1
|
Marti L, Savatin DV, Gigli-Bisceglia N, de Turris V, Cervone F, De Lorenzo G. The intracellular ROS accumulation in elicitor-induced immunity requires the multiple organelle-targeted Arabidopsis NPK1-related protein kinases. PLANT, CELL & ENVIRONMENT 2021; 44:931-947. [PMID: 33314180 DOI: 10.1111/pce.13978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 05/22/2023]
Abstract
Recognition at the plasma membrane of danger signals (elicitors) belonging to the classes of the microbe/pathogen- and damage-associated molecular patterns is a key event in pathogen sensing by plants and is associated with a rapid activation of immune responses. Different cellular compartments, including plasma membrane, chloroplasts, nuclei and mitochondria, are involved in the immune cellular program. However, how pathogen sensing is transmitted throughout the cell remains largely to be uncovered. Arabidopsis NPK1-related Proteins (ANPs) are mitogen-activated protein kinase kinase kinases previously shown to have a role in immunity. In this article, we studied the in vivo intracellular dynamics of ANP1- and ANP3-GFP fusions and found that under basal physiological conditions both proteins are present in the cytosol, while ANP3 is also localized in mitochondria. After elicitor perception, both proteins are present also in the plastids and nuclei, revealing a localization pattern that is so far unique. The N-terminal region of the protein kinases is responsible for their localization in mitochondria and plastids. Moreover, we found that the localization of ANPs coincides with the sites of elicitor-induced ROS accumulation and that plants lacking ANP function do not accumulate intracellular ROS.
Collapse
Affiliation(s)
- Lucia Marti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Nora Gigli-Bisceglia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | | | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Kang J, Wang Z. Mut9p-LIKE KINASE Family Members: New Roles of the Plant-Specific Casein Kinase I in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21051562. [PMID: 32106561 PMCID: PMC7084540 DOI: 10.3390/ijms21051562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
: Casein kinase I (CK1), a ubiquitous serine/threonine (Ser/Thr) protein kinase in eukaryotes, plays pivotal roles in a wide spectrum of cellular functions including metabolism, cell cycle progression, developmental control and stress responses. Plant CK1 evolves a lineage expansion, resulting in a unique branch of members exclusive to the kingdom. Among them, Arabidopsis Mut9p-LIKE KINASEs (MLKs) target diverse substrates including histones and the key regulatory proteins involving in physiological processes of light signaling, circadian rhythms, phytohormone and plant defense. Deregulation of the kinase activity by mutating the enzyme or the phosphorylation sites of substrates causes developmental disorders and susceptibility to adverse environmental conditions. MLKs have evolved as a general kinase that modifies transcription factors or primary regulatory proteins in a dynamic way. Here, we summarize the current knowledge of the roles of MLKs and MLK orthologs in several commercially important crops.
Collapse
Affiliation(s)
| | - Zhen Wang
- Correspondence: ; Tel.: +10-86-62816357
| |
Collapse
|
3
|
Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs. FRONTIERS IN PLANT SCIENCE 2018; 9:469. [PMID: 29696029 PMCID: PMC5905223 DOI: 10.3389/fpls.2018.00469] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/26/2018] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization, stability or trans-interactions of modified proteins. Plant MAPKs usually localize to the cytosol and/or nucleus, and in some instances they may also translocate from the cytosol to the nucleus. Upon the detection of environmental changes at the cell surface, MAPKs participate in the signal transduction to the nucleus, allowing an adequate transcriptional reprogramming. The identification of plant MAPK substrates largely contributed to a better understanding of the underlying signaling mechanisms. In this review, we highlight the nuclear signaling of plant MAPKs. We discuss the activation, regulation and activity of plant MAPKs, as well as their nuclear re-localization. We also describe and discuss known nuclear substrates of plant MAPKs in the context of biotic stress, abiotic stress and development and consider future research directions in the field of plant MAPKs.
