1
|
Pečenková T, Potocký M, Stegmann M. More than meets the eye: knowns and unknowns of the trafficking of small secreted proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3713-3730. [PMID: 38693754 DOI: 10.1093/jxb/erae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Small proteins represent a significant portion of the cargo transported through plant secretory pathways, playing crucial roles in developmental processes, fertilization, and responses to environmental stresses. Despite the importance of small secreted proteins, substantial knowledge gaps persist regarding the regulatory mechanisms governing their trafficking along the secretory pathway, and their ultimate localization or destination. To address these gaps, we conducted a comprehensive literature review, focusing particularly on trafficking and localization of Arabidopsis small secreted proteins with potential biochemical and/or signaling roles in the extracellular space, typically those within the size range of 101-200 amino acids. Our investigation reveals that while at least six members of the 21 mentioned families have a confirmed extracellular localization, eight exhibit intracellular localization, including cytoplasmic, nuclear, and chloroplastic locations, despite the presence of N-terminal signal peptides. Further investigation into the trafficking and secretion mechanisms of small protein cargo could not only deepen our understanding of plant cell biology and physiology but also provide a foundation for genetic manipulation strategies leading to more efficient plant cultivation.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Martin Stegmann
- Technical University Munich, School of Life Sciences, Phytopathology, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
2
|
Nguyen NN, Lamotte O, Alsulaiman M, Ruffel S, Krouk G, Berger N, Demolombe V, Nespoulous C, Dang TMN, Aimé S, Berthomieu P, Dubos C, Wendehenne D, Vile D, Gosti F. Reduction in PLANT DEFENSIN 1 expression in Arabidopsis thaliana results in increased resistance to pathogens and zinc toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5374-5393. [PMID: 37326591 DOI: 10.1093/jxb/erad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.
Collapse
Affiliation(s)
- Ngoc Nga Nguyen
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Olivier Lamotte
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Mohanad Alsulaiman
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sandrine Ruffel
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Gabriel Krouk
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Nathalie Berger
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Vincent Demolombe
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Claude Nespoulous
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Thi Minh Nguyet Dang
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sébastien Aimé
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Pierre Berthomieu
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Christian Dubos
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Françoise Gosti
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| |
Collapse
|
3
|
Morales AE, Soto N, Delgado C, Hernández Y, Carrillo L, Ferrero C, Enríquez GA. Expression of Mn-sod, PAL1, aos1 and HPL genes in soybean plants overexpressing the NmDef02 defensin. Transgenic Res 2023; 32:223-233. [PMID: 37131050 DOI: 10.1007/s11248-023-00350-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Plant defensins are a potential tool in crop improvement programs through biotechnology. Their antifungal action makes them attractive molecules for the production of transgenic plants. Information is currently lacking on what happens to the expression of defense genes in transgenic plants that overexpress a defensin. Here we show the relative expression of four defense-related genes: Mn-sod, PAL1, aos1 and HPL evaluated in two transgenic soybean events (Def1 and Def17) constitutively expressing the NmDef02 defensin gene from Nicotiana megalosiphon. The expression of these defense genes showed a differential profile in the transgenic events, with the increased expression of the aos1 gene and the repression of the Mn-sod gene in both events, when compared to the non-transgenic control. Furthermore, the expression of the PAL1 gene only increased in the Def17 event. The results indicate that although there were some changes in the expression of defense genes in transgenic plants overexpressing the defensin NmDef02; the morphoagronomic parameters evaluated were similar to the non-transgenic control. Understanding the molecular changes that occur in these transgenic plants could be of interest in the short, medium and long term.
Collapse
Affiliation(s)
- Alejandro E Morales
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Natacha Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | - Celia Delgado
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Yuniet Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Leonardo Carrillo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Camilo Ferrero
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| | - Gil A Enríquez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba
| |
Collapse
|
4
|
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. Analysis of a gene family for PDF-like peptides from Arabidopsis. Sci Rep 2021; 11:18948. [PMID: 34556705 PMCID: PMC8460643 DOI: 10.1038/s41598-021-98175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.
