiencing relaxed purifying selection and less frequent positive selection on nonsynonymous mutations relative to L. tenue. Our analyses shed light on the loss of distyly in L. trigynum, and advance our understanding of a common evolutionary transition in flowering plants.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Panagiotis-Ioannis Zervakis
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Zoé Postel
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Arroyo
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Jiao F, Wang X, Zhang A. Asymmetrical disassortative pollination mediated by long-/short-tongued pollinators in a distylous Limonium myrianthum (Plumbaginaceae) with a short corolla tubular small flower. Ecol Evol 2024; 14:e11284. [PMID: 38651164 PMCID: PMC11033550 DOI: 10.1002/ece3.11284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
In heterostylous plants, short-tongued pollinators are often ineffective/inefficient owing to the limitations imposed by a long corolla tube. However, it is unclear how disassortative pollen transfer is achieved in small flowers. We investigated the pollination pattern and floral morph variation by analyzing heterostylous syndrome, pollinator groups, and pollen deposition after a single visitation in two Limonium myrianthum populations with short-corolla-tubular small flowers. The predominant pollinators in the Hutubi population were pollen-seeking short-tongued syrphids, which can only transfer pollen between high-level sexual organs. In the Xishan population, nectar-seeking short-tongued insects were efficient pollinators with symmetrical disassortative pollen transfer between high- and low-level sexual organs, whereas long-tongued pollinators had a low efficiency between high-level sexual organs due to the low contact probability with the stigma of long-styled flowers (L-morph), which no longer offered the same advantage observed in tubular flowers. Asymmetrical disassortative pollination may cause the female fitness of short-styled (S-morph) individuals in the Hutubi and L-morph individuals in the Xishan population to suffer greater selection pressure and exhibit a higher degree of floral morph variation. Limonium myrianthum exhibits an unusual pollination pattern in which the small flowers with short corolla tubes make it possible for short-tongued insects to become effective pollinators. However, factors such as the position of stigma-anther within the flower, pollinator species and their preference further caused asymmetrical disassortative pollen transfer. Therefore, more factors should be considered when evaluating the effectiveness of short- and long-tongued insects in pollination service.
Collapse
Affiliation(s)
- Fangfang Jiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and TechnologyXinjiang UniversityUrumqiChina
| | - Xiaowei Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and TechnologyXinjiang UniversityUrumqiChina
| | - Aiqin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and TechnologyXinjiang UniversityUrumqiChina
| |
Collapse
|
4
|
Trevizan R, Oliveira PE, Cardoso JCF. Investigating the longstanding mystery of stigma length differences between morphs of distylous plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:421-426. [PMID: 38315474 DOI: 10.1111/plb.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
Longer stigmas in short-styled morphs of distylous plants have been considered an adaptive characteristic that increases intermorph pollen deposition. The greater pollen deposition in short-styled stigmas may be a by-product of their longer length, making deposition effectiveness comparison between morphs unfeasible. Thus, investigating which morph has the relatively most efficient stigma (i.e., pollen deposition per unit length) can boost our understanding of the adaptive significance of longer stigmas. Here, we compared pollen deposition between morphs relative to stigma length and assessed whether short-styled stigmas are more, less, or equally effective in receiving pollen grains per unit length. We reviewed the literature to characterize the extent of sigma length differences between morphs using the two most speciose distylous genera as model systems: Palicourea and Psychotria (Rubiaceae). Then, we conducted a between-morph comparison of raw and relative pollen depositions in a Palicourea rigida population. We confirmed that short-styled stigmas were longer than long-styled stigmas in both Palicourea (194.31% longer) and Psychotria (52.59% longer) flowers. Furthermore, in the focal Pal. rigida, although short-styled stigmas were 268.04% longer and received 97.04% more pollen grains than long-styled stigmas, the relative pollen deposition had a reverse pattern, with short-styled stigmas being two-times less efficient in receiving pollen. Our results indicate that the longer length of the short-styled stigmas may have a compensatory effect, increasing the chances of pollen grains reaching the stigma and probably maintaining disassortative intermorph pollination in distylous plants.
Collapse
Affiliation(s)
- R Trevizan
- Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - P E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | - J C F Cardoso
- Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
- Departamento de Biodiversidade Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
5
|
Olmedo-Vicente E, Désamoré A, Simón-Porcar VI, Slotte T, Arroyo J. Development of microsatellite markers for sister species Linum suffruticosum and Linum tenuifolium in their overlapping ranges. Mol Biol Rep 2023; 50:7927-7933. [PMID: 37458871 PMCID: PMC10460739 DOI: 10.1007/s11033-023-08471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Microsatellite markers were developed for distylous Linum suffruticosum and tested in the monomorphic sister species Linum tenuifolium. These species are perennial herbs endemic to the western and northwestern Mediterranean, respectively, with a partially overlapping distribution area. METHODS AND RESULTS We developed 12 microsatellite markers for L. suffruticosum using next generation sequencing, and assessed their polymorphism and genetic diversity in 152 individuals from seven natural populations. The markers displayed high polymorphism, with two to 16 alleles per locus and population, and average observed and expected heterozygosities of 0.833 and 0.692, respectively. All loci amplified successfully in the sister species L. tenuifolium, and 150 individuals from seven populations were also screened. The polymorphism exhibited was high, with two to ten alleles per locus and population, and average observed and expected heterozygosities of 0.77 and 0.62, respectively. CONCLUSIONS The microsatellite markers identified in L. suffruticosum and tested in L. tenuifolium are a powerful tool to facilitate future investigations of the population genetics, mating patterns and hybridization between both Linum species in their contact zone.
