1
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
2
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Jiang X, Zuo S. Exploring the molecular mechanisms of rice blast resistance and advances in breeding for disease tolerance. Mol Biol Rep 2024; 51:1093. [PMID: 39460780 DOI: 10.1007/s11033-024-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
4
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Abdelbacki AMM, Rajput N, Jiang X, Rao B, Zuo S. Allelic variation in rice blast resistance: a pathway to sustainable disease management. Mol Biol Rep 2024; 51:935. [PMID: 39180629 DOI: 10.1007/s11033-024-09854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ashraf M M Abdelbacki
- Deanship of Skills Development, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nimra Rajput
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bisma Rao
- Department of Public Health, Medical College, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
6
|
Tang L, Song J, Cui Y, Fan H, Wang J. Detection and Evaluation of Blast Resistance Genes in Backbone Indica Rice Varieties from South China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2134. [PMID: 39124252 PMCID: PMC11314011 DOI: 10.3390/plants13152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.T.); (J.S.); (Y.C.); (H.F.)
| |
Collapse
|
7
|
Greenwood JR, Lacorte-Apostol V, Kroj T, Padilla J, Telebanco-Yanoria MJ, Glaus AN, Roulin A, Padilla A, Zhou B, Keller B, Krattinger SG. Genome-wide association analysis uncovers rice blast resistance alleles of Ptr and Pia. Commun Biol 2024; 7:607. [PMID: 38769168 PMCID: PMC11106262 DOI: 10.1038/s42003-024-06244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
A critical step to maximize the usefulness of genome-wide association studies (GWAS) in plant breeding is the identification and validation of candidate genes underlying genetic associations. This is of particular importance in disease resistance breeding where allelic variants of resistance genes often confer resistance to distinct populations, or races, of a pathogen. Here, we perform a genome-wide association analysis of rice blast resistance in 500 genetically diverse rice accessions. To facilitate candidate gene identification, we produce de-novo genome assemblies of ten rice accessions with various rice blast resistance associations. These genome assemblies facilitate the identification and functional validation of novel alleles of the rice blast resistance genes Ptr and Pia. We uncover an allelic series for the unusual Ptr rice blast resistance gene, and additional alleles of the Pia resistance genes RGA4 and RGA5. By linking these associations to three thousand rice genomes we provide a useful tool to inform future rice blast breeding efforts. Our work shows that GWAS in combination with whole-genome sequencing is a powerful tool for gene cloning and to facilitate selection of specific resistance alleles for plant breeding.
Collapse
Affiliation(s)
- Julian R Greenwood
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | - Thomas Kroj
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jonas Padilla
- International Rice Research Institute, Los Baños, Philippines
| | | | - Anna N Glaus
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Anne Roulin
- Agroscope, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - André Padilla
- Centre de Biologie Structurale, CBS, University of Montpellier, CNRS UMR 5048, INSERM U, 1054, Montpellier, France
| | - Bo Zhou
- International Rice Research Institute, Los Baños, Philippines.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, KAUST, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Gu F, Han Z, Zou X, Xie H, Chen C, Huang C, Guo T, Wang J, Wang H. Unveiling the Role of RNA Recognition Motif Proteins in Orchestrating Nucleotide-Binding Site and Leucine-Rich Repeat Protein Gene Pairs and Chloroplast Immunity Pathways: Insights into Plant Defense Mechanisms. Int J Mol Sci 2024; 25:5557. [PMID: 38791594 PMCID: PMC11122538 DOI: 10.3390/ijms25105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In plants, nucleotide-binding site and leucine-rich repeat proteins (NLRs) play pivotal roles in effector-triggered immunity (ETI). However, the precise mechanisms underlying NLR-mediated disease resistance remain elusive. Previous studies have demonstrated that the NLR gene pair Pik-H4 confers resistance to rice blast disease by interacting with the transcription factor OsBIHD1, consequently leading to the upregulation of hormone pathways. In the present study, we identified an RNA recognition motif (RRM) protein, OsRRM2, which interacted with Pik1-H4 and Pik2-H4 in vesicles and chloroplasts. OsRRM2 exhibited a modest influence on Pik-H4-mediated rice blast resistance by upregulating resistance genes and genes associated with chloroplast immunity. Moreover, the RNA-binding sequence of OsRRM2 was elucidated using systematic evolution of ligands by exponential enrichment. Transcriptome analysis further indicated that OsRRM2 promoted RNA editing of the chloroplastic gene ndhB. Collectively, our findings uncovered a chloroplastic RRM protein that facilitated the translocation of the NLR gene pair and modulated chloroplast immunity, thereby bridging the gap between ETI and chloroplast immunity.
Collapse
Affiliation(s)
- Fengwei Gu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhikai Han
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodi Zou
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huabin Xie
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chun Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Cuihong Huang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Tao Guo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiafeng Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (F.G.); (Z.H.); (X.Z.); (H.X.); (C.C.); (C.H.); (T.G.)
- Nation Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Song L, Yang T, Wang X, Ye W, Lu G. Magnaporthe oryzae Effector AvrPik-D Targets Rice Rubisco Small Subunit OsRBCS4 to Suppress Immunity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1214. [PMID: 38732428 PMCID: PMC11085154 DOI: 10.3390/plants13091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (M. oryzae), is a highly destructive disease that significantly impacts rice yield and quality. During the infection, M. oryzae secretes effector proteins to subvert the host immune response. However, the interaction between the effector protein AvrPik-D and its target proteins in rice, and the mechanism by which AvrPik-D exacerbates disease severity to facilitate infection, remains poorly understood. In this study, we found that the M. oryzae effector AvrPik-D interacts with the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) small subunit OsRBCS4. The overexpression of the OsRBCS4 gene in transgenic rice not only enhances resistance to M. oryzae but also induces more reactive oxygen species following chitin treatment. OsRBCS4 localizes to chloroplasts and co-localizes with AvrPik-D within these organelles. AvrPik-D suppresses the transcriptional expression of OsRBCS4 and inhibits Rubisco activity in rice. In conclusion, our results demonstrate that the M. oryzae effector AvrPik-D targets the Rubisco small subunit OsRBCS4 and inhibits its carboxylase and oxygenase activity, thereby suppressing rice innate immunity to facilitate infection. This provides a novel mechanism for the M. oryzae effector to subvert the host immunity to promote infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Xinxiao Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| |
Collapse
|
10
|
Wang J, Hu H, Jiang X, Zhang S, Yang W, Dong J, Yang T, Ma Y, Zhou L, Chen J, Nie S, Liu C, Ning Y, Zhu X, Liu B, Yang J, Zhao J. Pangenome-Wide Association Study and Transcriptome Analysis Reveal a Novel QTL and Candidate Genes Controlling both Panicle and Leaf Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:27. [PMID: 38607544 PMCID: PMC11014823 DOI: 10.1186/s12284-024-00707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.