Collapse
Affiliation(s)
- Reza Omidvar
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Nadine Vosseler
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Amjad Abbas
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Birgit Gutmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- RIVIERA Pharma and Cosmetics GmbH, Holzhackerstraße 1, Tulln, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
5
|
Azmi S, Hussain MK. Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-020-00093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Antimicrobial peptides are very primitive innate defense molecules of almost all organisms, from microbes to mammalians and vascular seed-bearing plants. Antimicrobial peptides of plants categorized into cysteine-rich peptides (CRPs) and others and most of the antimicrobial peptides belong to CRPs group. These peptides reported showing the great extent of protecting property against bacteria, fungi, viruses, insect, nematode, and another kind of microbes. To develop a resistant plant against pathogenic fungi, there have been several studies executed to understand the efficiency of transgenicity of these antimicrobial peptides.
Main text
Apart from the intrinsic property of the higher organism for identifying and activating microbial attack defense device, it also involves innate defense mechanism and molecules. In the current review article, apart from the structural and functional characterization of peptides defensin and thionin, we have attempted to provide a succinct overview of the transgenic development of these defense peptides, that are expressed in a constitutive and or over-expressive manner when biotic and abiotic stress inflicted. Transgenic of different peptides show different competence in plants. Most of the transgenic studies made for defensin and thionin revealed the effective transgenic capacity of these peptides.
Conclusion
There have been several studies reported successful development of transgenic plants based on peptides defensin and thionin and observed diverse level of resistance-conferring potency in different plants against phytopathogenic fungi. But due to long regulatory process, there has not been marketed any antimicrobial peptides based transgenic plants yet. However, success report state that possibly in near future transgenic plants of AMPs would be released with devoid of harmful effect, with good efficiency, reproducibility, stability, and least production cost.
Collapse
|
6
|
|
7
|
Almaghrabi B, Ali MA, Zahoor A, Shah KH, Bohlmann H. Arabidopsis thionin-like genes are involved in resistance against the beet-cyst nematode (Heterodera schachtii). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:55-67. [PMID: 31082659 DOI: 10.1016/j.plaphy.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Plants express various antimicrobial peptides including thionins to protect themselves against pathogens. It was recently found that, in addition to four thionin genes, Arabidopsis contains 67 thionin-like (ThiL) genes including six pseudogenes. It is known that thionins have antimicrobial activity and are part of the plant defense system, however, nothing is known about ThiL genes. In this study, we present a bioinformatic analysis of the (ThiL) gene family in Arabidopsis. We identified 15 different motifs which positioned the ThiL peptides in four groups. A comparison of amino acid sequences showed that the ThiL peptides are actually more similar to the acidic domain of thionin proproteins than to the thionin domain. We selected 10 ThiL genes to study the expression and possible function in the Arabidopsis plant. RT-PCR and promoter:GUS fusions showed that most genes were expressed at a very low level but in several organs and at different developmental stages. Some genes were also expressed in syncytia induced by the beet cyst nematode Heterodera schachti in roots while others were downregulated in syncytia. Some overexpression lines supported lower number of nematodes that developed on the roots after inoculation. Two of the genes resulted in a strong hypersensitive response when infiltrated into leaves of Nicotiana benthamiana. These results indicate that ThiL genes might be involved in the response to biotic stress. ThiL genes have been expanded in the Brassicales and specifically the Brassicaceae. The most extreme example is the CRP2460 subfamily that contains 28 very closely related genes from Arabidopsis which are mostly the result of tandem duplications.
