1
|
Zemniaçak ÂB, Ribeiro RT, Pinheiro CV, de Azevedo Cunha S, Tavares TQ, Castro ET, Leipnitz G, Wajner M, Amaral AU. In Vivo Intracerebral Administration of α-Ketoisocaproic Acid to Neonate Rats Disrupts Brain Redox Homeostasis and Promotes Neuronal Death, Glial Reactivity, and Myelination Injury. Mol Neurobiol 2024; 61:2496-2513. [PMID: 37910283 DOI: 10.1007/s12035-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.
Collapse
Affiliation(s)
- Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sâmela de Azevedo Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailine Quevedo Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
2
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
3
|
Ananieva EA, Powell JD, Hutson SM. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond. Adv Nutr 2016; 7:798S-805S. [PMID: 27422517 PMCID: PMC4942864 DOI: 10.3945/an.115.011221] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA;
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD; and
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
4
|
Mishur RJ, Khan M, Munkácsy E, Sharma L, Bokov A, Beam H, Radetskaya O, Borror M, Lane R, Bai Y, Rea SL. Mitochondrial metabolites extend lifespan. Aging Cell 2016; 15:336-48. [PMID: 26729005 PMCID: PMC4783347 DOI: 10.1111/acel.12439] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/26/2022] Open
Abstract
Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long-lived respiratory mutants generate elevated amounts of α-ketoacids. These compounds are structurally related to α-ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild-type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia-inducible factor-1 (HIF-1). We also find that an α-ketoglutarate mimetic, 2,4-pyridinedicarboxylic acid (2,4-PDA), is alone sufficient to increase the lifespan of wild-type worms and this effect is blocked by removal of HIF-1. HIF-1 is constitutively active in isp-1(qm150) Mit mutants, and accordingly, 2,4-PDA does not further increase their lifespan. Incubation of mouse 3T3-L1 fibroblasts with life-prolonging α-ketoacids also results in HIF-1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.
Collapse
Affiliation(s)
- Robert J. Mishur
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Maruf Khan
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Erin Munkácsy
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Lokendra Sharma
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Biotechnology ProgrammeCenter for Biological SciencesCentral University of South BiharPatna800014India
| | - Alex Bokov
- Department of Epidemiology and BiostatisticsUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Haley Beam
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Oxana Radetskaya
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Megan Borror
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Rebecca Lane
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Yidong Bai
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
5
|
Burrage LC, Nagamani SCS, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet 2014; 23:R1-8. [PMID: 24651065 DOI: 10.1093/hmg/ddu123] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Branched-chain amino acid (BCAA) metabolism plays a central role in the pathophysiology of both rare inborn errors of metabolism and the more common multifactorial diseases. Although deficiency of the branched-chain ketoacid dehydrogenase (BCKDC) and associated elevations in the BCAAs and their ketoacids have been recognized as the cause of maple syrup urine disease (MSUD) for decades, treatment options for this disorder have been limited to dietary interventions. In recent years, the discovery of improved leucine tolerance after liver transplantation has resulted in a new therapeutic strategy for this disorder. Likewise, targeting the regulation of the BCKDC activity may be an alternative potential treatment strategy for MSUD. The regulation of the BCKDC by the branched-chain ketoacid dehydrogenase kinase has also been implicated in a new inborn error of metabolism characterized by autism, intellectual disability and seizures. Finally, there is a growing body of literature implicating BCAA metabolism in more common disorders such as the metabolic syndrome, cancer and hepatic disease. This review surveys the knowledge acquired on the topic over the past 50 years and focuses on recent developments in the field of BCAA metabolism.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| |
Collapse
|
6
|
Zinnanti WJ, Lazovic J. Interrupting the mechanisms of brain injury in a model of maple syrup urine disease encephalopathy. J Inherit Metab Dis 2012; 35:71-9. [PMID: 21541722 DOI: 10.1007/s10545-011-9333-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 12/26/2022]
Abstract
Maple syrup urine disease (MSUD) was first recognized as an inherited lethal encephalopathy beginning in the first week of life and associated with an unusual odor in the urine of affected children. It was later confirmed as a deficiency of branched-chain keto acid dehydrogenase (BCKDH), which is the second step in branched-chain amino acid (BCAA) breakdown. MSUD is characterized by BCAA and branched-chain keto acid (BCKA) accumulation. BCAAs are essential amino acids and powerful metabolic signals with severe consequences of both deprivation and accumulation. Treatment requires life-long dietary restriction and monitoring of BCAAs. However, despite excellent compliance, children commonly suffer metabolic decompensation during intercurrent illness resulting in life-threatening cerebral edema and dysmyelination. The mechanisms underlying brain injury have been poorly understood. Recent studies using newly developed mouse models of both classic and intermediate MSUD have yielded insight into the consequences of rapid BCAA accumulation. Additionally, these models have been used to test preliminary treatments aimed at competing with blood-brain barrier transport of BCAA using norleucine. Assessment of biochemical changes with and without treatment suggests different roles for BCAA and BCKA in the mechanism of brain injury.