Collapse
Affiliation(s)
- Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang, 529500, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shuai Nie
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Basak P, Gurjar MS, Kumar TPJ, Kashyap N, Singh D, Jha SK, Saharan MS. Transcriptome analysis of Bipolaris sorokiniana - Hordeum vulgare provides insights into mechanisms of host-pathogen interaction. Front Microbiol 2024; 15:1360571. [PMID: 38577688 PMCID: PMC10993733 DOI: 10.3389/fmicb.2024.1360571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Spot blotch disease incited by Bipolaris sorokiniana severely affects the cultivation of barley. The resistance to B. sorokiniana is quantitative in nature and its interaction with the host is highly complex which necessitates in-depth molecular analysis. Thus, the study aimed to conduct the transcriptome analysis to decipher the mechanisms and pathways involved in interactions between barley and B. sorokiniana in both the resistant (EC0328964) and susceptible (EC0578292) genotypes using the RNA Seq approach. In the resistant genotype, 6,283 genes of Hordeum vulgare were differentially expressed out of which 5,567 genes were upregulated and 716 genes were downregulated. 1,158 genes of Hordeum vulgare were differentially expressed in the susceptible genotype, out of which 654 genes were upregulated and 504 genes were downregulated. Several defense-related genes like resistant gene analogs (RGAs), disease resistance protein RPM1, pathogenesis-related protein PRB1-2-like, pathogenesis-related protein 1, thaumatin-like protein PWIR2 and defensin Tm-AMP-D1.2 were highly expressed exclusively in resistant genotype only. The pathways involved in the metabolism and biosynthesis of secondary metabolites were the most prominently represented pathways in both the resistant and susceptible genotypes. However, pathways involved in MAPK signaling, plant-pathogen interaction, and plant hormone signal transduction were highly enriched in resistant genotype. Further, a higher number of pathogenicity genes of B. sorokiniana was found in response to the susceptible genotype. The pathways encoding for metabolism, biosynthesis of secondary metabolites, ABC transporters, and ubiquitin-mediated proteolysis were highly expressed in susceptible genotype in response to the pathogen. 14 and 11 genes of B. sorokiniana were identified as candidate effectors from susceptible and resistant host backgrounds, respectively. This investigation will offer valuable insights in unraveling the complex mechanisms involved in barley- B. sorokiniana interaction.
Collapse
Affiliation(s)
- Poulami Basak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Natasha Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
Yang T, Song L, Hu J, Qiao L, Yu Q, Wang Z, Chen X, Lu GD. Magnaporthe oryzae effector AvrPik-D targets a transcription factor WG7 to suppress rice immunity. RICE (NEW YORK, N.Y.) 2024; 17:14. [PMID: 38351214 PMCID: PMC10864242 DOI: 10.1186/s12284-024-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases for rice crops, significantly affecting crop yield and quality. During the infection process, M. oryzae secretes effector proteins that help in hijacking the host's immune responses to establish infection. However, little is known about the interaction between the effector protein AvrPik-D and the host protein Pikh, and how AvrPik-D increases disease severity to promote infection. In this study, we show that the M. oryzae effector AvrPik-D interacts with the zinc finger-type transcription factor WG7 in the nucleus and promotes its transcriptional activity. Genetic removal (knockout) of the gene WG7 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after treatments with chitin. In addition, the hormone level of SA and JA, is increased and decreased respectively in WG7 KO plants, indicating that WG7 may negatively mediate resistance through salicylic acid pathway. Conversely, WG7 overexpression lines reduce resistance to M. oryzae. However, WG7 is not required for the Pikh-mediated resistance against rice blast. In conclusion, our results revealed that the M. oryzae effector AvrPik-D targets and promotes transcriptional activity of WG7 to suppress rice innate immunity to facilitate infection.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Jinxian Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Luao Qiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Qing Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108, China
| | - Xiaofeng Chen
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China.
| |
Collapse
|
13
|
Fu R, Zhao L, Chen C, Wang J, Lu D. Conjunctive Analysis of BSA-Seq and SSR Markers Unveil the Candidate Genes for Resistance to Rice False Smut. Biomolecules 2024; 14:79. [PMID: 38254679 PMCID: PMC10813778 DOI: 10.3390/biom14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Rice false smut (RFS) caused by the fungus Ustilaginoidea virens (Cook) leads to serious yield losses in rice. Identification of the gene or quantitative trait loci (QTLs) is crucial to resistance breeding and mitigation of RFS damage. In this study, we crossed a resistant variety, IR77298-14-1-2::IRGC117374-1, with a susceptible indica cultivar, 9311, and evaluated recombinant inbred lines in a greenhouse. The genetic analysis showed that the RFS resistance of IR77298-14-1-2::IRGC117374-1 was controlled by multiple recessive loci. We identified a novel QTL, qRFS12.01, for RFS resistance in IR77298-14-1-2::IRGC117374-1 by combining bulked segregant analysis with whole genome resequencing (BSA-seq) and simple sequence repeat (SSR) marker mapping approaches. The phenotypic effect of qRFS12.01 on RFS resistance reached 28.74%, suggesting that SSR markers linked to qRFS12.01 are valuable for marker-assisted breeding of RFS resistance in rice. The prediction of putative candidate genes within qRFS12.01 revealed five disease resistance proteins containing NB-ARC domains. In conclusion, our findings provide a new rice chromosome region carrying genes/QTLs for resistance to RFS.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China; (R.F.)
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
14
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Scheuermann KK, Pereira A. Development of a molecular marker for the Pi1 gene based on the association of the SNAP protocol with the touch-up gradient amplification method. J Microbiol Methods 2023; 214:106845. [PMID: 37858898 DOI: 10.1016/j.mimet.2023.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Genetic resistance is the most effective and eco-friendly approach to combat rice blast. The application of resistance genes may be facilitated by the availability of molecular markers that allow marker-assisted selection during the breeding process. The Pi1 gene, considered to be a broad-spectrum resistance gene, might contribute to enhancing resistance to rice blast, but it lacks a suitable marker that can be used. In this study, we investigated nucleotide polymorphism in the Pik locus and combined the SNAP protocol with the touch-up gradient amplification method to develop a SNAP marker. The Pi1 SNAP marker could distinguish Pi1 from Pik alleles, and when used for screening a germplasm bank and an F2 population, it consistently identified germplasms carrying the Pi1 gene. The P1 SNAP marker offers as advantages to involve only the presence/absence analysis of PCR amplicons resolved on an agarose gel.