Collapse
Affiliation(s)
- Bachar Almaghrabi
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria; Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan; Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Kausar Hussain Shah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
8
|
Mir Drikvand R, Sohrabi SM, Samiei K. Molecular cloning and characterization of six defensin genes from lentil plant ( Lens culinaris L.). 3 Biotech 2019; 9:104. [PMID: 30800615 PMCID: PMC6387662 DOI: 10.1007/s13205-019-1617-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Six full-length gene and cDNA sequences of defensin were identified from Lens culinaris L. plant. The identified genes and cDNAs were different in length and their coding sequences contained Knot1 functional domain. Phylogenetic analysis classified the identified defensins into two subfamilies. All defensin genes contained only one intron and had extracellular signal peptides. Secondary structures of identified defensins were completely composed of alpha helix and beta strand. Presence of conserved Cys amino acids and disulfide bridges, interaction with defense and signaling proteins and antimicrobial activity were other common features of these peptides. The identified defensins displayed differential expression pattern in the various tissues. The highest expression level of defensins was observed in seed, pod, and root tissues. Defensin 4 was significantly expressed in all examined tissues, whereas the other defensins were only expressed in some tissues. Also, in the fungal and wounding treatments, lentil defensins showed different expression pattern. Defensin 1 was up-regulated in both fungal and wounding treatments. Defensin 4 showed decreased expression level in both fungal and wounding treatments. Defensins 2 and 6 were up-regulated in wounding and fungal treatments, respectively. In this study, for the first time, six defensin genes were isolated and characterized from lentil. Our results highlighted the role of defensins in lentil plant that can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Agronomy and Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Seyyed Mohsen Sohrabi
- Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Agriculture, Kangavar Branch, Islamic Azad University, Kangavar, Iran
| |
Collapse
|
9
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Sci Rep 2017; 7:9175. [PMID: 28835670 PMCID: PMC5569111 DOI: 10.1038/s41598-017-08497-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Plant defensins (PDFs) are cysteine-rich peptides that have a range of biological functions, including defence against fungal pathogens. However, little is known about their role in defence against bacteria. In this study, we showed that the protein encoded by ARABIDOPSIS THALIANA PLANT DEFENSIN TYPE 1.1 (AtPDF1.1) is a secreted protein that can chelate apoplastic iron. Transcripts of AtPDF1.1 were induced in both systemic non-infected leaves of Arabidopsis thaliana plants and those infected with the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc). The expression levels of AtPDF1.1 with correct subcellular localization in transgenic A. thaliana plants were positively correlated with tolerance to Pcc, suggesting its involvement in the defence against this bacterium. Expression analysis of genes associated with iron homeostasis/deficiency and hormone signalling indicated that the increased sequestration of iron by apoplastic AtPDF1.1 overexpression perturbs iron homeostasis in leaves and consequently activates an iron-deficiency-mediated response in roots via the ethylene signalling pathway. This in turn triggers ethylene-mediated signalling in systemic leaves, which is involved in suppressing the infection of necrotrophic pathogens. These findings provide new insight into the key functions of plant defensins in limiting the infection by the necrotrophic bacterium Pcc via an iron-deficiency-mediated defence response.
Collapse
|
11
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Sarkar P, Jana J, Chatterjee S, Sikdar SR. Functional characterization of Rorippa indica defensin and its efficacy against Lipaphis erysimi. SPRINGERPLUS 2016; 5:511. [PMID: 27186475 PMCID: PMC4842206 DOI: 10.1186/s40064-016-2144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2016] [Indexed: 11/27/2022]
Abstract
Rorippa indica, a wild crucifer, has been previously reported as the first identified plant in the germplasm of Brassicaceae known to be tolerant towards the mustard aphid Lipaphis erysimi Kaltenbach. We herein report the full-length cloning, expression, purification and characterization of a novel R. indica defensin (RiD) and its efficacy against L. erysimi. Structural analysis through homology modeling of RiD showed longer α-helix and 3rd β-sheet as compared to Brassica juncea defensin (BjD). Recombinant RiD and BjD was purified for studying its efficacy against L. erysimi. In the artificial diet based insect bioassay, the LC50 value of RiD against L. erysimi was found to be 9.099 ± 0.621 µg/mL which is far lower than that of BjD (43.51 ± 0.526 µg/mL). This indicates the possibility of RiD having different interacting partner and having better efficacy against L. erysimi over BjD. In the transient localization studies, RiD signal peptide directed the RiD: yellow fluorescent protein (YFP) fusion protein to the apoplastic regions which indicates that it might play a very important role in inhibiting nutrient uptake by aphids which follow mainly extracellular route to pierce through the cells. Hence, the present study has a significant implication for the future pest management program of B. juncea through the development of aphid tolerant transgenic plants.
