1
|
Wise MJ, Mudrak EL. Nutrient stress can have opposite effects on the ability of plants to tolerate foliar herbivory and floral herbivory. Oecologia 2023; 202:783-794. [PMID: 37596431 DOI: 10.1007/s00442-023-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Discovering how organisms respond to the combinations of stressors they face in their environment is an enduring challenge for ecologists. A particular focus has been how natural enemies and abiotic stressors faced by plants may interact in their effect on the ecology and evolution of plant defense strategies. Here, we report on the results of an experiment measuring how reproduction in the clonal herbaceous plant horsenettle (Solanum carolinense) is affected by damage by leaf-feeding and by flower-feeding herbivores-as well as how horsenettle's tolerance of these different types of herbivory may be altered by nutrient stress. Leaf herbivory by lace bugs reduced horsenettle's seed production and root growth, and the relative impacts were greater in fertilized than in nutrient-stressed plants. In contrast, simulated-floral herbivory reduced seed production to a similar degree in fertilized and nutrient-stressed plants. However, compensation for floral herbivory through increased root growth occurred to a much greater extent in the fertilized than in the nutrient-stressed plants. These results can be explained in terms of the limiting resource model of plant tolerance, with leaf damage interpreted as exacerbating carbon limitation in the fertilized plants and floral damage ameliorating carbon limitation in the fertilized plants. These results can be extended to predicting patterns in the field: Although plants in a nutrient-poor environment may have overall low fitness, they are likely to be more tolerant of leaf herbivores-though this benefit may be countered by lower tolerance of any floral herbivores that share the environment.
Collapse
Affiliation(s)
- Michael J Wise
- Blandy Experimental Farm, University of Virginia, Boyce, VA, USA.
- Biology Department, Duke University, Durham, NC, USA.
- Department of Biological and Environmental Sciences, Longwood University, Farmville, VA, USA.
| | - Erika L Mudrak
- Blandy Experimental Farm, University of Virginia, Boyce, VA, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Coverdale TC, Agrawal AA. Experimental insect suppression causes loss of induced, but not constitutive, resistance in Solanum carolinense. Ecology 2022; 103:e3786. [PMID: 35711089 DOI: 10.1002/ecy.3786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
Spatiotemporal variation in herbivory is a major driver of intraspecific variation in plant defense. Comparatively little is known, however, about how changes in herbivory regime affect the balance of constitutive and induced resistance, which are often considered alternative defensive strategies. Here, we investigated how nearly a decade of insect herbivore suppression affected constitutive and induced resistance in horsenettle (Solanum carolinense), a widespread herbaceous perennial. We allowed replicated horsenettle populations to respond to the presence or absence of herbivores by applying insecticide to all plants in half of 16 field plots. Horsenettle density rapidly increased in response to insecticide treatment, and this effect persisted for at least four years after the cessation of herbivore suppression. We subsequently grew half-sibling families from seeds collected during and shortly after insecticide treatment in a common garden and found strong effects of insect suppression on induced resistance. Feeding trials in field mesocosms with false Colorado potato beetles (Leptinotarsa juncta), a common specialist herbivore, revealed that multi-year herbivore suppression drove rapid attenuation of induced resistance: offspring of plants from insect-suppression plots exhibited a near-complete loss of induced resistance to beetles, while those from control plots incurred ~70% less damage after experimental induction. Plants from insect-suppression plots also had ~40% greater constitutive resistance than those from control plots, although this difference was not statistically significant. We nonetheless detected a strong trade-off between constitutive and induced resistance across families. In contrast, the constitutive expression of trypsin inhibitors (TI), an important chemical defense trait in horsenettle, was reduced by 20% in the offspring of plants from insect-suppression plots relative to those from control plots. However, TIs were induced to an equal extent whether or not insect herbivores had been historically suppressed. While several defense and performance traits (prickle density, TI concentration, resistance against false Colorado potato beetles and flea beetles, biomass, and seed mass) varied markedly across families, no traits exhibited significant pairwise correlations. Overall, our results indicate that, while the divergent responses of multiple defense traits to insect suppression led to comparatively small changes in overall constitutive resistance, they significantly reduced induced resistance against false Colorado potato beetle.
