1
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
2
|
Zarei M, Shabala S, Zeng F, Chen X, Zhang S, Azizi M, Rahemi M, Davarpanah S, Yu M, Shabala L. Comparing Kinetics of Xylem Ion Loading and Its Regulation in Halophytes and Glycophytes. PLANT & CELL PHYSIOLOGY 2020; 61:403-415. [PMID: 31693150 DOI: 10.1093/pcp/pcz205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/29/2019] [Indexed: 05/02/2023]
Abstract
Although control of xylem ion loading is essential to confer salinity stress tolerance, specific details behind this process remain elusive. In this work, we compared the kinetics of xylem Na+ and K+ loading between two halophytes (Atriplex lentiformis and quinoa) and two glycophyte (pea and beans) species, to understand the mechanistic basis of the above process. Halophyte plants had high initial amounts of Na+ in the leaf, even when grown in the absence of the salt stress. This was matched by 7-fold higher xylem sap Na+ concentration compared with glycophyte plants. Upon salinity exposure, the xylem sap Na+ concentration increased rapidly but transiently in halophytes, while in glycophytes this increase was much delayed. Electrophysiological experiments using the microelectrode ion flux measuring technique showed that glycophyte plants tend to re-absorb Na+ back into the stele, thus reducing xylem Na+ load at the early stages of salinity exposure. The halophyte plants, however, were capable to release Na+ even in the presence of high Na+ concentrations in the xylem. The presence of hydrogen peroxide (H2O2) [mimicking NaCl stress-induced reactive oxygen species (ROS) accumulation in the root] caused a massive Na+ and Ca2+ uptake into the root stele, while triggering a substantial K+ efflux from the cytosol into apoplast in glycophyte but not halophytes species. The peak in H2O2 production was achieved faster in halophytes (30 min vs 4 h) and was attributed to the increased transcript levels of RbohE. Pharmacological data suggested that non-selective cation channels are unlikely to play a major role in ROS-mediated xylem Na+ loading.
Collapse
Affiliation(s)
- Mahvash Zarei
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Fanrong Zeng
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Chen
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Majid Azizi
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rahemi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Sohrab Davarpanah
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Colmenero-Flores JM, Franco-Navarro JD, Cubero-Font P, Peinado-Torrubia P, Rosales MA. Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. Int J Mol Sci 2019; 20:E4686. [PMID: 31546641 PMCID: PMC6801462 DOI: 10.3390/ijms20194686] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
Chloride (Cl-) has traditionally been considered a micronutrient largely excluded by plants due to its ubiquity and abundance in nature, its antagonism with nitrate (NO3-), and its toxicity when accumulated at high concentrations. In recent years, there has been a paradigm shift in this regard since Cl- has gone from being considered a harmful ion, accidentally absorbed through NO3- transporters, to being considered a beneficial macronutrient whose transport is finely regulated by plants. As a beneficial macronutrient, Cl- determines increased fresh and dry biomass, greater leaf expansion, increased elongation of leaf and root cells, improved water relations, higher mesophyll diffusion to CO2, and better water- and nitrogen-use efficiency. While optimal growth of plants requires the synchronic supply of both Cl- and NO3- molecules, the NO3-/Cl- plant selectivity varies between species and varieties, and in the same plant it can be modified by environmental cues such as water deficit or salinity. Recently, new genes encoding transporters mediating Cl- influx (ZmNPF6.4 and ZmNPF6.6), Cl- efflux (AtSLAH3 and AtSLAH1), and Cl- compartmentalization (AtDTX33, AtDTX35, AtALMT4, and GsCLC2) have been identified and characterized. These transporters have proven to be highly relevant for nutrition, long-distance transport and compartmentalization of Cl-, as well as for cell turgor regulation and stress tolerance in plants.
Collapse
Affiliation(s)
- José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
- Biochimie et physiologie Moléculaire des Plantes (BPMP), Univ Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala, 34060 Montpellier, France.