Collapse
Affiliation(s)
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Juan Arroyo
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| |
Collapse
|
6
|
Wang X, Chen Y, Yi Y. Features of floral odor and nectar in the distylous Luculia pinceana (Rubiaceae) promote compatible pollination by hawkmoths. Ecol Evol 2023; 13:e9920. [PMID: 36969924 PMCID: PMC10030271 DOI: 10.1002/ece3.9920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
It is hypothesized that in heterostylous plant species, standardization of signals of floral attraction between different morphs is advantageous, encouraging flower visitors to switch between morphs. It remains unclear whether signals of floral attraction (floral odor and properties of nectar) are similar between morphs in distylous species pollinated by hawkmoths, and how these relate to hawkmoth behavior. We observed the behavior of visitors to distylous Luculia pinceana (Rubiaceae), collected and analyzed floral odor, and examined properties of nectar (volume, sugar concentration, and composition) of long-styled and short-styled morphs during the day and night. Pollinator responses to the floral scent were tested with a Y-tube olfactometer. We conducted diurnal and nocturnal pollination treatments and six other pollination treatments to test the importance of nocturnal pollinators and to examine the self-incompatibility system. A species of hawkmoth, Cechenena lineosa, was the effective pollinator. The floral odor was rich in methyl benzoate, and sucrose was dominant in the nectar. There were no significant differences between the two morphs in the methyl benzoate content or the properties of nectar. Flowers released more methyl benzoate and secreted larger volumes of nectar with lower sugar concentration at night than during the day. The hawkmoth had a significant preference for methyl benzoate. Luculia pinceana was partially self-incompatible and relied on nocturnal pollinators for reproductive success. This study verifies that floral attraction signals are consistent between different morphs in this distylous species, promoting compatible pollination, and the features and the diel pattern of these signals between day and night are adapted to hawkmoth behavior.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yan Chen
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
7
|
Afonso A, Castro S, Loureiro J, Arroyo J, Figueiredo A, Lopes S, Castro M. Ecological niches in the polyploid complex Linum suffruticosum s.l.. FRONTIERS IN PLANT SCIENCE 2023; 14:1148828. [PMID: 37152130 PMCID: PMC10154603 DOI: 10.3389/fpls.2023.1148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
Introduction The high frequency of polyploidy in the evolutionary history of many plant groups occurring in the Mediterranean region is likely a consequence of its dynamic paleogeographic and climatic history. Polyploids frequently have distinct characteristics that allow them to overcome the minority cytotype exclusion. Such traits may enable polyploid individuals to grow in habitats different from their parentals and/or expand to new areas, leading to spatial segregation. Therefore, the successful establishment of polyploid lineages has long been associated with niche divergence or niche partitioning and the ability of polyploids to cope with different, often more stressful, conditions. In this study, we aimed to explore the role of environmental variables associated with the current distribution patterns of cytotypes within the polyploid complex Linum suffruticosum s.l.. Methods The distribution and environmental niches of the five main cytotypes of Linum suffruticosum s.l. (diploids, tetraploids, hexaploids, octoploids and decaploids) were studied across its distribution range. Realized environmental niche of each cytotype was determined using niche modelling tools, such as maximum entropy modelling and niche equivalency and similarity tests. Results Differences in the environmental conditions of L. suffruticosum s.l. cytotypes were observed, with polyploids being associated with habitats of increased drought and soil pH, narrower temperature ranges and decreased soil water and cation exchange capacities. Diploids present the widest environmental niche, and polyploids occupy part of the diploid niche. Although some polyploids have equivalent potential ecological niches, cytotypes do not co-occur in nature. Additionally, the ecological niche of this polyploid complex is different between continents, with North African habitats being characterised by differences in soil texture, higher pH, and low cation exchange capacity, precipitation and soil water capacity and higher temperatures than habitats in southwest Europe. Discussion The different ecological conditions played a role in the distribution of cytotypes, but the mosaic distribution could not be entirely explained by the environmental variables included in this study. Other factors, such as reproductive isolation and competitive interactions among cytotypes, could further explain the current diversity and distribution patterns in white flax. This study provides relevant data on the niche requirements of each cytotype for further competition and reciprocal transplant experiments. further competition and reciprocal transplant experiments.
Collapse
Affiliation(s)
- Ana Afonso
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- *Correspondence: Ana Afonso,
| | - Sílvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Albano Figueiredo
- Centre of Studies in Geography and Spatial Planning (CEGOT), Department of Geography and Tourism, University of Coimbra, Coimbra, Portugal
| | - Sara Lopes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mariana Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Opedal ØH, Hildesheim LS, Armbruster WS. Evolvability and constraint in the evolution of three-dimensional flower morphology. AMERICAN JOURNAL OF BOTANY 2022; 109:1906-1917. [PMID: 36371715 PMCID: PMC9827957 DOI: 10.1002/ajb2.16092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
PREMISE Flower phenotypes evolve to attract pollinators and to ensure efficient pollen transfer to and from the bodies of pollinators or, in self-compatible bisexual flowers, between anthers and stigmas. If functionally interacting traits are genetically correlated, response to selection may be subject to genetic constraints. Genetic constraints can be assessed by quantifying standing genetic variation in (multivariate) phenotypic traits and by asking how much the available variation is reduced under specific assumptions about phenotypic selection on functionally interacting and genetically correlated traits. METHODS We evaluated multivariate evolvability and potential genetic constraints underlying the evolution of the three-dimensional structure of Dalechampia blossoms. First, we used data from a greenhouse crossing design to estimate the G matrix for traits representing the relative positions of male and female sexual organs (anthers and stigmas) and used the G matrix to ask how genetic variation is distributed in multivariate space. To assess the evolutionary importance of genetic constraints, we related standing genetic variation across phenotypic space to evolutionary divergence of population and species in the same phenotypic directions. RESULTS Evolvabilities varied substantially across phenotype space, suggesting that certain traits or trait combinations may be subject to strong genetic constraint. Traits involved functionally in flower-pollinator fit and autonomous selfing exhibited considerable independent evolutionary potential, but population and species divergence tended to occur in phenotypic directions associated with greater-than-average evolvability. CONCLUSIONS These results are consistent with the hypothesis that genetic constraints can hamper joint trait evolution towards optimum flower-pollinator fit and optimum self-pollination rates.
Collapse
Affiliation(s)
| | | | - W. Scott Armbruster
- School of Biological SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAK99775USA
| |
Collapse
|
9
|
Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol 2022; 32:4360-4371.e6. [PMID: 36087578 DOI: 10.1016/j.cub.2022.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.
Collapse
|
10
|
Wang X, Hu D, Chen Y, Xiang M, Tang H, Yi Y, Tang X. Ancillary polymorphic floral traits between two morphs adaptive to hawkmoth pollination in distylous plant Tirpitzia sinensis (Linaceae). BMC PLANT BIOLOGY 2022; 22:273. [PMID: 35655126 PMCID: PMC9164504 DOI: 10.1186/s12870-022-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Floral morphs are characterized differentiations in reciprocal positions of sexual organs and ancillary floral traits in heterostylous plants. However, it remains unclear how differential floral morphs ensure reproductive success between morphs using the same pollinator. RESULTS Measurements of floral traits in white-flowered Tirpitzia sinensis with long corolla tubes indicated that it is typically distylous, long-styled (L-) morph producing more but smaller pollen grains per flower than short-styled (S-) morph. Both morphs secreted more nectar volume at night than in the day and the sugar composition was rich in sucrose, potentially adaptive to pollination by hawkmoths (Macroglossum spp.) which were active at dusk. A bumblebee species functioned as the nectar robber in both morphs and a honeybee as the pollen feeder in the S-morph. The L-morph secreted more nectar volume but relatively lower sucrose/hexose ratio than the S-morph. Floral visitation rate by hawkmoths was higher but its pollination efficiency was lower in the S-morph than the L-morph. Hand pollination treatments indicated self-incompatibility in T. sinensis and seed set of open-pollinated flowers did not differ between morphs. CONCLUSIONS Our findings suggest that the two morphs differ with respect to traits relevant to pollination. The L-morph, with its exserted stigma, has more pollen grains per anther and a greater volume of nectar, which may prolong the foraging time and increase the pollination efficiency of hawkmoths. The S-morph has a higher sucrose/hexose ratio in its nectar which can be more attractive to hawkmoths and increase the visit rates. Ancillary polymorphic floral traits between two morphs are adaptive to hawkmoth and ensure reproductive success in distylous plant T. sinensis.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Demei Hu
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yan Chen
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Mengda Xiang
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hanqing Tang
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yin Yi
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China
| | - Xiaoxin Tang
- Key Laboratory of State Forestry Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, 550025, China.