Collapse
Affiliation(s)
- Tyler C Coverdale
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol Lett 2020; 4:266-277. [PMID: 32547786 PMCID: PMC7293086 DOI: 10.1002/evl3.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a “black box.” Here, we integrate ecological networks and fitness landscapes to examine how changes in food‐web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Christopher J Greyson-Gaito
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Arezoo Sotoodeh
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Brendan Locke
- Department of Biological Sciences Humboldt State University Arcata California 95521
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland
| |
Collapse
|
4
|
Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:886. [PMID: 30002665 PMCID: PMC6032925 DOI: 10.3389/fpls.2018.00886] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review.
Collapse
Affiliation(s)
- Jafar Mammadov
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Ramesh Buyyarapu
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Satish K. Guttikonda
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Kelly Parliament
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Siva P. Kumpatla
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| |
Collapse
|
5
|
Wise MJ. Defense with benefits? Ducking plants outperformed erect plants in the goldenrod Solidago gigantea in the absence of herbivory. AMERICAN JOURNAL OF BOTANY 2018; 105:1096-1103. [PMID: 29936699 DOI: 10.1002/ajb2.1105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Despite the fact that herbivores can be highly detrimental to their host plants' fitness, plant populations often maintain genetic variation for resistance to their natural enemies. Investigating the various costs (e.g., allocation tradeoffs, autotoxicity, and ecological costs) that may prevent plants from evolving to their fullest potential resistance has been a productive strategy for shedding insight into the eco-evolutionary dynamics of plant-herbivore communities. METHODS Recent studies have shown that some individuals of goldenrod (Solidago spp.) evade apex-attacking herbivores by a temporary nodding of their stem (i.e., resistance-by-ducking). Although ducking provides an obvious fitness benefit to these individuals, nonducking (erect) morphs persist in goldenrod populations. In this study, I investigated potential costs of ducking in Solidago gigantea in terms of tradeoffs involving growth and reproduction in a common garden experiment using field-collected seeds. KEY RESULTS The S. gigantea population contained substantial genetic variation for stem morph, with 28% erect and 72% ducking stems. In the absence of herbivory, ducking plants were taller, had thicker stems, and produced an average of 20% more seeds than erect plants. CONCLUSIONS This study suggests that resistance-by-ducking, instead of being costly, actually comes with additional, nondefense-related benefits. These results support the conclusion that the factors that constrain the evolution of resistance in plant populations are likely to be more subtle and complex than simple tradeoffs in resource allocation.
Collapse
Affiliation(s)
- Michael J Wise
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA, 24153
| |
Collapse
|
6
|
Evolution of Trichobaris (Curculionidae) in relation to host plants: Geometric morphometrics, phylogeny and phylogeography. Mol Phylogenet Evol 2018; 124:37-49. [PMID: 29486237 DOI: 10.1016/j.ympev.2018.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/31/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
The family Curculionidae (Coleoptera), the "true" weevils, have diversified tightly linked to the evolution of flowering plants. Here, we aim to assess diversification at a lower taxonomic level. We analyze the evolution of the genus Trichobaris in association with their host plants. Trichobaris comprises eight to thirteen species; their larvae feed inside the fruits of Datura spp. or inside the stem of wild and cultivated species of Solanaceae, such as potato, tobacco and tomato. We ask the following questions: (1) does the rostrum of Trichobaris species evolve according to the plant tissue used to oviposit, i.e., shorter rostrum to dig in stems and longer to dig in fruits? and (2) does Trichobaris diversify mainly in relation to the use of Datura species? For the first question, we estimated the phylogeny of Trichobaris based on four gene sequences (nuclear 18S and 28S rRNA genes and mitochondrial 16S rRNA and COI genes). Then, we carried out morphogeometric analyses of the Trichobaris species using 75 landmarks. For the second question, we calibrated a COI haplotype phylogeny using a constant rate of divergence to infer the diversification time of Trichobaris species, and we traced the host plant species on the haplotype network. We performed an ancestral state reconstruction analysis to infer recent colonization events and conserved associations with host plant species. We found that ancestral species in the Trichobaris phylogeny use the stem of Solanum plants for oviposition and display weak sexual dimorphism of rostrum size, whereas other, more recent species of Trichobaris display sexual dimorphism in rostrum size and use the fruits of Datura species, and a possible reversion to use the stem of Solanaceae was detected in one Trichobaris species. The use of Datura species by Trichobaris species is widely distributed on haplotype networks and restricted to Trichobaris species that originated ca. 5 ± 1.5 Ma. Given that the origin of Trichobaris is estimated to be ca. 6 ± 1.5 Ma, it is likely that Datura has played a role in its diversification.