| | - Procopio Peinado-Torrubia
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
4
|
Paudel I, Cohen S, Shaviv A, Bar-Tal A, Bernstein N, Heuer B, Ephrath J. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils. TREE PHYSIOLOGY 2016; 36:770-85. [PMID: 27022106 DOI: 10.1093/treephys/tpw013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/27/2016] [Indexed: 05/17/2023]
Abstract
Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Avi Shaviv
- Department of Environmental, Water and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Asher Bar-Tal
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Bruria Heuer
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan 50250, Israel
| | - Jhonathan Ephrath
- Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde Boqer 849900, Israel
| |
Collapse
|
5
|
Wegner LH. A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:828-835. [PMID: 32480725 DOI: 10.1071/fp15077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/20/2015] [Indexed: 06/11/2023]
Abstract
A series of recent publications has launched a debate on trans-membrane water secretion into root xylem vessels against a water potential gradient, energised by a cotransport with salts (e.g. KCl) that follow their chemical potential gradient. Cation-chloride-cotransporter -type transporters that function in this way in mammalian epithelia were detected in root stelar cells bordering on xylem vessels. Using literature data on barley (Hordeum vulgare L.) seedlings, one study confirmed that K+ and Cl- gradients across stelar cell membranes favour salt efflux. Moreover, the energetic costs of putative water secretion into the xylem (required for maintaining ionic gradients) would amount to just 0.12% of the energy captured by photosynthetic C assimilation if transpirational water flow relied exclusively on this mechanism. Here, a detailed thermodynamic analysis of water secretion into xylem vessels is undertaken, including an approach that exploits its analogy to a desalinisation process. Water backflow due to the passive hydraulic conductivity of stelar cell membranes is also considered. By comparing free energy consumption by putative water secretion with (i) the free energy pool provided by root respiration and (ii) stelar ATPase activity, the feasibility of this mechanism is confirmed but is shown to depend critically on the plant's energy status.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Building 630, Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Email
| |
Collapse
|
6
|
Wegner LH. Root pressure and beyond: energetically uphill water transport into xylem vessels? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:381-93. [PMID: 24311819 DOI: 10.1093/jxb/ert391] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute of Botany I, and Institute of Pulsed Power and Microwave Technology, Campus North, Building 630, Hermann-v-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Le Ny F, Leblanc A, Beauclair P, Deleu C, Le Deunff E. In low transpiring conditions, nitrate and water fluxes for growth of B. napus plantlets correlate with changes in BnNrt2.1 and BnNrt1.1 transporter expression. PLANT SIGNALING & BEHAVIOR 2013; 8:e22902. [PMID: 23299417 PMCID: PMC3656990 DOI: 10.4161/psb.22902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We analyzed how changes in BnNrt nitrate transporter gene expression induced by nitrate are associated with morphological changes in plantlets and osmotic water flow for growth. We hypothesized that in a Petri dish system, reduction in transpiration should induce conditions where nitrate and water fluxes for growth depend directly on nitrate transporter activity and nitrate signaling. Rape seedlings growing on agar plates were supplied with increasing external K (15)NO 3 concentrations from 0.05 to 20 mM. After 5 d of treatment, morphological switches in plantlet growth were observed between 0.5 and 5 mM nitrate supply. Root elongation was reduced by 50% while the cotyledon surface area was doubled. These morphological switches were strongly associated with increases in (15)NO 3(-) and water uptake rates as well as (15)N and water allocation to the shoot. These switches were also highly correlated with the upregulation of BnNrt1.1 and BnNrt2.1 in the root. However, while root expression of BnNrt2.1 was correlated linearly with a shoot growth-associated increase in (15)N and water uptake, BnNrt1.1 expression was correlated exponentially with both (15)N and water accumulation. In low transpiring conditions, the tight control exercised by nitrate transporters on K (15)NO 3 uptake and allocation clearly demonstrates that they modulated the nitrate-signaling cascade involved in cell growth and as a consequence, water uptake and allocation to the growing organs. Deciphering this signaling cascade in relation to acid growth theory seems to be the most important challenge for our understanding of the nitrate-signaling role in plant growth.
Collapse
Affiliation(s)
- Fabien Le Ny
- Université Caen; IBFA; UMR INRA 950 EVA; Caen France
| | | | | | - Carole Deleu
- Université Rennes 1; UMR INRA 1349 IGEPP; Rennes, France
| | - Erwan Le Deunff
- Université Caen; IBFA; UMR INRA 950 EVA; Caen France
- Correspondence to: Erwan Le Deunff,
| |
Collapse
|
8
|
Wegner LH. Using the multifunctional xylem probe for in situ studies of plant water and ion relations under saline conditions. Methods Mol Biol 2012; 913:35-66. [PMID: 22895751 DOI: 10.1007/978-1-61779-986-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
By insertion into an individual xylem vessel at the root base, the multifunctional xylem probe allows the monitoring of the xylem pressure, the radial electrical gradients in the root (the so-called trans-root potential, TRP), as well as the activity of a particular ion such as K(+) in the xylem sap of intact, transpiring plants. The biophysical and physiological significance of these parameters with respect to salt stress is briefly explained, and the assembly of the probe, the setup used for these measurements, and the experimental procedure are outlined in detail.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute of Botany I and Institute of Pulsed Power and Microwave Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
9
|
Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels. PLANT, CELL & ENVIRONMENT 2011; 34:859-869. [PMID: 21332511 DOI: 10.1111/j.1365-3040.2011.02291.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs.