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Pontes CADS, Domingos-Melo A, Milet-Pinheiro P, Navarro DMDAF, Lima Nadia T, Machado IC. Staminode of Jacaranda rugosa A.H. Gentry (Bignoniaceae) promotes functional specialization by ensuring signaling and mechanical fit to medium-sized bees. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Armbruster WS, Muchhala N. Floral reorientation: the restoration of pollination accuracy after accidents. THE NEW PHYTOLOGIST 2020; 227:232-243. [PMID: 32252125 DOI: 10.1111/nph.16482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/11/2020] [Indexed: 05/28/2023]
Abstract
Plants sometimes suffer mechanical injury. The nonlethal collapse of a flowering stalk, for example, can greatly reduce plant fitness if it leads to 'incorrect' floral orientation and thus reduced visitation or poor pollination. When floral orientation is important for accurate pollination, as has been suggested for bilaterally symmetrical flowers, we predict that such flowers should have developmental and/or behavioural mechanisms for restoring 'correct' orientation after accidents. We made observations and conducted experiments on 23 native and cultivated flowering plant species in Australia, South America, North America and Europe. We found that flowers with bilateral symmetry usually have the capacity to reorient after accidents, and that this is manifested through rapid bending and/or rotation of pedicels or sexual organs or slower peduncle bending. Floral reorientation restores pollination accuracy and fit with pollinators. However, experimental floral misorientation in eight species with radially symmetrical flowers showed that, with one exception, they had little capacity to reorient their flowers, in line with expectations that the orientation of radially symmetrical flowers does not substantially affect pollination accuracy. Our results suggest that quick corrective reorientation of bilaterally symmetrical flowers is adaptive, highlighting a little-studied aspect of plant-pollinator interactions and plant evolution.
Collapse
Affiliation(s)
- W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St Louis, St Louis, MO, 63121-4499, USA
| |
Collapse
|
13
|
Matias R, Pérez-Barrales R, Consolaro H. Patterns of variation in distylous traits and reproductive consequences in Erythroxylum species and populations. AMERICAN JOURNAL OF BOTANY 2020; 107:910-922. [PMID: 32462680 DOI: 10.1002/ajb2.1478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Distylous species possess two floral morphs with reciprocal positioning of stigmas and anthers that is hypothesized to promote disassortative pollination. Theoretical models predict equal morph frequencies, but many populations depart from the expected 1:1 ratio, a pattern that often correlates with asymmetric mating between morphs and/or presence of a weak incompatibility system. Variation in reciprocity can also affect the likelihood of disassortative pollination and, hence, reproductive fitness. METHODS We described variation in incompatibility systems and morph ratio in four Erythroxylum species to test if greater deviations from 1:1 ratios occur in populations of self-compatible species. Using adaptive inaccuracy, we described upper and lower organ reciprocity in species and populations and assessed the relationship of reciprocity to population means and coefficients of variation for fruit set to test if reciprocity could predict female reproductive success. RESULTS Morphs occurred in 1:1 ratios in most populations of three Erythroxylum species with distylous self-incompatibility. In self-compatible E. campestre populations showed an excess of the long-styled morph, the short-styled morph, or were monomorphic for the short-styled morph. We detected deviations from reciprocity, with total inaccuracy ranging between 9.39% and 42.94%, and inaccuracy values were lowest in low organs. Across populations, we found a positive relationship between inaccuracy and the coefficient of variation of fruit set. CONCLUSIONS Erythroxylum species showed variation in the distylous syndrome, with changes in the incompatibility system that corresponded with deviations from 1:1 morph ratio, and variation in reciprocity that correlated with variation in female reproductive fitness.
Collapse
Affiliation(s)
- Raphael Matias
- Graduate Program in Botany, University of Brasília, Brasília, Distrito Federal, Brazil
- Academic Areas Department, Federal Institute of Goiás, Águas Lindas, Goiás, Brazil
| | | | - Hélder Consolaro
- Biotechnology Institute, Federal University of Catalão, Catalão, Goiás, Brazil
| |
Collapse
|
14
|
Barrett SCH. 'A most complex marriage arrangement': recent advances on heterostyly and unresolved questions. THE NEW PHYTOLOGIST 2019; 224:1051-1067. [PMID: 31631362 DOI: 10.1111/nph.16026] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 05/09/2023]
Abstract
Heterostylous genetic polymorphisms provide paradigmatic systems for investigating adaptation and natural selection. Populations are usually comprised of two (distyly) or three (tristyly) mating types, maintained by negative frequency-dependent selection resulting from disassortative mating. Theory predicts this mating system should result in equal style-morph ratios (isoplethy) at equilibrium. Here, I review recent advances on heterostyly, focusing on examples challenging stereotypical depictions of the polymorphism and unresolved questions. Comparative analyses indicate multiple origins of heterostyly, often within lineages. Ecological studies demonstrate that structural components of heterostyly are adaptations improving the proficiency of animal-mediated cross-pollination and reducing pollen wastage. Both neutral and selective processes cause deviations from isoplethy in heterostylous populations, and, under some ecological and demographic conditions, cause breakdown of the polymorphism, resulting in either the evolution of autogamy and mixed mating, or transitions to alternative outcrossing systems, including dioecy. Earlier ideas on the genetic architecture of the S-locus supergene governing distyly have recently been overturned by discovery that the dominant S-haplotype is a hemizygous region absent from the s-haplotype. Ecological, phylogenetic and molecular genetic data have validated some features of theoretical models on the selection of the polymorphism. Although heterostyly is the best-understood floral polymorphism in angiosperms, many unanswered questions remain.
Collapse
Affiliation(s)
- Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|
15
|
Costa J, Torices R, Barrett SCH. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae. THE NEW PHYTOLOGIST 2019; 224:1278-1289. [PMID: 30825331 DOI: 10.1111/nph.15768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 05/27/2023]
Abstract
The evolutionary pathways leading to the heterostylous syndrome are not well understood, and models concerning the origins of distyly differ in the order in which reciprocal herkogamy and self-incompatibility evolve. We investigated the evolution and breakdown of distyly in Plumbaginaceae, a family with considerable diversity of floral traits and reproductive systems. Using Bayesian Markov chain Monte Carlo analyses and stochastic character mapping, we examined the evolutionary assembly and breakdown of the heterostylous syndrome based on a well-resolved phylogeny of 121 species of Plumbaginaceae and six outgroup taxa using five nuclear and plastid gene regions. We used the distribution of reproductive traits and reconstructed ancestral characters across phylogenies to evaluate competing models for the evolution of distyly. The most likely common ancestor of Plumbaginaceae was self-incompatible and monomorphic for sex-organ arrangement and pollen-stigma characters. Character state reconstructions indicated that reciprocal herkogamy evolved at least three times and that shifts to selfing and apomixis occurred on multiple occasions. Our results provide comparative support for the early ideas of H. G. Baker on evolutionary pathways in Plumbaginaceae, and the more recent selfing avoidance model by D. & B. Charlesworth in which distyly evolves from self-incompatible ancestors.