Collapse
|
7
|
McNutt DW, Underwood N. Variation in plant‐mediated intra‐ and interspecific interactions among insect herbivores: effects of host genotype. Ecosphere 2016. [DOI: 10.1002/ecs2.1520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- David W. McNutt
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| | - Nora Underwood
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
8
|
Wise MJ, Rausher MD. Costs of resistance and correlational selection in the multiple-herbivore community of Solanum carolinense. Evolution 2016; 70:2411-2420. [PMID: 27501350 DOI: 10.1111/evo.13035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Michael J Wise
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708. .,Current Address: Department of Biology, Roanoke College, 221 College Lane, Salem, Virginia, 24153.
| | - Mark D Rausher
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708
| |
Collapse
|
9
|
Wang J, Chung SH, Peiffer M, Rosa C, Hoover K, Zeng R, Felton GW. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. J Chem Ecol 2016; 42:463-74. [PMID: 27294415 DOI: 10.1007/s10886-016-0712-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/08/2016] [Accepted: 05/28/2016] [Indexed: 11/30/2022]
Abstract
Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China. .,Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Seung Ho Chung
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Michelle Peiffer
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rensen Zeng
- Department of Ecology, South China Agricultural University, Guangzhou, Guangdong, 510640, China.,Department of Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Gosney BJ, O′Reilly-Wapstra JM, Forster LG, Barbour RC, Iason GR, Potts BM. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities. PLoS One 2014; 9:e114132. [PMID: 25469641 PMCID: PMC4254790 DOI: 10.1371/journal.pone.0114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/21/2022] Open
Abstract
Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.
Collapse
Affiliation(s)
- Benjamin J. Gosney
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Julianne M. O′Reilly-Wapstra
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| | - Lynne G. Forster
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert C. Barbour
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn R. Iason
- The James Hutton Institute, Craigibuckler, Aberdeen, Scotland, United Kingdom
| | - Brad M. Potts
- School of Plant Science, University of Tasmania, Hobart, Tasmania, Australia
- National Center of Future Forest Industries (NCFFI), University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
|
12
|
Difference in defense strategy in flower heads and leaves of Asteraceae: multiple-species approach. Oecologia 2013; 174:227-39. [DOI: 10.1007/s00442-013-2765-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/28/2013] [Indexed: 11/26/2022]
|
13
|
Kariyat RR, Balogh CM, Moraski RP, De Moraes CM, Mescher MC, Stephenson AG. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:1014-21. [PMID: 23545253 DOI: 10.3732/ajb.1200612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY A growing number of studies document effects of inbreeding on plant interactions with insect herbivores, including deleterious effects on direct and indirect plant defenses. However, our understanding of the specific mechanisms mediating such effects remains limited. Here we examine how inbreeding affects constitutive and induced expression of structural defenses (spines and trichomes) in common horsenettle, Solanum carolinense. • METHODS Inbred and outbred progeny from nine maternal families of horsenettle were assigned to three treatments: control, Manduca sexta caterpillar damage, or mechanical damage. Numbers of internode spines and the density of abaxial and adaxial trichomes were assessed before and after (21 d) damage treatments. Data on internode length, flowering time, and total flower production was also collected to explore the costs of defense induction. • KEY RESULTS Inbreeding adversely affected constitutive and induced physical/structural defenses: undamaged outbred plants produced more abaxial and adaxial leaf trichomes and internode spines than did inbred plants. Foliar damage by M. sexta larvae also induced more trichomes (on new leaves) and internode spines on outbred plants. Both inbred and outbred plants exposed to mechanical or caterpillar damage had shorter internodes than did control plants, but inbred damaged plants had longer internodes than did outbred damaged plants. Control outbred plants produced significantly more flowers than did control inbred plants or damaged plants of either breeding type. • CONCLUSIONS Constitutive and induced structural defenses in horsenettle were negatively affected by inbreeding. Reduced flower production and internode length on damaged plants compared to controls suggests that defense induction entails significant costs.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802 USA