Collapse
Affiliation(s)
- Jean Bigeard
- Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Heribert Hirt
| |
Collapse
|
4
|
Bancel E, Bonnot T, Davanture M, Branlard G, Zivy M, Martre P. Proteomic Approach to Identify Nuclear Proteins in Wheat Grain. J Proteome Res 2015; 14:4432-9. [DOI: 10.1021/acs.jproteome.5b00446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Bancel
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Titouan Bonnot
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Marlène Davanture
- CNRS, PAPPSO, UMR 0320/8120 Génétique
Quantitative et Évolution - Le Moulon, F-91190 Gif-sur-Yvette, France
| | - Gérard Branlard
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| | - Michel Zivy
- CNRS, PAPPSO, UMR 0320/8120 Génétique
Quantitative et Évolution - Le Moulon, F-91190 Gif-sur-Yvette, France
| | - Pierre Martre
- INRA, UMR1095
Genetics, Diversity and Ecophysiology of Cereals, 5 chemin de Beaulieu, F-63 039 Clermont-Ferrand, France
- Blaise Pascal
University, UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Avenue des Landais, F-63 170 Aubière, France
| |
Collapse
|
5
|
Liu J, Chen N, Grant JN, Cheng ZMM, Stewart CN, Hewezi T. Soybean kinome: functional classification and gene expression patterns. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1919-34. [PMID: 25614662 PMCID: PMC4378628 DOI: 10.1093/jxb/eru537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/24/2014] [Accepted: 12/15/2014] [Indexed: 05/20/2023]
Abstract
The protein kinase (PK) gene family is one of the largest and most highly conserved gene families in plants and plays a role in nearly all biological functions. While a large number of genes have been predicted to encode PKs in soybean, a comprehensive functional classification and global analysis of expression patterns of this large gene family is lacking. In this study, we identified the entire soybean PK repertoire or kinome, which comprised 2166 putative PK genes, representing 4.67% of all soybean protein-coding genes. The soybean kinome was classified into 19 groups, 81 families, and 122 subfamilies. The receptor-like kinase (RLK) group was remarkably large, containing 1418 genes. Collinearity analysis indicated that whole-genome segmental duplication events may have played a key role in the expansion of the soybean kinome, whereas tandem duplications might have contributed to the expansion of specific subfamilies. Gene structure, subcellular localization prediction, and gene expression patterns indicated extensive functional divergence of PK subfamilies. Global gene expression analysis of soybean PK subfamilies revealed tissue- and stress-specific expression patterns, implying regulatory functions over a wide range of developmental and physiological processes. In addition, tissue and stress co-expression network analysis uncovered specific subfamilies with narrow or wide interconnected relationships, indicative of their association with particular or broad signalling pathways, respectively. Taken together, our analyses provide a foundation for further functional studies to reveal the biological and molecular functions of PKs in soybean.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Nana Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Joshua N Grant
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
7
|
Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. Type-II histone deacetylases: elusive plant nuclear signal transducers. PLANT, CELL & ENVIRONMENT 2014; 37:1259-69. [PMID: 24236403 DOI: 10.1111/pce.12236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 05/20/2023]
Abstract
Since the beginning of the 21st century, numerous studies have concluded that the plant cell nucleus is one of the cellular compartments that define the specificity of the cellular response to an external stimulus or to a specific developmental stage. To that purpose, the nucleus contains all the enzymatic machinery required to carry out a wide variety of nuclear protein post-translational modifications (PTMs), which play an important role in signal transduction pathways leading to the modulation of specific sets of genes. PTMs include protein (de)acetylation which is controlled by the antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Regarding protein deacetylation, plants are of particular interest: in addition to the RPD3-HDA1 and Sir2 HDAC families that they share with other eukaryotic organisms, plants have developed a specific family called type-II HDACs (HD2s). Interestingly, these HD2s are well conserved in plants and control fundamental biological processes such as seed germination, flowering or the response to pathogens. The aim of this review was to summarize current knowledge regarding this fascinating, but still poorly understood nuclear protein family.