Collapse
Affiliation(s)
- Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Rubén Torices
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, c/Tulipán s/n., Móstoles, Madrid, E-28933, Spain
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
16
|
Cohen JI. How to build distylous flowers: comparative floral development and evolution of distylous species across the angiosperms. AMERICAN JOURNAL OF BOTANY 2019; 106:1285-1299. [PMID: 31539168 DOI: 10.1002/ajb2.1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Distyly, a plant breeding system characterized by two floral morphs that have reciprocal positioning of anthers and stigmas, is known from at least 27 angiosperm families, making it an excellent example of convergent evolution. The various manners in which patterns of floral development produce the distinct anther and stigma heights in each morph remain largely unexplored from developmental and evolutionary perspectives. METHODS In 15 species representing at least 12 origins of distyly, heights and lengths of floral organs in each morph throughout development were examined using light microscopy. Patterns of floral organ development were determined and compared among species. Family-level phylogenies of distylous species and relatives were reconstructed, and patterns of ancestral herkogamy were resolved. RESULTS Differences in floral development between morphs resulted in 12 patterns leading to the anther and stigma positions characterizing distyly. Distylous species evolved from ancestors with different types of herkogamy, with approach herkogamy and lack of herkogamy resolved most frequently. CONCLUSIONS Seven of the 12 patterns of floral development are known from only one species, with three other patterns described among pairs of close relatives. The most common pattern of floral development, described from at least seven genera, involves for anther heights, distinct intermorph growth rates and for stigma heights, growth rates that differ between morphs only during later development. This pattern is common among subclass Lamiidae, suggesting canalized development within the taxon. Among distylous species, the same type of ancestral herkogamy can give rise to different patterns of floral development.
Collapse
Affiliation(s)
- James I Cohen
- Kettering University, 1700 University Ave., Flint, MI, 48503, USA
| |
Collapse
|
17
|
Jahnke MR, Etterson JR. Autonomous self-fertilization in Linum sulcatum, a native annual with a previously unknown mating system. JOURNAL OF PLANT RESEARCH 2019; 132:57-67. [PMID: 30554369 DOI: 10.1007/s10265-018-1076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The mating systems of wild plant populations have profound effects on their genetic structure and evolution, yet remain unknown or incompletely described for many species. One such species, the herbaceous native annual Linum sulcatum Riddell (Linaceae), is thought to be self-compatible, but there has been no experimental evidence to date to support this claim. To assess the breeding system of this species, seeds were collected from wild populations and reared in a controlled environment. Floral manipulations and controlled pollinations were conducted to determine the degree of self-compatibility of this species and to distinguish between autonomous and facilitated modes of selfing. Additional controlled within- and between-population crosses were conducted to determine the relative degree to which this species can outcross. This study showed that self-fertilization was highly successful and can occur autonomously. In contrast, outcrossing success, both within and between populations, was very limited, suggesting this species may exhibit an extreme degree of cross-incompatibility. A pollen tube growth experiment showed that self-pollination resulted in the formation of more pollen tubes relative to cross-pollination and that complete pollen tube growth can occur less than 2 h following self-pollination. This information is relevant to the future persistence of this species, as much of its remaining habitat is distributed among small, highly fragmented patches subjected to current and future environmental stressors.
Collapse
Affiliation(s)
- Matthew R Jahnke
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, MN, 55812, USA.
| | - Julie R Etterson
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, MN, 55812, USA
| |
Collapse
|
18
|
Pérez-Barrales R, Abarca CA, Santos-Gally R, Schiestl FP, Arroyo J. The function of the floral corona in the pollination of a Mediterranean style dimorphic daffodil. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:118-127. [PMID: 29105981 DOI: 10.1111/plb.12657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Narcissus papyraceus is a style dimorphic species with two floral forms, with anthers at similar height and stigmas above (long-styled L) and below (short-styled S) the anther level. The species is self-incompatible, but intra- and inter-morph compatible. Populations are either dimorphic (including both morphs) in the region of the Strait of Gibraltar, or L-monomorphic (with only L plants) in the inland of the Iberian Peninsula. This variation correlates with the most common floral visitors, being primarily long-tongued and short-tongued pollinators, respectively, a rare condition in Mediterranean plants. The maintenance of S-flowers relies on long-tongued insects, as only those deliver pollen to short-styled stigmas. Narcissus flowers present a long and narrow tube, at the bottom of which nectar accumulates, and a floral corona, which has been proposed as an important trait for the attraction of pollinators. Here we tested the importance of the corona on pollination of L and S flowers. We described UV reflectance patterns of the corona and tepals, and characterised VOCs in intact flowers and flowers with trimmed coronas. We also conducted a field experiment in the dimorphic and monomorphic region to estimate the importance of corona removal on seed production in stands with solitary plants and in groups to control for compatible pollen limitation. Reflectance was higher in the tepals than the corona, although both traits presented a reflectance peak around 450 nm wavelength. L- and S-flowers produced similar volatiles, regardless of the manipulation of the corona. Across dimorphic and monomorphic regions, S-flowers with the corona removed suffered a reduction in seed production of ca. 50%, while seed production remained similar in L flowers both with the corona intact and removed. Plants in solitary stands suffered a strong reduction in seed production, which was more pronounced in the monomorphic region. Our results suggest that the corona in Narcissus is more important for the pollination of S-flowers, which generally have lower seed production compared to L-flowers. Taken together, these results suggest that the floral corona indirectly plays an important role for maintenance of the polymorphism.
Collapse
Affiliation(s)
- R Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - C A Abarca
- Unidad Lerma Departamento de Ecología Evolutiva, Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Mexico City, México
| | - R Santos-Gally
- CONACYT-Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Mexico City, México
| | - F P Schiestl
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| | - J Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Ruiz-Martín J, Santos-Gally R, Escudero M, Midgley JJ, Pérez-Barrales R, Arroyo J. Style polymorphism in Linum (Linaceae): a case of Mediterranean parallel evolution? PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20 Suppl 1:100-111. [PMID: 29164751 DOI: 10.1111/plb.12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Heterostyly is a sex polymorphism that has challenged evolutionary biologists ever since Darwin. One of the lineages where heterostyly and related stylar conditions appear more frequently is Linum (Linaceae). This group is particularly suitable for testing competing hypotheses about ancestral and transitional stages on the evolutionary building up of heterostyly. We generated a phylogeny of Linum based on extensive sampling and plastid and nuclear DNA sequences, and used it to trace the evolution of character states of style polymorphism. We also revised available data on pollination, breeding systems, and polyploidy to analyse their associations. Our results supported former phylogenetic hypotheses: the paraphyly of Linum and the non-monophyly of current taxonomic sections. Heterostyly was common in the genus, but appeared concentrated in the Mediterranean Basin and the South African Cape. Ancestral character state reconstruction failed to determine a unique state as the most probable condition for style polymorphism in the genus. In contrast, approach herkogamy was resolved as ancestral state in some clades, giving support to recent hypotheses. Some traits putatively related to heterostyly, such as life history and polyploidy, did show marginal or non-significant phylogenetic correlation, respectively. Although pollinator data are limited, we suggest that beeflies are associated with specific cases of heterostyly. The consistent association between style polymorphism and heteromorphic incompatibility points to ecological factors as drivers of the multiple evolution of style polymorphism in Linum. Albeit based on limited evidence, we hypothesised that specialised pollinators and lack of mating opportunities drive evolution of style polymorphism and loss of the polymorphism, respectively.