Collapse
Affiliation(s)
- Klaus Konrad Scheuermann
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Estação Experimental de Itajaí - Epagri-EEI. C.P. 277, Itajaí, SC CEP 88318-112, Brazil.
| | - Adriana Pereira
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Estação Experimental de Itajaí - Epagri-EEI. C.P. 277, Itajaí, SC CEP 88318-112, Brazil
| |
Collapse
|
16
|
Biswas B, Thakur K, Pote TD, Sharma KD, Krishnan SG, Singh AK, Sharma TR, Rathour R. Genetic and molecular analysis of leaf blast resistance in Tetep derived line RIL4 and its relationship to genes at Pita/Pita 2 locus. Sci Rep 2023; 13:18683. [PMID: 37907574 PMCID: PMC10618204 DOI: 10.1038/s41598-023-46070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
The Vietnamese indica landrace 'Tetep' is known worldwide for its durable and broad spectrum-resistance to blast. We performed genetic and molecular analyses of leaf blast resistance in a Tetep derived recombinant inbred line 'RIL4' which is resistant to both leaf and neck blast. Phenotypic analysis of segregating F2 progenies suggested that leaf blast resistance in RIL4 was controlled by a dominant gene tentatively designated as Pi-l(t). The gene was mapped to a 2.4 cm region close to the centromere of chromosome 12. The search for the gene content in the equivalent genomic region of reference cv. Nipponbare revealed the presence of five NBS-LRR genes, two of which corresponded to the alleles of Pita and Pi67 genes previously identified from Tetep. The two other genes, LOC_Os12g17090, and LOC_Os12g17490 represented the homologs of stripe rust resistance gene Yr10. The allelic tests with Pita2 and Pi67 lines suggested that the leaf blast resistance gene in RIL4 is either allelic or tightly linked to these genes. The genomic position of the leaf blast resistance gene in RIL4 perfectly coincided with the genomic position of a neck blast resistance gene Pb2 previously identified from this line suggesting that the same gene confers resistance to leaf and neck blast. The present results were discussed in juxtaposition with past studies on the genes of Pita/Pita2 resistance gene complex.
Collapse
Affiliation(s)
- B Biswas
- CSK Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - K Thakur
- College of Horticulture and Forestry, Dr YSP University of Horticulture and Forestry, Thunag, 175048, India
| | - T D Pote
- CSK Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - K D Sharma
- CSK Himachal Pradesh Agricultural University, Palampur, 176062, India
| | - S Gopala Krishnan
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - A K Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - T R Sharma
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - R Rathour
- CSK Himachal Pradesh Agricultural University, Palampur, 176062, India.
| |
Collapse
|
17
|
Simon EV, Hechanova SL, Hernandez JE, Li CP, Tülek A, Ahn EK, Jairin J, Choi IR, Sundaram RM, Jena KK, Kim SR. Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1247014. [PMID: 37731986 PMCID: PMC10507716 DOI: 10.3389/fpls.2023.1247014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.
Collapse
Affiliation(s)
- Eliza Vie Simon
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Sherry Lou Hechanova
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| | - Jose E. Hernandez
- Institute of Crop Science (ICropS), University of the Philippines Los Baños, Laguna, Philippines
| | - Charng-Pei Li
- Taiwan Agricultural Research Institute (TARI), Council of Agriculture, Taiwan
| | - Adnan Tülek
- Trakya Agricultural Research Institute, Edirne, Türkiye
| | - Eok-Keun Ahn
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Jirapong Jairin
- Division of Rice Research and Development, Rice Department, Bangkok, Thailand
| | - Il-Ryong Choi
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
- National Institute of Crop Science, Rural Development Administration (RDA), Republic of Korea
| | - Raman M. Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, India
| | - Kshirod K. Jena
- School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India
| | - Sung-Ryul Kim
- Rice Breeding Innovation Department, International Rice Research Institute (IRRI), Laguna, Philippines
| |
Collapse
|
18
|
Wang R, Wang GL, Ning Y. Harnessing nanobodies to expand the recognition spectrum of plant NLRs for diverse pathogens. ABIOTECH 2023; 4:272-276. [PMID: 37974906 PMCID: PMC10638280 DOI: 10.1007/s42994-023-00111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 11/19/2023]
Abstract
The strategy to expand the recognition spectrum of plant nucleotide-binding domain leucine-rich repeat (NLR) proteins by modifying their recognition sequences is generally limited and often unsuccessful. Kourelis et al. introduced a groundbreaking approach for generating a customized immune receptor, called Pikobody. This method involves integrating a nanobody domain of a fluorescent protein (FP) into a plant NLR. Their research demonstrates that the resulting Pikobody successfully initiates an immune response against diverse pathogens when exposed to the corresponding FP.
Collapse
Affiliation(s)
- Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
19
|
Nazareno ES, Fiedler JD, Ardayfio NK, Miller ME, Figueroa M, Kianian SF. Genetic Analysis and Physical Mapping of Oat Adult Plant Resistance Loci Against Puccinia coronata f. sp. avenae. PHYTOPATHOLOGY 2023; 113:1307-1316. [PMID: 36721375 DOI: 10.1094/phyto-10-22-0395-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Six quantitative trait loci (QTLs) for adult plant resistance against oat crown rust (Puccinia coronata f. sp. avenae) were identified from mapping three recombinant inbred populations. Using genotyping-by-sequencing with markers called against the OT3098 v1 reference genome, the QTLs were mapped on six different chromosomes: Chr1D, Chr4D, Chr5A, Chr5D, Chr7A, and Chr7C. Composite interval mapping with marker cofactor selection showed that the phenotypic variance explained by all identified QTLs for coefficient of infection range from 12.2 to 46.9%, whereas heritability estimates ranged from 0.11 to 0.38. The significant regions were narrowed down to intervals of 3.9 to 25 cM, equivalent to physical distances of 11 to 133 Mb. At least two flanking single-nucleotide polymorphism markers were identified within 10 cM of each QTL that could be used in marker-assisted introgression, pyramiding, and selection. The additive effects of the QTLs in each population were determined using single-nucleotide polymorphism haplotype data, which showed a significantly lower coefficient of infection in lines homozygous for the resistant alleles. Analysis of pairwise linkage disequilibrium also revealed high correlation of markers and presence of linkage blocks in the significant regions. To further facilitate marker-assisted breeding, polymerase chain reaction allelic competitive extension (PACE) markers for the adult plant resistance loci were developed. Putative candidate genes were also identified in each of the significant regions, which include resistance gene analogs that encode for kinases, ligases, and predicted receptors of avirulence proteins from pathogens.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
| | - Jason D Fiedler
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Naa Korkoi Ardayfio