Collapse
Affiliation(s)
- Vincent Grandperret
- Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, Université de Bourgogne, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, Dijon cedex, 21065, France
| | | | | | | |
Collapse
|
8
|
Lu W, Chu X, Li Y, Wang C, Guo X. Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 2013; 8:e68503. [PMID: 23844212 PMCID: PMC3700956 DOI: 10.1371/journal.pone.0068503] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase kinases (MAPKK) mediate a variety of stress responses in plants. So far little is known on the functional role of MAPKKs in cotton. In the present study, Gossypium hirsutum MKK1 (GhMKK1) function was investigated. GhMKK1 protein may activate its specific targets in both the nucleus and cytoplasm. Treatments with salt, drought, and H2O2 induced the expression of GhMKK1 and increased the activity of GhMKK1, while overexpression of GhMKK1 in Nicotiana benthamiana enhanced its tolerance to salt and drought stresses as determined by many physiological data. Additionally, GhMKK1 activity was found to up-regulate pathogen-associated biotic stress, and overexpression of GhMKK1 increased the susceptibility of the transgenic plants to the pathogen Ralstonia solanacearum by reducing the expression of PR genes. Moreover, GhMKK1-overexpressing plants also exhibited an enhanced reactive oxygen species scavenging capability and markedly elevated activities of several antioxidant enzymes. These results indicate that GhMKK1 is involved in plants defence responses and provide new data to further analyze the function of plant MAPK pathways.
Collapse
Affiliation(s)
- Wenjing Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xiaoqian Chu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Yuzhen Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| |
Collapse
|
9
|
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci 2012; 367:2619-39. [PMID: 22889912 DOI: 10.1098/rstb.2012.0003] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
10
|
Campos-Soriano L, García-Martínez J, San Segundo B. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. MOLECULAR PLANT PATHOLOGY 2012; 13:579-92. [PMID: 22212404 PMCID: PMC6638712 DOI: 10.1111/j.1364-3703.2011.00773.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Their association benefits the host plant by improving nutrition, mainly phosphorus nutrition, and by providing increased capability to cope with adverse conditions. In this study, we investigated the transcriptional changes triggered in rice leaves as a result of AM symbiosis, focusing on the relevance of the plant defence response. We showed that root colonization by the AM fungus Glomus intraradices is accompanied by the systemic induction of genes that play a regulatory role in the host defence response, such as OsNPR1, OsAP2, OsEREBP and OsJAmyb. Genes involved in signal transduction processes (OsDUF26 and OsMPK6) and genes that function in calcium-mediated signalling processes (OsCBP, OsCaM and OsCML4) are also up-regulated in leaves of mycorrhizal rice plants in the absence of pathogen infection. In addition, the mycorrhizal rice plants exhibit a stronger induction of defence marker genes [i.e. pathogenesis-related (PR) genes] in their leaves in response to infection by the blast fungus Magnaporthe oryzae. Evidence indicates that mycorrhizal rice plants show enhanced resistance to the rice blast fungus. Overall, these results suggest that the protective effect of the AM symbiosis in rice plants relies on both the systemic activation of defence regulatory genes in the absence of pathogen challenge and the priming for stronger expression of defence effector genes during pathogen infection. The possible mechanisms involved in the mycorrhiza-induced resistance to M. oryzae infection are discussed.
Collapse
Affiliation(s)
- Lidia Campos-Soriano
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Mazars C, Brière C, Bourque S, Thuleau P. Nuclear calcium signaling: an emerging topic in plants. Biochimie 2011; 93:2068-74. [PMID: 21683118 DOI: 10.1016/j.biochi.2011.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/31/2011] [Indexed: 01/02/2023]
Abstract
The calcium ion is probably one of the most studied second messenger both in plant and animal fields. A large number of reviews have browsed the diversity of cytosolic calcium signatures and evaluated their pleiotropic roles in plant and animal cells. In the recent years, an increasing number of reviews has focused on nuclear calcium, especially on the possible roles of nuclear calcium concentration variations on nuclear activities. Experiments initially performed on animal cells gave conflicting results that brought about a controversy about the ability of the nucleus to generate its own calcium signals and to regulate its calcium level. But in plant cells, several converging scientific pieces of evidence support the hypothesis of nucleus autonomy. The present review briefly summarizes data supporting this hypothesis and tries to put forward some possible roles for these nucleus-generated calcium signals in controlling nuclear activity.