Collapse
Affiliation(s)
- Poulami Sarkar
- />Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054 India
| | - Jagannath Jana
- />Department of Biophysics, Centenary Campus, Bose Institute, Kolkata, 700054 India
| | | | - Samir Ranjan Sikdar
- />Division of Plant Biology, Centenary Campus, Bose Institute, Kolkata, 700054 India
| |
Collapse
|
13
|
Dias RDO, Franco OL. Cysteine-stabilized αβ defensins: From a common fold to antibacterial activity. Peptides 2015; 72:64-72. [PMID: 25929172 DOI: 10.1016/j.peptides.2015.04.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) seem to be promising alternatives to common antibiotics, which are facing increasing bacterial resistance. Among them are the cysteine-stabilized αβ defensins. These peptides are small, with a length ranging from 34 to 54 amino acid residues, cysteine-rich and extremely stable, normally composed of an α-helix and three β-strands stabilized by three or four disulfide bonds and commonly found in several organisms. Moreover, animal and plant CSαβ defensins present different specificities, the first being mainly active against bacteria and the second against fungi. The role of the CSαβ-motif remains unknown, but a common antibacterial mechanism of action, based on the inhibition of the cell-wall formation, has already been observed in some fungal and invertebrate defensins. In this context, the present work aims to group the data about CSαβ defensins, highlighting their evolution, conservation, structural characteristics, antibacterial activity and biotechnological perspectives.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- S-Inova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- S-Inova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70719-100 Brasília, DF, Brazil.
| |
Collapse
|
14
|
Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P, Marquès L. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen 2015; 4:409-22. [PMID: 25755096 PMCID: PMC4475384 DOI: 10.1002/mbo3.248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described. Usually, a new biological role is reported along with the discovery of a new defensin and it is thus not clear if this multifunctionality exists at the family level or at the peptide level. We previously showed that the plant defensin AhPDF1.1b exhibits an unexpected role by conferring zinc tolerance to yeast and plant cells. In this paper, we further explored this activity using different yeast genetic backgrounds: especially the zrc1 mutant and an UPRE-GFP reporter yeast strain. We showed that AhPDF1.1b interferes with adaptive cell response in the endoplasmic reticulum to confer cellular zinc tolerance. We thus highlighted that, depending on its cellular localization, AhPDF1.1b exerts quite separate activities: when it is applied exogenously, it is a toxin against fungal and also root cells, but when it is expressed in yeast cells, it is a peptide that modulates the cellular adaptive response to zinc overload.
Collapse
Affiliation(s)
- Oriane Mith
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Asma Benhamdi
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Teddy Castillo
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Muriel Bergé
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Véronique Perrier
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Maeva Subileau
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Françoise Gosti
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Pierre Berthomieu
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Laurence Marquès
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| |
Collapse
|
15
|
Zargar SM, Fujiwara M, Inaba S, Kobayashi M, Kurata R, Ogata Y, Fukao Y. Correlation analysis of proteins responsive to Zn, Mn, or Fe deficiency in Arabidopsis roots based on iTRAQ analysis. PLANT CELL REPORTS 2015; 34:157-66. [PMID: 25366567 DOI: 10.1007/s00299-014-1696-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/21/2014] [Accepted: 10/07/2014] [Indexed: 05/25/2023]
Abstract
For discovering the functional correlation between the identified and quantified proteins by iTRAQ analysis, here we propose a correlation analysis method with cosine correlation coefficients as a powerful tool. iTRAQ analysis is a quantitative proteomics approach that enables identification and quantification of a large number of proteins. In order to obtain proteins responsive to Zn, Mn, or Fe mineral deficiency, we conducted iTRAQ analysis using a microsomal fraction of protein extractions from Arabidopsis root tissues. We identified and quantified 730 common proteins in three biological replicates with less than 1 % false discovery rate. To determine the role of these proteins in tolerating mineral deficiencies and their relation to each other, we calculated cosine correlation coefficients and represented the outcomes on a correlation map for visual understanding of functional relations among the identified proteins. Functionally similar proteins were gathered into the same clusters. Interestingly, a cluster of proteins (FRO2, IRT1, AHA2, PDR9/ABCG37, and GLP5) highly responsive to Fe deficiency was identified, which included both known and unknown novel proteins involved in tolerating Fe deficiency. We propose that the correlation analysis with the cosine correlation coefficients is a powerful method for finding important proteins of interest to several biological processes through comprehensive data sets.