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, U.S.A
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, U.S.A
- Pairwise Plants, LLC, 807 East Main Street, Suite 4-100, Durham, NC, U.S.A
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, U.S.A
| |
Collapse
|
20
|
Guo L, Mu Y, Wang D, Ye C, Zhu S, Cai H, Zhu Y, Peng Y, Liu J, He X. Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1187372. [PMID: 37448867 PMCID: PMC10338059 DOI: 10.3389/fpls.2023.1187372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuanyu Mu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongli Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hong Cai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Youliang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Vo KTX, Yi Q, Jeon JS. Engineering effector-triggered immunity in rice: Obstacles and perspectives. PLANT, CELL & ENVIRONMENT 2023; 46:1143-1156. [PMID: 36305486 DOI: 10.1111/pce.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Improving rice immunity is one of the most effective approaches to reduce yield loss by biotic factors, with the aim of increasing rice production by 2050 amidst limited natural resources. Triggering a fast and strong immune response to pathogens, effector-triggered immunity (ETI) has intrigued scientists to intensively study and utilize the mechanisms for engineering highly resistant plants. The conservation of ETI components and mechanisms across species enables the use of ETI components to generate broad-spectrum resistance in plants. Numerous efforts have been made to introduce new resistance (R) genes, widen the effector recognition spectrum and generate on-demand R genes. Although engineering ETI across plant species is still associated with multiple challenges, previous attempts have provided an enhanced understanding of ETI mechanisms. Here, we provide a survey of recent reports in the engineering of rice R genes. In addition, we suggest a framework for future studies of R gene-effector interactions, including genome-scale investigations in both rice and pathogens, followed by structural studies of R proteins and effectors, and potential strategies to use important ETI components to improve rice immunity.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Qi Yi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Korea
| |
Collapse
|
22
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
23
|
Xiao G, Wang W, Liu M, Li Y, Liu J, Franceschetti M, Yi Z, Zhu X, Zhang Z, Lu G, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:810-824. [PMID: 36178632 DOI: 10.1111/jipb.13375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbin Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Marina Franceschetti
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhaofeng Yi
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, 1301, Philippines
| |
Collapse
|
24
|
Kovi B, Sakai T, Abe A, Kanzaki E, Terauchi R, Shimizu M. Isolation of Pikps, an allele of Pik, from the aus rice cultivar Shoni. Genes Genet Syst 2023; 97:229-235. [PMID: 36624071 DOI: 10.1266/ggs.22-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blast disease caused by the filamentous fungus Pyricularia oryzae (syn. Magnaporthe oryzae) is one of the most destructive diseases of rice (Oryza sativa L.) around the globe. An aus cultivar, Shoni, showed resistance against at least four Japanese P. oryzae isolates. To understand Shoni's resistance against the P. oryzae isolate Naga69-150, genetic analysis was carried out using recombinant inbred lines developed by a cross between Shoni and the japonica cultivar Hitomebore, which is susceptible to Naga69-150. The result indicated that the resistance was controlled by a single locus, which was named Pi-Shoni. A QTL analysis identified Pi-Shoni as being located in the telomeric region of chromosome 11. A candidate gene approach in the region indicated that Pi-Shoni corresponds to the previously cloned Pik locus, and we named this allele Pikps. Loss of gene function mediated by RNA interference demonstrated that a head-to-head-orientated pair of NBS-LRR receptor genes (Pikps-1 and Pikps-2) are required for the Pikps-mediated resistance. Amino acid sequence comparison showed that Pikps-1 is 99% identical to Pikp-1, while Pikps-2 is identical to Pikp-2. Pikps-1 had one amino acid substitution (Pro351Ser) in the NBS domain as compared to Pikp-1. The recognition specificity of Pikps against known AVR-Pik alleles is identical to that of Pikp.
Collapse
Affiliation(s)
- Basavaraj Kovi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University
| | - Toshiyuki Sakai
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University
| | | | | | - Ryohei Terauchi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University.,Iwate Biotechnology Research Center
| | | |
Collapse
|
25
|
Gao P, Li M, Wang X, Xu Z, Wu K, Sun Q, Du H, Younas MU, Zhang Y, Feng Z, Hu K, Chen Z, Zuo S. Identification of Elite R-Gene Combinations against Blast Disease in Geng Rice Varieties. Int J Mol Sci 2023; 24:ijms24043984. [PMID: 36835399 PMCID: PMC9960461 DOI: 10.3390/ijms24043984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Mingyou Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoqiu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiwen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Keting Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Quanyi Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Haibo Du
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| |
Collapse
|
26
|
Zampieri E, Volante A, Marè C, Orasen G, Desiderio F, Biselli C, Canella M, Carmagnola L, Milazzo J, Adreit H, Tharreau D, Poncelet N, Vaccino P, Valè G. Marker-Assisted Pyramiding of Blast-Resistance Genes in a japonica Elite Rice Cultivar through Forward and Background Selection. PLANTS (BASEL, SWITZERLAND) 2023; 12:757. [PMID: 36840105 PMCID: PMC9963729 DOI: 10.3390/plants12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Rice blast, caused by Pyricularia oryzae, is one of the main rice diseases worldwide. The pyramiding of blast-resistance (Pi) genes, coupled to Marker-Assisted BackCrossing (MABC), provides broad-spectrum and potentially durable resistance while limiting the donor genome in the background of an elite cultivar. In this work, MABC coupled to foreground and background selections based on KASP marker assays has been applied to introgress four Pi genes (Piz, Pib, Pita, and Pik) in a renowned japonica Italian rice variety, highly susceptible to blast. Molecular analyses on the backcross (BC) lines highlighted the presence of an additional blast-resistance gene, the Pita-linked Pita2/Ptr gene, therefore increasing the number of blast-resistance introgressed genes to five. The recurrent genome was recovered up to 95.65%. Several lines carrying four (including Pita2) Pi genes with high recovery percentage levels were also obtained. Phenotypic evaluations confirmed the effectiveness of the pyramided lines against multivirulent strains, which also had broad patterns of resistance in comparison to those expected based on the pyramided Pi genes. The developed blast-resistant japonica lines represent useful donors of multiple blast-resistance genes for future rice-breeding programs related to the japonica group.