Collapse
Affiliation(s)
- Christian Mazars
- Université de Toulouse, Université Paul Sabatier, Laboratoire de Recherche en Sciences végétales, Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
12
|
Brownlee C, Hetherington A. Introduction to a Virtual Special Issue on calcium signalling in plants. THE NEW PHYTOLOGIST 2011; 192:786-789. [PMID: 22074334 DOI: 10.1111/j.1469-8137.2011.03964.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
13
|
Dahan J, Hammoudi V, Wendehenne D, Bourque S. Type 2 histone deacetylases play a major role in the control of elicitor-induced cell death in tobacco. PLANT SIGNALING & BEHAVIOR 2011; 6:1865-7. [PMID: 22067994 PMCID: PMC3343733 DOI: 10.4161/psb.6.11.17848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cell death which characterizes the onset of the Hypersensitive Response (HR) is a very important weapon evolved by plants to block pathogen development. By the use of numerous plant/avirulent pathogen or plant/elicitor models, we have now obtained detailed signalling pathways allowing, after pathogen or elicitor perception, the control of the expression of specific sets of genes that contribute to cell death. However, our knowledge of the molecular actors involved in this process still remains limited. This is particularly true when regarding what happen in the nucleus. We recently reported that nuclear post-translational protein modifications are major processes that control cell death. Using the tobacco/cryptogein model, we showed that type 2 histone deacetylase activities, which act as negative regulators of cell death, depend on their phosphorylation status. In the present paper, we integrated all these results to propose a model depicting the putative nuclear signalling pathways controlling the establishment of cell death in tobacco in response to the cryptogein elicitor. This model highlights the role of the nuclear protein acetylation and phosphorylation in the establishment of plant defences.
Collapse
Affiliation(s)
- Jennifer Dahan
- UMR Université de Bourgogne Plante-Microbe-Environnement, Dijon, France
| | | | | | | |
Collapse
|
14
|
Bourque S, Dutartre A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C, Rossignol M, Wendehenne D. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. THE NEW PHYTOLOGIST 2011; 192:127-139. [PMID: 21651563 DOI: 10.1111/j.1469-8137.2011.03788.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Plant resistance to pathogen attack is often associated with a localized programmed cell death called hypersensitive response (HR). How this cell death is controlled remains largely unknown. • Upon treatment with cryptogein, an elicitor of tobacco defence and cell death, we identified NtHD2a and NtHD2b, two redundant isoforms of type-2 nuclear histone deacetylases (HDACs). These HDACs are phosphorylated after a few minutes' treatment, and their rate of mRNAs are rapidly and strongly reduced, leading to a 40-fold decrease after 10 h of treatment. • By using HDAC inhibitors, RNAi- and overexpression-based approaches, we showed that HDACs, and especially NtHD2a/b, act as inhibitors of cryptogein-induced cell death. Moreover, in NtHD2a/b-silenced plants, infiltration with cryptogein led to HR-like symptoms in distal leaves. • Taken together, these results show for the first time that type-2 HDACs, which are specific to plants, act as negative regulators of elicitor-induced cell death in tobacco (Nicotiana tabacum), suggesting that the HR is controlled by post-translational modifications including (de)acetylation of nuclear proteins.