| | | | | | | | | | | |
Collapse
|
14
|
Wise MJ, Rausher MD. EVOLUTION OF RESISTANCE TO A MULTIPLE-HERBIVORE COMMUNITY: GENETIC CORRELATIONS, DIFFUSE COEVOLUTION, AND CONSTRAINTS ON THE PLANT'S RESPONSE TO SELECTION. Evolution 2013; 67:1767-79. [DOI: 10.1111/evo.12061] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Wise
- Department of Biology, Box 90338; Duke University; Durham North Carolina 27708
- Department of Biology; Roanoke College; 221 College Lane; Salem Virginia 24153
| | - Mark D. Rausher
- Department of Biology, Box 90338; Duke University; Durham North Carolina 27708
| |
Collapse
|
15
|
Mooney EH, Niesenbaum RA. Population-specific responses to light influence herbivory in the understory shrubLindera benzoin. Ecology 2012; 93:2683-92. [PMID: 23431598 DOI: 10.1890/11-1620.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- E H Mooney
- Massachusetts College of Liberal Arts, 375 Church Street, North Adams, Massachusetts 01247, USA.
| | | |
Collapse
|
16
|
Whitham TG, Gehring CA, Lamit LJ, Wojtowicz T, Evans LM, Keith AR, Smith DS. Community specificity: life and afterlife effects of genes. TRENDS IN PLANT SCIENCE 2012; 17:271-281. [PMID: 22322002 DOI: 10.1016/j.tplants.2012.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems.
Collapse
Affiliation(s)
- Thomas G Whitham
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kariyat RR, Mauck KE, De Moraes CM, Stephenson AG, Mescher MC. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.). Ecol Lett 2012; 15:301-9. [PMID: 22257268 DOI: 10.1111/j.1461-0248.2011.01738.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kerry E Mauck
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Consuelo M De Moraes
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G Stephenson
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark C Mescher
- Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Entomology, The Pennsylvania State University, University Park, PA 16802, USADepartment of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Inbreeding depression in Solanum carolinense (Solanaceae) under field conditions and implications for mating system evolution. PLoS One 2011; 6:e28459. [PMID: 22174810 PMCID: PMC3236180 DOI: 10.1371/journal.pone.0028459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/08/2011] [Indexed: 11/23/2022] Open
Abstract
The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low levels of inbreeding depression (δ) in the greenhouse. We planted one inbred and one outbred plant from each of eight maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per ramet δ was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both fields, suggesting that inbreeding compromises herbivore resistance. Total per genet δ was 0.85 over the two years, indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.
Collapse
|
19
|
Herrera CM, Bazaga P. Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 2011; 20:1675-88. [PMID: 21466603 DOI: 10.1111/j.1365-294x.2011.05026.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individual variation in ecologically important features of organisms is a crucial element in ecology and evolution, yet disentangling its underlying causes is difficult in natural populations. We applied a genomic scan approach using amplified fragment length polymorphism (AFLP) markers to quantify the genetic basis of long-term individual differences in herbivory by mammals at a wild population of the violet Viola cazorlensis monitored for two decades. In addition, methylation-sensitive amplified polymorphism (MSAP) analyses were used to investigate the association between browsing damage and epigenetic characteristics of individuals, an aspect that has been not previously explored for any wild plant. Structural equation modelling was used to identify likely causal structures linking genotypes, epigenotypes and herbivory. Individuals of V. cazorlensis differed widely in the incidence of browsing mammals over the 20-year study period. Six AFLP markers (1.6% of total) were significantly related to herbivory, accounting altogether for 44% of population-wide variance in herbivory levels. MSAP analyses revealed considerable epigenetic variation among individuals, and differential browsing damage was significantly related to variation in multilocus epigenotypes. In addition, variation across plants in epigenetic characteristics was related to variation in several herbivory-related AFLP markers. Statistical comparison of alternative causal models suggested that individual differences in herbivory are the outcome of a complex causal structure where genotypes and epigenotypes are interconnected and have direct and indirect effects on herbivory. Insofar as methylation states of MSAP markers influential on herbivory are transgenerationally heritable, herbivore-driven evolutionary changes at the study population will involve correlated changes in genotypic and epigenotypic distributions.