Collapse
Affiliation(s)
- J Ruiz-Martín
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - R Santos-Gally
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - M Escudero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - J J Midgley
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - R Pérez-Barrales
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - J Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
20
|
Armbruster WS, Bolstad GH, Hansen TF, Keller B, Conti E, Pélabon C. The measure and mismeasure of reciprocity in heterostylous flowers. THE NEW PHYTOLOGIST 2017; 215:906-917. [PMID: 28556899 DOI: 10.1111/nph.14604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The goal of biological measurement is to capture underlying biological phenomena in numerical form. The reciprocity index applied to heterostylous flowers is meant to measure the degree of correspondence between fertile parts of opposite sex on complementary (inter-compatible) morphs, reflecting the correspondence of locations of pollen placement on, and stigma contact with, pollinators. Pollen of typical heterostylous flowers can achieve unimpeded fertilization only on opposite-morph flowers. Thus, the implicit goal of this measurement is to assess the likelihood of 'legitimate' pollinations between compatible morphs, and hence reproductive fitness. Previous reciprocity metrics fall short of this goal on both empirical and theoretical grounds. We propose a new measure of reciprocity based on theory that relates floral morphology to reproductive fitness. This method establishes a scale based on adaptive inaccuracy, a measure of the fitness cost of the deviation of phenotypes in a population from the optimal phenotype. Inaccuracy allows the estimation of independent contributions of maladaptive bias (mean departure from optimum) and imprecision (within-population variance) to the phenotypic mismatch (inaccuracy) of heterostylous morphs on a common scale. We illustrate this measure using data from three species of Primula (Primulaceae).
Collapse
Affiliation(s)
- W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, NO-7485, Norway
| | - Thomas F Hansen
- Department of Biology, CEES & Evogene, University of Oslo, PB1016, Oslo, 0316, Norway
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Christophe Pélabon
- Institute of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| |
Collapse
|
21
|
Armbruster WS. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12783] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- William Scott Armbruster
- School of Biological Sciences University of Portsmouth PortsmouthPO1 2DY UK
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks AK99775‐7000 USA
| |
Collapse
|
22
|
Fu YB, Dong Y, Yang MH. Multiplexed shotgun sequencing reveals congruent three-genome phylogenetic signals for four botanical sections of the flax genus Linum. Mol Phylogenet Evol 2016; 101:122-132. [PMID: 27165939 DOI: 10.1016/j.ympev.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022]
Abstract
A genome-wide detection of phylogenetic signals by next generation sequencing (NGS) has recently emerged as a promising genomic approach for phylogenetic analysis of non-model organisms. Here we explored the use of a multiplexed shotgun sequencing method to assess the phylogenetic relationships of 18 Linum samples representing 16 species within four botanical sections of the flax genus Linum. The whole genome DNAs of 18 Linum samples were fragmented, tagged, and sequenced using an Illumina MiSeq. Acquired sequencing reads per sample were further separated into chloroplast, mitochondrial and nuclear sequence reads. SNP calls upon genome-specific sequence data sets revealed 6143 chloroplast, 2673 mitochondrial, and 19,562 nuclear SNPs. Phylogenetic analyses based on three-genome SNP data sets with and without missing observations showed congruent three-genome phylogenetic signals for four botanical sections of the Linum genus. Specifically, two major lineages showing a separation of Linum-Dasylinum sections and Linastrum-Syllinum sections were confirmed. The Linum section displayed three major branches representing two major evolutionary stages leading to cultivated flax. Cultivated flax and its immediate progenitor were formed as its own branch, genetically more closely related to L. decumbens and L. grandiflorum with chromosome count of eight, and distantly apart from six other species with chromosome count of nine. Five species of the Linastrum and Syllinum sections were genetically more distant from cultivated flax, but they appeared to be more closely related to each other, even with variable chromosome counts. These findings not only provide the first evidence of congruent three-genome phylogenetic pathways within the Linum genus, but also demonstrate the utility of the multiplexed shotgun sequencing in acquisition of three-genome phylogenetic signals of non-model organisms.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, AAFC Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N0X2, Canada.
| | - Yibo Dong
- Plant Gene Resources of Canada, AAFC Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N0X2, Canada
| | - Mo-Hua Yang
- Plant Gene Resources of Canada, AAFC Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N0X2, Canada; College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, China
| |
Collapse
|
23
|
Talebi SM, Farahani F, Sheidai M, Noormohammadi Z. Características palinológicas de las subspecies de <em>Linum mucronatum</em> Bertol. con heterostilia. COLLECTANEA BOTANICA 2014. [DOI: 10.3989/collectbot.2013.v33.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Linum mucronatum es una especie con heterostilia, que pertenece a la sección Syllinum del género Linum, y tiene cuatro subespecies en Irán. En el presente estudio se examinan las características palinológicas de las subespecies heterostilas de Linum mucronatum Bertol., así como los caracteres polínicos de individuos de los morfos brevistilo (pin) y longistilo (thrum) de estas plantas, mediante microscopía electrónica de scanning y microscopía óptica usando el método de acetolisis prolongada. Se estudiaron un total de 16 caracteres cualitativos y cuantitativos. La forma ecuatorial del polen varía entre los morfos pin y thrum en todas las subspecies, excepto en L. mucronatum subsp. assyriacum. La ornamentación también varía entre las muestras de morfos pin y thrum de cada subespecie, en los que se puede observar polen gemado, clavado y baculado. En algunos caracteres palinológicos cuantitativos, se encontraron también diferencias entre morfos y el test de ANOVA muestra que son significativas en cuanto a la longitud ecuatorial, la anchura de los colpos y el diámetro del apocolpio. Los individuos heterostilos de cada susbespecie aparecen separados en el árbol UPGMA y también en los gráficos de PCO y PCA. Este estudio confirma las diferencias en las características del polen entre individuos pin y thrum de cada una de las subespecies.