Collapse
Affiliation(s)
- Elisa Zampieri
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135 Turin, TO, Italy
| | - Andrea Volante
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Council for Agricultural Research and Economics—Research Centre for Vegetable and Ornamental Crops, Corso Inglesi 508, 18038 Sanremo, IM, Italy
| | - Caterina Marè
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Gabriele Orasen
- Bertone Sementi S.P.A., Strada Cacciolo, 15030 Terruggia, AL, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Chiara Biselli
- Council for Agricultural Research and Economics—Viticulture and Oenology, Viale Santa Margherita 80, 52100 Arezzo, AR, Italy
| | - Marco Canella
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Lorena Carmagnola
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Joëlle Milazzo
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Henri Adreit
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Didier Tharreau
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Nicolas Poncelet
- CIRAD, UMR PHIM TA A 120/K, Campus de Baillarguet, 34, CEDEX 5, 34398 Montpellier, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34, 34398 Montpellier, France
| | - Patrizia Vaccino
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
| | - Giampiero Valè
- Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, VC, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Piazza San Eusebio 5, 13100 Vercelli, VC, Italy
| |
Collapse
|
27
|
Sugihara Y, Abe Y, Takagi H, Abe A, Shimizu M, Ito K, Kanzaki E, Oikawa K, Kourelis J, Langner T, Win J, Białas A, Lüdke D, Contreras MP, Chuma I, Saitoh H, Kobayashi M, Zheng S, Tosa Y, Banfield MJ, Kamoun S, Terauchi R, Fujisaki K. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol 2023; 21:e3001945. [PMID: 36656825 PMCID: PMC9851567 DOI: 10.1371/journal.pbio.3001945] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.
Collapse
Affiliation(s)
- Yu Sugihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | - Shuan Zheng
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
28
|
Xie W, Xu X, Qiu W, Lai X, Liu M, Zhang F. Expression of PmACRE1 in Arabidopsis thaliana enables host defence against Bursaphelenchus xylophilus infection. BMC PLANT BIOLOGY 2022; 22:541. [PMID: 36418942 PMCID: PMC9682698 DOI: 10.1186/s12870-022-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pine wilt disease (PWD) is a destructive disease that endangers pine trees, resulting in the wilting, with yellowing and browning of the needles, and eventually the death of the trees. Previous studies showed that the Avr9/Cf-9 rapidly elicited (PmACRE1) gene was downregulated by Bursaphelenchus xylophilus infection, suggesting a correlation between PmACRE1 expression and pine tolerance. Here, we used the expression of PmACRE1 in Arabidopsis thaliana to evaluate the role of PmACRE1 in the regulation of host defence against B. xylophilus infection. RESULTS Our results showed that the transformation of PmACRE1 into A. thaliana enhanced plant resistance to the pine wood nematode (PWN); that is, the leaves of the transgenic line remained healthy for a longer period than those of the blank vector group. Ascorbate peroxidase (APX) activity and total phenolic acid and total flavonoid contents were higher in the transgenic line than in the control line. Widely targeted metabolomics analysis of the global secondary metabolites in the transgenic line and the vector control line showed that the contents of 30 compounds were significantly different between these two lines; specifically, the levels of crotaline, neohesperidin, nobiletin, vestitol, and 11 other compounds were significantly increased in the transgenic line. The studies also showed that the ACRE1 protein interacted with serine hydroxymethyltransferase, catalase domain-containing protein, myrosinase, dihydrolipoyl dehydrogenase, ketol-acid reductoisomerase, geranylgeranyl diphosphate reductase, S-adenosylmethionine synthase, glutamine synthetase, and others to comprehensively regulate plant resistance. CONCLUSIONS Taken together, these results indicate that PmACRE1 has a potential role in the regulation of plant defence against PWNs.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Xiaomei Xu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Wenjing Qiu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Mengxia Liu
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China.
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350000, People's Republic of China.
| |
Collapse
|
29
|
Tian D, Deng Y, Yang X, Li G, Li Q, Zhou H, Chen Z, Guo X, Su Y, Luo Y, Yang L. Association analysis of rice resistance genes and blast fungal avirulence genes for effective breeding resistance cultivars. Front Microbiol 2022; 13:1007492. [DOI: 10.3389/fmicb.2022.1007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Utilization of rice blast-resistance (R) genes is the most economical and environmentally friendly method to control blast disease. However, rice varieties with R genes influence the outcome of genetic architectures of Magnaporthe oryzae (M. oryzae), and mutations in avirulence (AVR) genes of M. oryzae may cause dysfunction of the corresponding R genes in rice varieties. Although monitoring and characterizing rice R genes and pathogen AVR genes in field populations may facilitate the implementation of effective R genes, little is known about the changes of R genes over time and their ultimate impact on pathogen AVR genes. In this study, 117 main cultivated rice varieties over the past five decades and 35 M. oryzae isolates collected from those diseased plants were analyzed by PCR using gene-specific markers of the nine R genes and six primer pairs targeting the coding sequence or promoter of AVR genes, respectively. The R genes Pigm, Pi9, Pi2, Piz-t, Pi-ta, Pik, Pi1, Pikp, and Pikm were identified in 5, 0, 1, 4, 18, 0, 2, 1, and 0 cultivars, respectively. Significantly, none of these R genes had significant changes that correlated to their application periods of time. Among the four identified AVR genes, AVR-Pik had the highest amplification frequency (97.14%) followed by AVR-Pita (51.43%) and AVR-Pi9 (48.57%); AVR-Piz-t had the lowest frequency (28.57%). All these AVR genes except AVR-Pi9 had 1–2 variants. Inoculation mono-genic lines contained functional genes of Pi2/9 and Pik loci with 14 representative isolates from those 35 ones revealed that the presence of certain AVR-Piz-t, AVR-Pita variants, and AVR-Pik-E + AVR-Pik-D in M. oryzae populations, and these variants negated the ability of the corresponding R genes to confer resistance. Importantly, Pi2, Pi9, and Pigm conferred broad-spectrum resistance to these local isolates. These findings reveal that the complex genetic basis of M. oryzae and some effective blast R genes should be considered in future rice blast-resistance breeding programs.
Collapse
|
30
|
Nazareno ES, Fiedler J, Miller ME, Figueroa M, Kianian SF. A reference-anchored oat linkage map reveals quantitative trait loci conferring adult plant resistance to crown rust (Puccinia coronata f. sp. avenae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3307-3321. [PMID: 36029319 DOI: 10.1007/s00122-022-04128-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
We mapped three adult plant resistance (APR) loci on oat chromosomes 4D and 6C and developed flanking KASP/PACE markers for marker-assisted selection and gene pyramiding. Using sequence orthology search and the available oat genomic and transcriptomic data, we surveyed these genomic regions for genes that may control disease resistance. Sources of durable disease resistance are needed to minimize yield losses in cultivated oat caused by crown rust (Puccinia coronata f. sp. avenae). In this study, we developed five oat recombinant inbred line mapping populations to identify sources of adult plant resistance from crosses between five APR donors and Otana, a susceptible variety. The preliminary bulk segregant mapping based on allele frequencies showed two regions in linkage group Mrg21 (Chr4D) that are associated with the APR phenotype in all five populations. Six markers from these regions in Chr4D were converted to high-throughput allele specific PCR assays and were used to genotype all individuals in each population. Simple interval mapping showed two peaks in Chr4D, named QPc.APR-4D.1 and QPc.APR-4D.2, which were detected in the OtanaA/CI4706-2 and OtanaA/CI9416-2 and in the Otana/PI189733, OtanaD/PI260616, and OtanaA/CI8000-4 populations, respectively. These results were validated by mapping two entire populations, Otana/PI189733 and OtanaA/CI9416, genotyped using Illumina HiSeq, in which polymorphisms were called against the OT3098 oat reference genome. Composite interval mapping results confirmed the presence of the two quantitative trait loci (QTL) located on oat chromosome 4D and an additional QTL with a smaller effect located on chromosome 6C. This mapping approach also narrowed down the physical intervals to between 5 and 19 Mb, and indicated that QPc.APR-4D.1, QPc.APR-4D.2, and QPc.APR-6C explained 43.4%, 38.5%, and 21.5% of the phenotypic variation, respectively. In a survey of the gene content of each QTL, several clusters of disease resistance genes that may contribute to APR were found. The allele specific PCR markers developed for these QTL regions would be beneficial for marker-assisted breeding, gene pyramiding, and future cloning of resistance genes from oat.