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Plant Global Education Project Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, 8916-5, Ikoma, 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Seo HH, Park S, Park S, Oh BJ, Back K, Han O, Kim JI, Kim YS. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One 2014; 9:e97936. [PMID: 24848280 PMCID: PMC4029827 DOI: 10.1371/journal.pone.0097936] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/27/2014] [Indexed: 01/10/2023] Open
Abstract
Functional characterization of a defensin, J1-1, was conducted to evaluate its biotechnological potentiality in transgenic pepper plants against the causal agent of anthracnose disease, Colletotrichum gloeosporioides. To determine antifungal activity, J1-1 recombinant protein was generated and tested for the activity against C. gloeosporioides, resulting in 50% inhibition of fungal growth at a protein concentration of 0.1 mg·mL−1. To develop transgenic pepper plants resistant to anthracnose disease, J1-1 cDNA under the control of 35S promoter was introduced into pepper via Agrobacterium-mediated genetic transformation method. Southern and Northern blot analyses confirmed that a single copy of the transgene in selected transgenic plants was normally expressed and also stably transmitted to subsequent generations. The insertion of T-DNA was further analyzed in three independent homozygous lines using inverse PCR, and confirmed the integration of transgene in non-coding region of genomic DNA. Immunoblot results showed that the level of J1-1 proteins, which was not normally accumulated in unripe fruits, accumulated high in transgenic plants but appeared to differ among transgenic lines. Moreover, the expression of jasmonic acid-biosynthetic genes and pathogenesis-related genes were up-regulated in the transgenic lines, which is co-related with the resistance of J1-1 transgenic plants to anthracnose disease. Consequently, the constitutive expression of J1-1 in transgenic pepper plants provided strong resistance to the anthracnose fungus that was associated with highly reduced lesion formation and fungal colonization. These results implied the significance of the antifungal protein, J1-1, as a useful agronomic trait to control fungal disease.
Collapse
Affiliation(s)
- Hyo-Hyoun Seo
- Medicinal Nanomaterial Institute, BIO-FD&C Co. Ltd., Incheon, Korea
| | - Sangkyu Park
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Soomin Park
- Experiment Research Institute, National Agricultural Products Quality Management Service, Seoul, Korea
| | - Byung-Jun Oh
- Biological Control Center, Jeonnam Bioindustry Foundation, JeollaNamdo, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Oksoo Han
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Young Soon Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Korea; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| |
Collapse
|
17
|
Shahzad Z, Ranwez V, Fizames C, Marquès L, Le Martret B, Alassimone J, Godé C, Lacombe E, Castillo T, Saumitou-Laprade P, Berthomieu P, Gosti F. Plant Defensin type 1 (PDF1): protein promiscuity and expression variation within the Arabidopsis genus shed light on zinc tolerance acquisition in Arabidopsis halleri. THE NEW PHYTOLOGIST 2013; 200:820-833. [PMID: 23865749 DOI: 10.1111/nph.12396] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/28/2013] [Indexed: 05/11/2023]
Abstract
Plant defensins are recognized for their antifungal properties. However, a few type 1 defensins (PDF1s) were identified for their cellular zinc (Zn) tolerance properties after a study of the metal extremophile Arabidopsis halleri. In order to investigate whether different paralogues would display specialized functions, the A. halleri PDF1 family was characterized at the functional and genomic levels. Eleven PDF1s were isolated from A. halleri. Their ability to provide Zn tolerance in yeast cells, their activity against Fusarium oxysporum f. sp. melonii, and their level of expression in planta were compared with those of the seven A. thaliana PDF1s. The genomic organization of the PDF1 family was comparatively analysed within the Arabidopsis genus. AhPDF1s and AtPDF1s were able to confer Zn tolerance and AhPDF1s also displayed antifungal activity. PDF1 transcripts were constitutively more abundant in A. halleri than in A. thaliana. Within the Arabidopsis genus, the PDF1 family is evolutionarily dynamic, in terms of gain and loss of gene copy. Arabidopsis halleri PDF1s display no superior abilities to provide Zn tolerance. A constitutive increase in AhPDF1 transcript accumulation is proposed to be an evolutionary innovation co-opting the promiscuous PDF1 protein for its contribution to Zn tolerance in A. halleri.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Vincent Ranwez