Collapse
|
24
|
Huang LJ, Fu WL, Wang XF. Floral development at multiple spatial scales in Polygonum jucundum (Polygonaceae), a distylous species with broadly open flowers. PLoS One 2014; 9:e102802. [PMID: 25058669 PMCID: PMC4109959 DOI: 10.1371/journal.pone.0102802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
Distyly, a special polymorph, has evolved in many groups of angiosperms and has attracted attention since Darwin's time. Development studies on distylous taxa have helped us to understand the evolutionary process of this polymorph, but most of these studies focus on species with narrowly tubular corolla. Here, we studied the floral development of Polygonum jucundum, a distylous species with broadly open flowers, at multiple spatial scales. Results showed that the difference in stigma height between flowers of the two morphs was caused by differences in style growth throughout the entire floral development process. The observed difference in anther heights between the two morphs was because the filaments grew faster in short-styled (SS) than in long-styled (LS) flowers in the later stages of floral development. In addition, the longer styles in LS flowers than in SS flowers was because of faster cell division in the early stages of floral development. However, SS flowers had longer filaments than LS flowers primarily because of greater cell elongation. These results indicate that floral development in P. jucundum differs from that of distylous taxa with floral tubes shown in previous studies. Further, we conclude that the presence of distyly in species with open flowers is a result of convergent evolution.
Collapse
Affiliation(s)
- Lan-Jie Huang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen-Long Fu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Fan Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Keller B, Thomson JD, Conti E. Heterostyly promotes disassortative pollination and reduces sexual interference in Darwin's primroses: evidence from experimental studies. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barbara Keller
- Institute of Systematic Botany; University of Zürich; Zollikerstrasse 107 8008 Zürich Switzerland
| | - James D. Thomson
- Ecology and Evolutionary Biology Department; University of Toronto; 25 Harbord St. Toronto Ontario M5S 3G5 Canada
| | - Elena Conti
- Institute of Systematic Botany; University of Zürich; Zollikerstrasse 107 8008 Zürich Switzerland
| |
Collapse
|
26
|
Glémin S, Muyle A. Mating systems and selection efficacy: a test using chloroplastic sequence data in Angiosperms. J Evol Biol 2014; 27:1386-99. [PMID: 24674012 DOI: 10.1111/jeb.12356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/26/2022]
Abstract
Selfing is assumed to reduce selection efficacy, especially purifying selection. This can be tested using molecular data, for example by comparing the Dn/Ds ratio between selfing and outcrossing lineages. So far, little evidence of relaxed selection against weakly deleterious mutations (as inferred by a higher Dn/Ds ratio) in selfers as compared to outcrossers has been found, contrary to the pattern often observed between asexual and sexual lineages. However, few groups have been studied to date. To further test this hypothesis, we compiled and analysed chloroplastic sequence data sets in several plant groups. We found a general trend towards relaxed selection in selfers in our data sets but with weak statistical support. Simulations suggested that the results were compatible with weak-to-moderate Dn/Ds ratio differences in selfing lineages. Simple theoretical predictions also showed that the ability to detect relaxed selection in selfers could strongly depend on the distribution of the effects of deleterious mutations on fitness. Our results are compatible with a recent origin of selfing lineages whereby deleterious mutations potentially have a strong impact on population extinction or with a more ancient origin but without a marked effect of deleterious mutations on the extinction dynamics.
Collapse
Affiliation(s)
- S Glémin
- Institut des Sciences de l'Evolution de Montpellier, UMR CNRS 5554, Montpellier, France
| | | |
Collapse
|
27
|
Armbruster WS. Floral specialization and angiosperm diversity: phenotypic divergence, fitness trade-offs and realized pollination accuracy. AOB PLANTS 2014; 6:plu003. [PMID: 24790124 PMCID: PMC4038416 DOI: 10.1093/aobpla/plu003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/05/2014] [Indexed: 05/08/2023]
Abstract
Plant reproduction by means of flowers has long been thought to promote the success and diversification of angiosperms. It remains unclear, however, how this success has come about. Do flowers, and their capacity to have specialized functions, increase speciation rates or decrease extinction rates? Is floral specialization fundamental or incidental to the diversification? Some studies suggest that the conclusions we draw about the role of flowers in the diversification and increased phenotypic disparity (phenotypic diversity) of angiosperms depends on the system. For orchids, for example, specialized pollination may have increased speciation rates, in part because in most orchids pollen is packed in discrete units so that pollination is precise enough to contribute to reproductive isolation. In most plants, however, granular pollen results in low realized pollination precision, and thus key innovations involving flowers more likely reflect reduced extinction rates combined with opportunities for evolution of greater phenotypic disparity (phenotypic diversity) and occupation of new niches. Understanding the causes and consequences of the evolution of specialized flowers requires knowledge of both the selective regimes and the potential fitness trade-offs in using more than one pollinator functional group. The study of floral function and flowering-plant diversification remains a vibrant evolutionary field. Application of new methods, from measuring natural selection to estimating speciation rates, holds much promise for improving our understanding of the relationship between floral specialization and evolutionary success.
Collapse
Affiliation(s)
- W. Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
- Department of Biology, Norwegian University of Science & Technology, Trondheim N-7491, Norway
| |
Collapse
|
28
|
Armbruster WS, Corbet SA, Vey AJM, Liu SJ, Huang SQ. In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. ANNALS OF BOTANY 2014; 113:97-103. [PMID: 24265349 PMCID: PMC3864732 DOI: 10.1093/aob/mct261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact. METHODS To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position. KEY RESULTS The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity. CONCLUSIONS It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.
Collapse
Affiliation(s)
- W. Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775-7000, USA
- Department of Biology, NTNU, N-7491 Trondheim, Norway
| | - Sarah A. Corbet
- 1 St Loy Cottages, St Buryan, Penzance, Cornwall TR19 6DH, UK
| | - Aidan J. M. Vey
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Shu-Juan Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang-Quan Huang
- College of Life Sciences, Central China Normal University, Wuhan 430079, China
- For correspondence. E-mail
| |
Collapse
|
29
|
Sampson DA, Krebs RA. Developmental variation and the evolution of distyly in Hedyotis caerulea (Rubiaceae). SPRINGERPLUS 2013; 2:383. [PMID: 24010041 PMCID: PMC3755807 DOI: 10.1186/2193-1801-2-383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
The development of distyly is thought to arise from differential growth patterns in the pin and thrum morphs. However, few detailed studies exist on the early floral development of distylous flowers, and fewer still look at variation in these traits among populations. Buds at multiple stages of development were collected from five populations of Hedyotis caerulea to quantify how pins and thrums diverge with respect to the initiation, rate, and termination of growth between the stamens and stigmas. The growth rate of anthers varied little spatially across five populations and temporally in both pins and thrums, although thrum anthers grew faster than pin anthers. Dimorphy in stigma height was more complex. Pin stigmas first grew at a faster rate than those of thrums, and late in bud development, growth of thrum styles slowed. These rate changes varied among populations, and they differed from the congeneric H. salzmanii. Similar differences between morphs are known in other heterostylous species, and such variation in growth pattern among related species has been used to infer independent evolution of distylous systems.