Collapse
Affiliation(s)
- Eric S Nazareno
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Jason Fiedler
- US Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND, USA
| | - Marisa E Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Pairwise Plants, LLC. 807 East Main Street, Suite 4-100, Durham, NC, USA
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Shahryar F Kianian
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, USA.
| |
Collapse
|
31
|
Xi Y, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem 2022; 66:513-526. [PMID: 35735291 PMCID: PMC9528088 DOI: 10.1042/ebc20210079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) is an important component of plant immunity. NLRs have a conserved modular architecture and can be subdivided according to their signaling domain that is mostly a coiled-coil (CC) or a Toll/Interleukin1 receptor (TIR) domain into CNLs and TNLs. Single NLR proteins are often sufficient for both effector recognition and immune activation. However, sometimes, they act in pairs, where two different NLRs are required for disease resistance. Functional studies have revealed that in these cases one NLR of the pair acts as a sensor (sNLR) and one as a helper (hNLR). The genes corresponding to such resistance protein pairs with one-to-one functional co-dependence are clustered, generally with a head-to-head orientation and shared promoter sequences. sNLRs in such functional NLR pairs have additional, non-canonical and highly diverse domains integrated in their conserved modular architecture, which are thought to act as decoys to trap effectors. Recent structure-function studies on the Arabidopsis thaliana TNL pair RRS1/RPS4 and on the rice CNL pairs RGA4/RGA5 and Pik-1/Pik-2 are unraveling how such protein pairs function together. Focusing on these model NLR pairs and other recent examples, this review highlights the distinctive features of NLR pairs and their various fascinating mode of action in pathogen effector perception. We also discuss how these findings on NLR pairs pave the way toward improved plant disease resistance.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
32
|
Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem 2022; 66:527-539. [PMID: 35635051 PMCID: PMC9528084 DOI: 10.1042/ebc20210084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Zhou Zou
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
33
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
34
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
35
|
Yu Y, Ma L, Wang X, Zhao Z, Wang W, Fan Y, Liu K, Jiang T, Xiong Z, Song Q, Li C, Wang P, Ma W, Xu H, Wang X, Zhao Z, Wang J, Zhang H, Bao Y. Genome-Wide Association Study Identifies a Rice Panicle Blast Resistance Gene, Pb2, Encoding NLR Protein. Int J Mol Sci 2022; 23:ijms23105668. [PMID: 35628477 PMCID: PMC9145240 DOI: 10.3390/ijms23105668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 12/24/2022] Open
Abstract
Rice blast is one of the main diseases in rice and can occur in different rice growth stages. Due to the complicated procedure of panicle blast identification and instability of panicle blast infection influenced by the environment, most cloned rice resistance genes are associated with leaf blast. In this study, a rice panicle blast resistance gene, Pb2, was identified by genome-wide association mapping based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel 1 (RDP1) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A genome-wide association study identified 18 panicle blast resistance loci (PBRL) within two years, including 9 reported loci and 2 repeated loci (PBRL2 and PBRL13, PBRL10 and PBRL18). Among them, the repeated locus (PBRL10 and PBRL18) was located in chromosome 11. By haplotype and expression analysis, one of the Nucleotide-binding domain and Leucine-rich Repeat (NLR) Pb2 genes was highly conserved in multiple resistant rice cultivars, and its expression was significantly upregulated after rice blast infection. Pb2 encodes a typical NBS-LRR protein with NB-ARC domain and LRR domain. Compared with wild type plants, the transgenic rice of Pb2 showed enhanced resistance to panicle and leaf blast with reduced lesion number. Subcellular localization of Pb2 showed that it is located on plasma membrane, and GUS tissue-staining observation found that Pb2 is highly expressed in grains, leaf tips and stem nodes. The Pb2 transgenic plants showed no difference in agronomic traits with wild type plants. It indicated that Pb2 could be useful for breeding of rice blast resistance.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Lu Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Xinying Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Zhi Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Wei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Tingting Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Qisheng Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Changqing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Panting Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wenjing Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Huanan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Xinyu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Zijing Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Jianfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (L.M.); (X.W.); (Z.Z.); (W.W.); (Y.F.); (K.L.); (T.J.); (Z.X.); (Q.S.); (C.L.); (H.X.); (X.W.); (Z.Z.); (J.W.); (H.Z.)
- Correspondence:
| |
Collapse
|
36
|
The Pid Family Has Been Diverged into Xian and Geng Type Resistance Genes against Rice Blast Disease. Genes (Basel) 2022; 13:genes13050891. [PMID: 35627276 PMCID: PMC9141787 DOI: 10.3390/genes13050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Rice blast (the causative agent the fungus Magnaporthe oryzae) represents a major constraint on the productivity of one of the world’s most important staple food crops. Genes encoding resistance have been identified in both the Xian and Geng subspecies genepools, and combining these within new cultivars represents a rational means of combating the pathogen. In this research, deeper allele mining was carried out on Pid2, Pid3, and Pid4 via each comprehensive FNP marker set in three panels consisting of 70 Xian and 58 Geng cultivars. Within Pid2, three functional and one non-functional alleles were identified; the former were only identified in Xian type entries. At Pid3, four functional and one non-functional alleles were identified; once again, all of the former were present in Xian type entries. However, the pattern of variation at Pid4 was rather different: here, the five functional alleles uncovered were dispersed across the Geng type germplasm. Among all the twelve candidate functional alleles, both Pid2-ZS and Pid3-ZS were predominant. Furthermore, the resistance functions of both Pid2-ZS and Pid3-ZS were assured by transformation test. Profiting from the merits of three comprehensive FNP marker sets, the study has validated all three members of the Pid family as having been strictly diverged into Xian and Geng subspecies: Pid2 and Pid3 were defined as Xian type resistance genes, and Pid4 as Geng type. Rather limited genotypes of the Pid family have been effective in both Xian and Geng rice groups, of which Pid2-ZS_Pid3-ZS has been central to the Chinese rice population.