Collapse
Affiliation(s)
- Lars H Wegner
- Plant Bioelectrics Group, Institute of Pulsed Power and Microwave Technology and Institute of Botany 1, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Knipfer T, Fricke W. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:717-33. [PMID: 20974734 PMCID: PMC3003818 DOI: 10.1093/jxb/erq312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 05/02/2023]
Abstract
Prior to an assessment of the role of aquaporins in root water uptake, the main path of water movement in different types of root and driving forces during day and night need to be known. In the present study on hydroponically grown barley (Hordeum vulgare L.) the two main root types of 14- to 17-d-old plants were analysed for hydraulic conductivity in dependence of the main driving force (hydrostatic, osmotic). Seminal roots contributed 92% and adventitious roots 8% to plant water uptake. The lower contribution of adventitious compared with seminal roots was associated with a smaller surface area and number of roots per plant and a lower axial hydraulic conductance, and occurred despite a less-developed endodermis. The radial hydraulic conductivity of the two types of root was similar and depended little on the prevailing driving force, suggesting that water uptake occurred along a pathway that involved crossing of membrane(s). Exudation experiments showed that osmotic forces were sufficient to support night-time transpiration, yet transpiration experiments and cuticle permeance data questioned the significance of osmotic forces. During the day, 90% of water uptake was driven by a tension of about -0.15 MPa.
Collapse
Affiliation(s)
- Thorsten Knipfer
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
11
|
Kim HK, Lee SJ. Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves. THE NEW PHYTOLOGIST 2010; 188:1085-98. [PMID: 20735745 DOI: 10.1111/j.1469-8137.2010.03424.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A comprehensive understanding of the sap flow dynamics and xylem hydraulic properties is essential to unravel the functional features of water transport from roots to shoots in vascular plants. To evaluate quantitatively the safety and efficiency of this system, nondestructive methods to assess the interactions between sap ascent kinetics and xylem structure are required. In this study, synchrotron X-ray microscopy was employed to observe anatomical structures and sap flow dynamics in rice (Oryza sativa) xylem simultaneously. The phase-contrast imaging technique allowed nondestructive observation of the xylem structural characteristics and the air-water interfaces generated by dehydration-rehydration cycles in excised leaves. This X-ray microimaging method provided a unique tool to characterize the perforated end walls of vessel elements and to evaluate their influence on hydraulic resistance during the refilling of embolized vessels. The real-time monitoring of the axial and radial sap flow under various environmental conditions highlighted the important role of perforation plates. In summary, we report a new methodology to study the sap flow dynamics and xylem hydraulic properties with μm spatial and ms temporal resolution using X-ray microscopy. The experimental procedure described herein provides a useful handle to understand key sap transport phenomena in xylem.
Collapse
Affiliation(s)
- Hae Koo Kim
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
| | | |
Collapse
|
12
|
Metzner R, Thorpe MR, Breuer U, Blümler P, Schurr U, Schneider HU, Schroeder WH. Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. PLANT, CELL & ENVIRONMENT 2010; 33:1393-1407. [PMID: 20444220 DOI: 10.1111/j.1365-3040.2010.02157.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.
Collapse
Affiliation(s)
- Ralf Metzner
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH. Xylem ionic relations and salinity tolerance in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:839-53. [PMID: 20015063 DOI: 10.1111/j.1365-313x.2009.04110.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non-invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na(+) loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na(+) concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K(+)/Na(+) ratios and efficiently sequester the accumulated Na(+) in leaves. The former is achieved by more efficient loading of K(+) into the xylem. We argue that the observed increases in xylem K(+) and Na(+) concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K(+)-permeable voltage-sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K(+)/Na(+) ratio in the xylem sap.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas 7001, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Metzner R, Schneider HU, Breuer U, Thorpe MR, Schurr U, Schroeder WH. Tracing cationic nutrients from xylem into stem tissue of French bean by stable isotope tracers and cryo-secondary ion mass spectrometry. PLANT PHYSIOLOGY 2010; 152:1030-43. [PMID: 19965970 PMCID: PMC2815875 DOI: 10.1104/pp.109.143776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow. After 20 min of application, tracers were readily detectable to various degrees in all tissues. The xylem parenchyma near the vessels exchanged freely with the vessels, its nutrient elements reaching a steady state of strong exchange with elements in the vessels within 20 min, mainly via apoplastic pathways. A slow exchange between vessels and cambium and phloem suggested that they are separated from the xylem, parenchyma, and pith, possibly by an apoplastic barrier to diffusion for nutrients (as for carbohydrates). There was little difference in these distributions when tracers were applied directly to intact xylem via a microcapillary, suggesting that xylem tension had little effect on radial exchange of these nutrients and that their movement was mainly diffusive.
Collapse
Affiliation(s)
- Ralf Metzner
- Central Division of Analytical Chemistry and Phytosphere Institute (ICG-3), Forschungszentrum Jülich, 52425 Juelich, Germany.
| | | | | | | | | | | |
Collapse
|