Collapse
Affiliation(s)
- Dennis A Sampson
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115-2406 USA
| | - Robert A Krebs
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115-2406 USA
| |
Collapse
|
30
|
Gardner AG, Vaio M, Guerra M, Emshwiller E. Diversification of the American bulb-bearing Oxalis (Oxalidaceae): dispersal to North America and modification of the tristylous breeding system. AMERICAN JOURNAL OF BOTANY 2012; 99:152-164. [PMID: 22186183 DOI: 10.3732/ajb.1100152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY The American bulb-bearing Oxalis (Oxalidaceae) have diverse heterostylous breeding systems and are distributed in mountainous areas from Patagonia to the northeastern United States. To study the evolutionary processes leading to this diversity, we constructed the first molecular phylogeny for the American bulb-bearing Oxalis and used it to infer biogeographic history and breeding system evolution. METHODS We used DNA sequence data (nuclear ribosomal internal transcribed spacer, trnL-trnL-trnF, trnT-trnL, and psbJ-petA) to infer phylogenetic history via parsimony, likelihood, and Bayesian analyses. We used Bayes Multistate to infer ancestral geographic distributions at well-supported nodes of the phylogeny. The Shimodaira-Hasegawa (SH) test distinguished among hypotheses of single or multiple transitions from South America to North America, and tristyly to distyly. KEY RESULTS The American bulb-bearing Oxalis include sampled members of sections Ionoxalis and Pseudobulbosae and are derived from a larger clade that includes members of sections Palmatifoliae, Articulatae, and the African species. The American bulb-bearing Oxalis comprise two clades: one distributed in SE South America and the other in the Andes and North America. An SH test supports multiple dispersals to North America. Most sampled distylous species form a single clade, but at least two other independent distylous lineages are supported by the topologies and SH tests. CONCLUSIONS Phylogenetic results suggest the American bulb-bearing Oxalis originated in southern South America, dispersed repeatedly to North America, and had multiple transitions from tristyly to distyly. This study adds to our understanding of biogeographic history and breeding system evolution and provides a foundation for more precise inferences about the study group.
Collapse
Affiliation(s)
- Andrew G Gardner
- Department of Botany, University of Wisconsin-Madison, 53706, USA.
| | | | | | | |
Collapse
|
31
|
Sánchez JM, Ferrero V, Arroyo J, Navarro L. Patterns of style polymorphism in five species of the South African genus Nivenia (Iridaceae). ANNALS OF BOTANY 2010; 106:321-31. [PMID: 20576739 PMCID: PMC2908166 DOI: 10.1093/aob/mcq111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/20/2010] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Heterostylous plants have been characterized by the presence of two or three discrete morphs that differ in their sex organ position within populations. This polymorphism is widely distributed among the angiosperms, but detailed studies are limited to few taxonomic groups. Although a small representation, evolutionary meaningful variations of the heterostylous syndrome have been reported when precise measurements of the sexual whorls were taken. A thorough exploration of groups where heterostyly has been reported should offer new opportunities to further testing the evolutionary hypotheses explaining heterostyly. Here, the traits defining heterostyly were explored in half of the species in Nivenia, the only genus of Iridiaceae where heterostyly has been reported. METHODS Detailed morphometric analysis of the flower sexual whorls and some traits considered as ancillary are supplied to determine for each population (a) the kind of stylar polymorphism, (b) the morph ratio and (c) the degree of reciprocity between sexual whorls. Also the rates of assortative (within morph) versus disassortative (between morphs) pollen transfer were estimated by analysing pollen loads on stigmas. The association between floral phenotypic integration and the reciprocity between sexual whorls was estimated; both characteristics have been quoted as dependent on the accuracy of the fit between pollinators and flowers and therefore related to the efficiency of pollen transfer. KEY RESULTS Different types of polymorphism, differing in their degree of reciprocity, were found in Nivenia. Effective disassortative mating appears to be common, since (a) all dimorphic populations show equal morph-ratios (isoplethy), and (b) the pollen placed on the stigmas of each morph is likely to be coming from the other (complementary) morph. The most reciprocal populations of the heterostylous species have also the highest values of phenotypical integration. CONCLUSIONS Stigma height dimorphism, as opposed to distyly, is proven for the first time in Nivenia. The presence of different types of polymorphism within the genus is consistent with hypotheses of the evolution of heterostyly. The role of the pollinators as the leading force of the transition seems to be apparent, since floral integration is related to reciprocity.
Collapse
Affiliation(s)
- J M Sánchez
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Spain.
| | | | | | | |
Collapse
|
32
|
PÉREZ-BARRALES R, ARROYO J. Pollinator shifts and the loss of style polymorphism in Narcissus papyraceus (Amaryllidaceae). J Evol Biol 2010; 23:1117-28. [DOI: 10.1111/j.1420-9101.2010.01988.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Cohen JI. "A case to which no parallel exists": The influence of Darwin's Different Forms of Flowers. AMERICAN JOURNAL OF BOTANY 2010; 97:701-716. [PMID: 21622437 DOI: 10.3732/ajb.0900395] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Research on the subject of heterostyly is often traced back to 1877 when Charles Darwin published the landmark book The Different Forms of Flowers on Plants of the Same Species. This book synthesized heterostyly research at the time, much of which Darwin conducted, and it continues to be a major contribution to the study of the breeding system. In this book, Darwin discussed the ecology, morph-specific differences, self- and intramorph-incompatibility, evolution and origin, and floral development of heterostyly. Many of the hypotheses he proposed have been and continue to be tested. KEY RESULTS Throughout the 20(th) and 21(st) centuries, researchers have continued to identify new and different morph-specific floral characters, discover the mechanisms that underlie heteromorphic self-incompatibility, use phylogenies to examine the evolution of heterostyly, and determine novel floral developmental patterns in heterostylous species. From all of these studies, we have learned a great deal about the function, evolution, and development of heterostyly. CONCLUSIONS However, almost 150 years after Darwin's publications on the subject of heterostyly, we still have a great deal to learn concerning the breeding system, and new technologies and techniques are allowing for new advances in heterostyly research to occur.
Collapse
Affiliation(s)
- James I Cohen
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, New York 14853 USA
| |
Collapse
|
34
|
Armbruster WS, Pélabon C, Hansen TF, Bolstad GH. Macroevolutionary patterns of pollination accuracy: a comparison of three genera. THE NEW PHYTOLOGIST 2009; 183:600-617. [PMID: 19594697 DOI: 10.1111/j.1469-8137.2009.02930.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We hypothesize that pollination efficiency selects for equal distances between the pollinator reward and the anthers, and the stigmas, creating an adaptive ridge. We predict that this fitness surface governs the divergence of many plant species. We use the theory of adaptive accuracy, precision and mean optimality to assess how close populations lie to the hypothesized adaptive ridge and which factors contribute to departure from the optimum. Patterns of accuracy of pollen placement and receipt were compared across species in three study systems, Dalechampia (Euphorbiaceae), Collinsieae (Plantaginaceae) and Stylidium (Stylidiaceae), in order to assess the roles of stamen/stigma imprecision and population mean departure from the optimum in the generation of floral inaccuracy. We found that population mean departure from the optimum was the most important factor in Dalechampia, female imprecision and departure from the optimum were about equally important factors in Collinsieae, and stamen and stigma imprecision were equally important in Stylidium, with virtually no departure from the optimum. Possible reasons for imprecision and departure from the optimum were assessed using phylogenetically informed methods, indicating important roles of limited floral integration in the generation of imprecision, and conflicting selective pressures, associated with outcrossing, in the generation of departure from the optimum.