Collapse
|
37
|
Yang L, Zhao M, Sha G, Sun Q, Gong Q, Yang Q, Xie K, Yuan M, Mortimer JC, Xie W, Wei T, Kang Z, Li G. The genome of the rice variety LTH provides insight into its universal susceptibility mechanism to worldwide rice blast fungal strains. Comput Struct Biotechnol J 2022; 20:1012-1026. [PMID: 35242291 PMCID: PMC8866493 DOI: 10.1016/j.csbj.2022.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022] Open
Abstract
The widely used rice variety Lijiangxintuanheigu (LTH) shows a universal susceptibility to thousands of Magnaporthe oryzae isolates, the causal agent of devastating rice blast, making LTH an ideal line in resistance (R) gene cloning. However, the underlying genetic mechanism of the universal susceptibility has not been fully revealed because of the lack of a high-quality genome. Here, we took a genomic approach together with experimental assays to investigate LTH’s universal susceptibility to rice blast. Using Nanopore long reads, we assembled a chromosome-level genome. Millions of genomic variants were detected by comparing LTH with 10 other rice varieties, of which large-effect variants could affect plant immunity. Gene family analyses show that the number of R genes and leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding genes decrease significantly in LTH. Rice blast resistance genes called Pi genes are either absent or disrupted by genomic variations. Additionally, residual R genes of LTH are likely under weak pathogen selection pressure, and other plant defense-related genes are weakly induced by rice blast. In contrast, the pattern-triggered immunity (PTI) of LTH is normal, as demonstrated by experimental assays. Therefore, we conclude that weak effector-trigger immunity (ETI)-mediated primarily by Pi genes but not PTI results in the universal susceptibility of LTH to rice blast. The attenuated ETI of LTH may be also associated with reduced numbers of R genes and LRR-RLKs, and minimally functional residual defense-related genes. Finally, we demonstrate the use of the LTH genome by rapid cloning of the Pi gene Piak from a resistant variety.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Sha
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiping Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuwen Gong
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qun Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jenny C. Mortimer
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author at: State Key Laboratory of Agricultural Microbiology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, Zhang Q. From Green Super Rice to green agriculture: Reaping the promise of functional genomics research. MOLECULAR PLANT 2022; 15:9-26. [PMID: 34883279 DOI: 10.1016/j.molp.2021.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge. Here, we review the concept and practices of Green Super Rice (GSR) that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture. The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources, functional gene discoveries, and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving, environmentally friendly crop production systems. We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agriculture and better nourish the world population.
Collapse
Affiliation(s)
- Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jauhar Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Shaochuan Zhou
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guangjun Ren
- Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huaan Xie
- Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Fasong Zhou
- China National Seed Group Co., Ltd, Beijing, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyong Ma
- China National Rice Research Institute, Hangzhou, China
| | | | - Zefu Li
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dazhou Chen
- Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | | | | | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Aiqing You
- Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Wei
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Susong Zhu
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Qiongyao Gu
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Shigui Li
- Sichuan Agricultural University, Chengdu, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changhua Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Peng Z, Li L, Wu S, Chen X, Shi Y, He Q, Shu F, Zhang W, Sun P, Deng H, Xing J. Frequencies and Variations of Magnaporthe oryzae Avirulence Genes in Hunan Province, China. PLANT DISEASE 2021; 105:3829-3834. [PMID: 34152208 DOI: 10.1094/pdis-01-21-0008-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice blast caused by Magnaporthe oryzae poses significant threaten to rice production. For breeding and deploying resistant rice varieties, it is essential to understand the frequencies and genetic variations of avirulence (AVR) genes in the pathogen populations. In this study, 444 isolates were collected from Hunan Province, China in 2012, 2015, and 2016, and their pathogenicity was evaluated by testing them on monogenic rice lines carrying resistance genes Pita, Pizt, Pikm, Pib, or Pi9. The frequencies of corresponding AVR genes AVRPizt, AVRPikm, AVRPib, AVRPi9, and AVRPita were characterized by amplification and sequencing these genes in the isolates. Both Pi9 and Pikm conferred resistance to >75% of the tested isolates, while Pizt, Pita, and Pib were effective against 55.63, 15.31, and 3.15% of the isolates, respectively. AVRPikm and AVRPi9 were detected in 90% of the isolates and AVRPita, AVRPizt, and AVRPib were present in 26.12, 66.22, and 79% of the isolates, respectively. Sequencing of AVR genes showed that most mutations were single nucleotide polymorphisms, transposon insertions, and insertion mutations. The variable sites of AVRPikm and AVRPita were mainly located in the coding sequence regions (CDS), and most were synonymous mutations. A 494-bp Pot2 transposon sequence insertion was found at the 87 bp position upstream of the start codon in AVRPib. Noteworthy, although no mutations were found in CDS of AVRPi9, a GC-rich inserted sequence of ∼200 bp was found at the 1,272 bp position upstream of the start codon in three virulent isolates. As AVRPikm and AVRPi9 were widely distributed with low genetic variation in the pathogen population, Pikm and Pi9 should be promising genes for breeding rice cultivars with blast resistance in Hunan.
Collapse
Affiliation(s)
- Zhirong Peng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Ling Li
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410082, China
| | - Shenghai Wu
- Huitong County Agricultural and Rural Bureau, Huaihua, Hunan 418300, China
| | - Xiaolin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinfeng Shi
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Qiang He
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Fu Shu
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Wuhan Zhang
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Pingyong Sun
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Huafeng Deng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Junjie Xing
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| |
Collapse
|
40
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
41
|
Gupta L, Vermani M, Kaur Ahluwalia S, Vijayaraghavan P. Molecular virulence determinants of Magnaporthe oryzae: disease pathogenesis and recent interventions for disease management in rice plant. Mycology 2021; 12:174-187. [PMID: 34552809 PMCID: PMC8451642 DOI: 10.1080/21501203.2020.1868594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Magnaporthe oryzae, causative agent of the rice blast disease, is a major concern for the loss in yield of rice crop across the globe. It is known for its characteristic melanised dome-shaped appressorium containing a dense melanin layer. The melanised layer is of considerable importance as it is required to generate turgor pressure for initiating peg formation, consequently rupturing the plant cuticle. Various virulence factors play an important role in the disease progression as well as pathogenesis of the fungus. Some of the proteins encoded by virulence genes are associated with signalling, secondary metabolism, protein deprivation, defence responses and conidiation. The purpose of this review is to describe various fungal virulence determinants and provide insights into the molecular mechanisms that are involved in progression of the disease. Besides, the recent molecular approaches being employed to combat the rice blast have also been elaborated.