Collapse
Affiliation(s)
- Stéphane Bourque
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
- GDR CNRS N°2688 'Calcium et régulation de l'expression des gènes en contexte normal et pathologique', 31000 Toulouse, France
| | - Agnès Dutartre
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
| | - Valentin Hammoudi
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
| | - Sabrina Blanc
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
| | - Jennifer Dahan
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
| | - Sylvain Jeandroz
- UPSP PROXISS, AgroSup Dijon, 26 Boulevard du Dr Petitjean, BP 87999, 21079 Dijon cedex, France
| | - Carole Pichereaux
- Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France and Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France
| | - Michel Rossignol
- Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, F-31077 Toulouse, France and Université Paul Sabatier, Université de Toulouse, F-31077 Toulouse, France
| | - David Wendehenne
- UMR INRA 1088/CNRS 5184/Université de Bourgogne Plante-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cedex, France
| |
Collapse
|
15
|
Abstract
BACKGROUND The complex events of mitosis rely on precise timing and on immaculate preparation for their success, but the G₂/M transition in the plant cell cycle is currently steeped in controversy and alternative models. SCOPE In this brief review, the regulation of the G₂/M transition in plants is commented on. The extent to which the G₂/M transition is phosphoregulated by WEE1 kinase and CDC25 phosphatase, as exemplified in yeasts and animals, is discussed together with an alternative model that excludes these proteins from this transition. Arabidopsis T-DNA insertional lines for WEE1 and CDC25 that develop normally prompted the latter model. An argument is then presented that environmental stress is the norm for higher plants in temperate conditions. If so, the repressive role that WEE1 has under checkpoint conditions might be part of the normal cell cycle for many proliferative plant cells. Arabidopsis CDC25 can function as either a phosphatase or an arsenate reductase and recent evidence suggests that cdc25 knockouts are hypersensitive to hydroxyurea, a drug that induces the DNA-replication checkpoint. That other data show a null response of these knockouts to hydroxyurea leads to an airing of the controversy surrounding the enigmatic plant CDC25 at the G₂/M transition.
Collapse
Affiliation(s)
- Dennis Francis
- School of Biosciences, Cardiff University, Main Building, Cardiff, UK.
| |
Collapse
|
16
|
Wang C, Jing R, Mao X, Chang X, Li A. TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1299-311. [PMID: 21115661 PMCID: PMC3022413 DOI: 10.1093/jxb/erq377] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought, salinity, and low temperature have drastic effects on plant growth and development. However, the molecular mechanisms regulating biochemical and physiological changes in response to stresses are not well understood. Protein kinases are major signal transduction factors among the reported molecular mechanisms mediating acclimation to environmental changes. Protein kinase ABC1 (activity of bc(1) complex) is involved in regulating coenzyme Q biosynthesis in mitochondria in yeast (Saccharomyces cersvisiae), and in balancing oxidative stress in chloroplasts in Arabidopsis thaliana. In the current study, TaABC1 (Triticum aestivum L. activity of bc(1) complex) protein kinase was localized to the cell membrane, cytoplasm, and nucleus. The effects of overexpressing TaABC1 in transgenic Arabidopsis plants on responses to drought, salt, and cold stress were further investigated. Transgenic Arabidopsis overexpressing the TaABC1 protein showed lower water loss and higher osmotic potential, photochemistry efficiency, and chlorophyll content, while cell membrane stability and controlled reactive oxygen species homeostasis were maintained. In addition, overexpression of TaABC1 increased the expression of stress-responsive genes, such as DREB1A, DREB2A, RD29A, ABF3, KIN1, CBF1, LEA, and P5CS, detected by real-time PCR analysis. The results suggest that TaABC1 overexpression enhances drought, salt, and cold stress tolerance in Arabidopsis, and imply that TaABC1 may act as a regulatory factor involved in a multiple stress response pathways.
Collapse
Affiliation(s)
| | - Ruilian Jing
- To whom correspondence should be addressed. E-mail:
| | | | | | | |
Collapse
|
17
|
Mazars C, Thuleau P, Lamotte O, Bourque S. Cross-talk between ROS and calcium in regulation of nuclear activities. MOLECULAR PLANT 2010; 3:706-18. [PMID: 20522524 DOI: 10.1093/mp/ssq024] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Calcium and Reactive Oxygen Species (ROS) are acknowledged as crucial second messengers involved in the response to various biotic and abiotic stresses. However, it is still not clear how these two compounds can play a role in different signaling pathways leading the plant to a variety of processes such as root development or defense against pathogens. Recently, it has been shown that the concept of calcium and ROS signatures, initially discovered in the cytoplasm, can also be extended to the nucleus of plant cells. In addition, it has been clearly proved that both ROS and calcium signals are intimately interconnected. How this cross-talk can finally modulate the translocation and/or the activity of nuclear proteins leading to the control of specific genes expression is the main focus of this review. We will especially focus on how calcium and ROS interact at the molecular level to modify their targets.
Collapse
Affiliation(s)
- Christian Mazars
- Université de Toulouse, UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|