Collapse
Affiliation(s)
- W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Department of Biology, NTNU, N-7491, Trondheim, Norway
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA
| | - Christophe Pélabon
- Centre for Conservation Biology, Department of Biology, NTNU, N-7491, Trondheim, Norway
| | - Thomas F Hansen
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - Geir H Bolstad
- Centre for Conservation Biology, Department of Biology, NTNU, N-7491, Trondheim, Norway
| |
Collapse
|
35
|
Armbruster WS, Hansen TF, Pélabon C, Pérez-Barrales R, Maad J. The adaptive accuracy of flowers: measurement and microevolutionary patterns. ANNALS OF BOTANY 2009; 103:1529-45. [PMID: 19429671 PMCID: PMC2701747 DOI: 10.1093/aob/mcp095] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS From Darwin's time onward, biologists have thought about adaptation as evolution toward optimal trait values, but they have not usually assessed the relative importance of the distinct causes of deviations from optima. This problem is investigated here by measuring adaptive inaccuracy (phenotypic deviation from the optimum), using flower pollination as an adaptive system. METHODS Adaptive accuracy is shown to have at least three distinct components, two of which are optimality (deviation of the mean from the optimum) and precision (trait variance). We then describe adaptive accuracy of both individuals and populations. Individual inaccuracy comprises the deviation of the genotypic target (the mean phenotype of a genotype grown in a range of environments) from the optimum and the phenotypic variation around that genotypic target (phenotypic imprecision). Population inaccuracy has three basic components: deviation of the population mean from the optimum, variance in the genotypic targets and phenotypic imprecision. In addition, a fourth component is proposed, namely within-population variation in the optimum. These components are directly estimable, have additive relationships, and allow exploration of the causes of adaptive inaccuracy of both individuals and populations. Adaptive accuracy of a sample of flowers is estimated, relating floral phenotypes controlling pollen deposition on pollinators to adaptive optima defined as the site most likely to get pollen onto stigmas (male inaccuracy). Female inaccuracy is defined as the deviation of the position of stigma contact from the expected location of pollen on pollinators. KEY RESULTS A surprising amount of variation in estimated accuracy within and among similar species is found. Some of this variation is generated by developmental changes in positions of stigmas or anthers during anthesis (the floral receptive period), which can cause dramatic change in accuracy estimates. There seem to be trends for higher precision and accuracy in flowers with higher levels of integration and dichogamy (temporal separation of sexual functions), and in those that have pollinators that are immobile (or immobilized) during pollen transfer. Large deviations from putative adaptive optima were observed, and these may be related to the effects of conflicting selective pressures on flowers, such as selection against self-pollination promoting herkogamy (spatial separation of pollen and stigmas). CONCLUSIONS Adaptive accuracy is a useful concept for understanding the adaptive significance of phenotypic means and variances of floral morphology within and among populations and species. Estimating and comparing the various components of adaptive accuracy can be particularly helpful for identifying the causes of inaccuracy, such as conflicting selective pressures, low environmental canalization and developmental instability.
Collapse
|
36
|
Sanchez JM, Ferrero V, Navarro L. A new approach to the quantification of degree of reciprocity in distylous (sensu lato) plant populations. ANNALS OF BOTANY 2008; 102:463-72. [PMID: 18621965 PMCID: PMC2701802 DOI: 10.1093/aob/mcn111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/06/2008] [Accepted: 06/06/2008] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Although evolution of sexual polymorphism has been traditionally analysed using discrete characters, most of these polymorphisms are continuous. This is the case of heterostyly. Heterostyly is a floral polymorphism successfully used as a model to study the evolution of the sexual systems in plants. It involves the reciprocal positioning of anthers and stigmas in flowers of different plants within the same population. Studies of the functioning of heterostyly require the quantification of the degree of reciprocity between morphs of heterostylous species. Some reciprocity indices have been proposed previously, but they show significant limitations that need to be dealt with. This paper analyses these existing indices, and proposes a new index that aims to avoid their main problems (e.g. takes into account population variability and offers a single value per population). METHODS The new index is based on the comparison of the position of every single sexual organ in the population with each and every organ of the opposite sex. To carry out all the calculations, a macro was programmed with MS Visual Basic in MS Excel. The behaviour of the index is tested using hypothetical data to simulate different situations of dimorphic populations; the index is also tested with some actual populations of different species of the genus Lithodora. RESULTS AND CONCLUSIONS The index of reciprocity proposed here is a sound alternative to previous indices: it compares stigma-stamen height gaps for all potential crosses in the population, it comprises stigma-stamen distance as well as dispersion, it is not skewed by the more frequent sex, and it can be meaningfully compared between populations and species. It has produced solid results for both hypothetical and natural populations.
Collapse
Affiliation(s)
- Jose M Sanchez
- Departamento de Biología Vegetal, Facultad de Biología, Campus As Lagoas-Marcosende, Universidad de Vigo, Vigo, E-36200, Spain.
| | | | | |
Collapse
|
37
|
|
38
|
Pérez-Barrales R, Vargas P, Arroyo J. New evidence for the Darwinian hypothesis of heterostyly: breeding systems and pollinators in Narcissus sect. Apodanthi. THE NEW PHYTOLOGIST 2006; 171:553-67. [PMID: 16866958 DOI: 10.1111/j.1469-8137.2006.01819.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Here we analysed the role played by breeding systems and pollinators in the evolution of heterostyly by testing whether evolution towards heterostyly is associated with style polymorphism and changes in pollinator proficiency or breeding system variation (Darwinian hypothesis). We studied pollinators, pollen-transfer efficiency, and incompatibility systems in all seven species of Narcissus sect. Apodanthi for which we also obtained chloroplast DNA (cpDNA) sequences from three spacers to infer phylogenetic relationships. Five species are self-incompatible and within-morph cross-compatible. Heterostylous (Narcissus albimarginatus) and style-dimorphic (Narcissus cuatrecasasii) species that have a high degree of reciprocity in stigma and anther height are primarily pollinated by solitary bees. The style-monomorphic species (Narcissus watieri) and the style-dimorphic species with the least stigma-anther reciprocity (Narcissus rupicola) are both self-compatible and pollinated by butterflies, moths and hover flies. Phylogenetic reconstruction of character transitions indicates that the shift from style dimorphism to distyly is associated with a shift to bee pollination. Pollination by lepidopterans and flies is associated with stable style dimorphism and monomorphism. Evolution and maintenance of style polymorphisms in this group of species are independent of incompatibility systems. Taken together, our results strongly support the pollinator-based model for evolution of heterostyly and style length polymorphisms in general.
Collapse
Affiliation(s)
- Rocio Pérez-Barrales
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Austin R Mast
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|