Collapse
Affiliation(s)
- Lovely Gupta
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Maansi Vermani
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Simran Kaur Ahluwalia
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pooja Vijayaraghavan
- Anti-mycotic and Drug Susceptibility Lab, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
42
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
43
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
44
|
Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg. Mol Genet Genomics 2021; 296:939-952. [PMID: 33966102 DOI: 10.1007/s00438-021-01795-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Plant major resistance (R) genes are effective in detecting pathogen signal molecules and triggering robust defense responses. Investigating the natural variation in R genes will allow identification of the critical amino acid residues determining recognition specificity in R protein and the discovery of novel R alleles. The rice blast resistance gene Pike, comprising of two adjacent CC-NBS-LRR genes, namely, Pike-1 and Pike-2, confers broad-spectrum resistance to Magnaporthe oryzae. Here, we demonstrated that Pike-1 determined Pike-specific resistance through direct interaction with the pathogen signal molecule AvrPik. Analysis of natural variation in 79 Pike-1 variants in the Asian cultivated rice Oryza sativa and its wild relatives revealed that the CC and NBS regions, particularly the CC region of the Pike-1 protein were the most diversified. We also found that balancing selection had occurred in O. sativa and O. rufipogon to maintain the genetic diversity of the Pike-1 alleles. By analysis of amino acid sequences, we identified 40 Pike-1 variants in these rice germplasms. These variants were divided into three major groups that corresponded to their respective clades. A new Pike allele, designated Pikg, that differed from Pike by a single amino acid substitution (D229E) in the Pike-1 CC region of the Pike protein was identified from wild rice relatives. Pathogen assays of Pikg transgenic plants revealed a unique reaction pattern that was different from that of the previously identified Pike alleles, namely, Pik, Pikh, Pikm, Pikp, Piks and Pi1. These findings suggest that minor amino acid residues in Pike-1/Pikg-1 determine pathogen recognition specificity and plant resistance. As a new blast R gene derived from rice wild relatives, Pikg has potential applications in rice breeding.
Collapse
|
45
|
Wang W, Su J, Chen K, Yang J, Chen S, Wang C, Feng A, Wang Z, Wei X, Zhu X, Lu GD, Zhou B. Dynamics of the Rice Blast Fungal Population in the Field After Deployment of an Improved Rice Variety Containing Known Resistance Genes. PLANT DISEASE 2021; 105:919-928. [PMID: 32967563 DOI: 10.1094/pdis-06-20-1348-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. Management through the deployment of host resistance genes would be facilitated by understanding the dynamics of the pathogen's population in the field. Here, to investigate the mechanism underlying the breakdown of disease resistance, we conducted a six-year field experiment to monitor the evolution of M. oryzae populations in Qujiang from Guangdong. The new variety of Xin-Yin-Zhan (XYZ) carrying R genes Pi50 and Pib was developed using the susceptible elite variety, Ma-Ba-Yin-Zhan (MBYZ), as the recurrent line. Field trials of disease resistance assessment revealed that the disease indices of XYZ in 2012, 2013, 2016, and 2017 were 0.19, 0.39, 0.70, and 0.90, respectively, indicating that XYZ displayed a very rapid increase of disease severity in the field. To investigate the mechanism underlying the quick erosion of resistance of XYZ, we collected isolates from both XYZ and MBYZ for pathogenicity testing against six different isogenic lines. The isolates collected from XYZ showed a similar virulence spectrum across four different years whereas those from MBYZ showed increasing virulence to the Pi50 and Pib isogenic lines from 2012 to 2017. Molecular analysis of AvrPib in the isolates from MBYZ identified four different AvrPib haplotypes, i.e., AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, and avrPib-AP3, verified by sequencing. AvrPib-AP1-1 and AvrPib-AP1-2 are avirulent to Pib whereas avrPib-AP2 and avrPib-AP3 are virulent. Insertions of a Pot3 and an Mg-SINE were identified in avrPib-AP2 and avrPib-AP3, respectively. Two major lineages based on rep-PCR analysis were further deduced in the field population, implying that the field population is composed of genetically related isolates. Our data suggest that clonal propagation and quick dominance of virulent isolates against the previously resistant variety could be the major genetic events contributing to the loss of varietal resistance against rice blast in the field.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Ocean Science, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Wei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
46
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
48
|
Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Sci Rep 2021; 11:4786. [PMID: 33637778 PMCID: PMC7910543 DOI: 10.1038/s41598-021-83921-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Indigenous folk rice cultivars often possess remarkable but unrevealed potential in terms of nutritional attributes and biotic stress tolerance. The unique cooking qualities and blissful aroma of many of these landraces make it an attractive low-cost alternative to high priced Basmati rice. Sub-Himalayan Terai region is bestowed with great agrobiodiversity in traditional heirloom rice cultivars. In the present study, ninety-nine folk rice cultivars from these regions were collected, purified and characterized for morphological and yield traits. Based on traditional importance and presence of aroma, thirty-five genotypes were selected and analyzed for genetic diversity using micro-satellite marker system. The genotypes were found to be genetically distinct and of high nutritive value. The resistant starch content, amylose content, glycemic index and antioxidant potential of these genotypes represented wide variability and 'Kataribhog', 'Sadanunia', 'Chakhao' etc. were identified as promising genotypes in terms of different nutritional attributes. These cultivars were screened further for resistance against blast disease in field trials and cultivars like 'Sadanunia', 'T4M-3-5', 'Chakhao Sampark' were found to be highly resistant to the blast disease whereas 'Kalonunia', 'Gobindabhog', 'Konkanijoha' were found to be highly susceptible. Principal Component analysis divided the genotypes in distinct groups for nutritional potential and blast tolerance. The resistant and susceptible genotypes were screened for the presence of the blast resistant pi genes and association analysis was performed with disease tolerance. Finally, a logistic model based on phenotypic traits for prediction of the blast susceptibility of the genotypes is proposed with more than 80% accuracy.
Collapse
|
49
|
Maidment JHR, Franceschetti M, Maqbool A, Saitoh H, Jantasuriyarat C, Kamoun S, Terauchi R, Banfield MJ. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. J Biol Chem 2021; 296:100371. [PMID: 33548226 PMCID: PMC7961100 DOI: 10.1016/j.jbc.2021.100371] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.
Collapse
Affiliation(s)
- Josephine H R Maidment
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chatchawan Jantasuriyarat
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK; Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University, Bangkok, Thailand
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan; Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
50
|
Khanna A, Ellur RK, Gopala Krishnan S, Vinod KK, Bhowmick PK, Nagarajan M, Haritha B, Singh AK. Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|