Collapse
Affiliation(s)
- C M Herrera
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio s/n, Isla de La Cartuja, Sevilla 41092, Spain.
| | | |
Collapse
|
20
|
Wise MJ, Hébert JB. Herbivores affect natural selection for floral-sex ratio in a field population of horsenettle, Solanum carolinense. Ecology 2010; 91:937-43. [PMID: 20462108 DOI: 10.1890/09-1373.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although aspects of a plant's breeding system are generally believed to have evolved in response to selection for effective pollination, herbivores may also play a selective role. Here we report on a field experiment involving 960 transplanted ramets of the andromonoecious herb Solanum carolinense in which the pattern of natural selection for an important breeding-system trait was influenced by naturally occurring herbivores. As the level of flower and fruit herbivory increased, the pattern of selection on floral-sex ratio went from stabilizing (with an optimum of 29% male flowers), to directional toward a lower proportion of males, with the optimum bottoming at 0% male. This pattern of selection likely helped generate the broad-sense genetic correlation (r = 0.42) between floral-sex ratio and resistance to herbivory. These results contribute to the growing awareness that herbivores can be important influences not only on plant resistance traits, but also on the evolution of their hosts' breeding system.
Collapse
Affiliation(s)
- Michael J Wise
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
21
|
Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9381-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Kaplan I, Dively GP, Denno RF. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2009; 19:864-872. [PMID: 19544730 DOI: 10.1890/07-1566.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The expression of plant defenses is thought to entail costs (e.g., the allocation of resources away from growth or reproduction) that constrain the evolution of plant genotypes maximally defended against herbivores. Although central to the ecological theory underlying plant-insect interactions at large, the concept of defense costs is particularly evident in agricultural crops where plants may be under simultaneous selection for enhanced growth and/or reproduction (i.e., yield) and anti-herbivore resistance traits that deter pests. In this study we investigate the role of trichomes as a resistance mechanism against a sap-feeding insect (the leafhopper, Empoasca fabae) on potato. Natural variation in trichome density among 17 potato cultivars was used to test for the role of trichomes as a putative defense against leafhoppers, and evidence of costs in trichome expression. Two different types of costs were explored: (1) allocation costs (i.e., the relationship between trichomes and yield), and (2) costs involving trade-offs with alternative defense strategies (e.g., tolerance). Although leafhopper abundance did not decrease as trichome density increased, leafhopper injury to potato plants (foliar necrosis) was negatively correlated with trichome density. As a result, the per capita effect of leafhopper adults and nymphs on foliar damage was lower on plants with high trichome densities. We found no evidence, however, for costs of expressing this resistance trait; trichomes were not correlated with either potato yield or tolerance to herbivory. Thus, selection for multiple plant defenses to alleviate the impact of pests in agronomic crops may indeed be possible without inherent losses in plant yield.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
23
|
Genetic variation and constraints on the evolution of defense against spittlebug (Philaenus spumarius) herbivory in Mimulus guttatus. Heredity (Edinb) 2008; 102:303-11. [PMID: 19092760 DOI: 10.1038/hdy.2008.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Wise MJ. Competition among herbivores of Solanum carolinense as a constraint on the evolution of host-plant resistance. Evol Ecol 2007. [DOI: 10.1007/s10682-007-9230-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|