- Montpellier SupAgro, UMR AGAP, F-34060, Montpellier, France
| | - Cécile Fizames
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Laurence Marquès
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Bénédicte Le Martret
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Julien Alassimone
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Cécile Godé
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Eric Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Teddy Castillo
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8016, Université des Sciences et Technologies de Lille, Lille1, F-59655, Villeneuve d'Ascq Cedex, France
| | - Pierre Berthomieu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| | - Françoise Gosti
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche Montpellier, SupAgro/CNRS/INRA/Université Montpellier II, 2 Place Viala, F-34060, Montpellier Cedex 1, France
| |
Collapse
|
18
|
Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A. Plant antimicrobial peptides. Folia Microbiol (Praha) 2013; 59:181-96. [PMID: 24092498 PMCID: PMC3971460 DOI: 10.1007/s12223-013-0280-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Plant antimicrobial peptides (AMPs) are a component of barrier defense system of plants. They have been isolated from roots, seeds, flowers, stems, and leaves of a wide variety of species and have activities towards phytopathogens, as well as against bacteria pathogenic to humans. Thus, plant AMPs are considered as promising antibiotic compounds with important biotechnological applications. Plant AMPs are grouped into several families and share general features such as positive charge, the presence of disulfide bonds (which stabilize the structure), and the mechanism of action targeting outer membrane structures.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
19
|
Ishikawa K, Maejima K, Komatsu K, Netsu O, Keima T, Shiraishi T, Okano Y, Hashimoto M, Yamaji Y, Namba S. Fig mosaic emaravirus p4 protein is involved in cell-to-cell movement. J Gen Virol 2013; 94:682-686. [PMID: 23152372 DOI: 10.1099/vir.0.047860-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Fig mosaic virus (FMV), a member of the newly formed genus Emaravirus, is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Shiraishi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukari Okano
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Hegedüs N, Marx F. Antifungal proteins: More than antimicrobials? FUNGAL BIOL REV 2013; 26:132-145. [PMID: 23412850 PMCID: PMC3569713 DOI: 10.1016/j.fbr.2012.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023]
Abstract
Antimicrobial proteins (AMPs) are widely distributed in nature. In higher eukaryotes, AMPs provide the host with an important defence mechanism against invading pathogens. AMPs of lower eukaryotes and prokaryotes may support successful competition for nutrients with other microorganisms of the same ecological niche. AMPs show a vast variety in structure, function, antimicrobial spectrum and mechanism of action. Most interestingly, there is growing evidence that AMPs also fulfil important biological functions other than antimicrobial activity. The present review focuses on the mechanistic function of small, cationic, cysteine-rich AMPs of mammals, insects, plants and fungi with antifungal activity and specifically aims at summarizing current knowledge concerning additional biological properties which opens novel aspects for their future use in medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
| | - Florentine Marx
- Corresponding author. Tel.: +43 512 9003 70207; fax: +43 512 9003 73100.
| |
Collapse
|
21
|
De Coninck B, Cammue BP, Thevissen K. Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Sagaram US, Kaur J, Shah D. Antifungal Plant Defensins: Structure-Activity Relationships, Modes of Action, and Biotech Applications. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jagdeep Kaur
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| | - Dilip Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, U.S.A
| |
Collapse
|
23
|
Marquès L, Oomen RJFJ. On the way to unravel zinc hyperaccumulation in plants: a mini review. Metallomics 2011; 3:1265-70. [DOI: 10.1039/c1mt00117e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|