Collapse
Affiliation(s)
- William J Zinnanti
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA 94305, USA.
| | | |
Collapse
|
7
|
Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 2009; 132:903-18. [PMID: 19293241 PMCID: PMC2668944 DOI: 10.1093/brain/awp024] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branched-chain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress.
Collapse
Affiliation(s)
- William J Zinnanti
- Penn State College of Medicine, Box 149, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shestopalov AI, Kristal BS. Branched chain keto-acids exert biphasic effects on alpha-ketoglutarate-stimulated respiration in intact rat liver mitochondria. Neurochem Res 2007; 32:947-51. [PMID: 17342410 DOI: 10.1007/s11064-007-9291-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Pathophysiological concentrations of branched chain keto-acids (BCKAs), such as those that occur in maple syrup urine disease, inhibit oxygen consumption in liver homogenates and brain slices and the enzymatic activity of alpha-ketoglutarate- and pyruvate dehydrogenase complexes. Consistent with previous work, studies in isolated rat liver mitochondria indicate that three BCKAs, alpha-ketoisocaproate (KIC), alpha-keto-beta-methylvalerate (KMV) and alpha-ketoisovalerate (KIV), preferentially inhibited State 3 respiration supported by alpha-ketoglutarate relative to succinate or glutamate/malate (KIC, >100-fold; KMV, >10-fold; KIV, >4-fold). KIC was also the most potent inhibitor (K(i,app) 13 +/- 2 muM). Surprisingly, sub-inhibitory concentrations of KIC and KMV can markedly stimulate State 3 respiration of mitochondria utilizing alpha-ketoglutarate and glutamate/malate, but not succinate. The data suggest that physiological concentrations of the BCKAs may modulate mitochondrial respiration.
Collapse
Affiliation(s)
- Alexander I Shestopalov
- Dementia Research Service, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | |
Collapse
|
9
|
Land JM, Mowbray J, Clark JB. CONTROL OF PYRUVATE AND β-HYDROXYBUTYRATE UTILIZATION IN RAT BRAIN MITOCHONDRIA AND ITS RELEVANCE TO PHENYLKETONURIA AND MAPLE SYRUP URINE DISEASE. J Neurochem 2006. [DOI: 10.1111/j.1471-4159.1976.tb04457.x-i1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Funchal C, de Lima Pelaez P, Loureiro SO, Vivian L, Dall Bello Pessutto F, de Almeida LMV, Tchernin Wofchuk S, Wajner M, Pessoa Pureur R. alpha-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:267-76. [PMID: 12480141 DOI: 10.1016/s0165-3806(02)00578-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we investigated the effects of alpha-ketoisocaproic acid (KIC), the main keto acid accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of rats during development. KIC decreased the in vitro incorporation of 32P into the IF proteins studied up to day 12, had no effect on day 15, and increased this phosphorylation in cortical slices of 17- and 21-day-old rats. A similar effect on IF phosphorylation was achieved along development by incubating cortical slices with glutamate. Furthermore, the altered phosphorylation caused by the presence of KIC in the incubation medium was mediated by the ionotropic receptors NMDA, AMPA and kainate up to day 12 and by NMDA and AMPA in tissue slices from 17- and 21-day-old rats. The results suggest that alterations of IF phosphorylation may be associated with the neuropathology of MSUD.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Glial Fibrillary Acidic Protein/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Intermediate Filament Proteins/drug effects
- Intermediate Filament Proteins/metabolism
- Intermediate Filaments/drug effects
- Intermediate Filaments/metabolism
- Keto Acids/metabolism
- Keto Acids/pharmacology
- Maple Syrup Urine Disease/metabolism
- Maple Syrup Urine Disease/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Phosphorylation/drug effects
- Rats
- Rats, Wistar
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Vimentin/drug effects
- Vimentin/metabolism
Collapse
Affiliation(s)
- Cláudia Funchal
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rocchiccioli F, Leroux JP, Cartier P. Quantitation of 2-ketoacids in biological fluids by gas chromatography chemical ionization mass spectrometry of O-trimethylsilyl-quinoxalinol derivatives. BIOMEDICAL MASS SPECTROMETRY 1981; 8:160-4. [PMID: 7236864 DOI: 10.1002/bms.1200080406] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A very sensitive and specific method of 2-ketoacid determination in various biological fluids using gas chromatography chemical ionization mass spectrometry of O-trimethylsilyl-quinoxalinol derivatives is described. After derivatization with o-phenylenediamine in acidic medium and extraction, the 2-ketoacids, and the 2-ketovaleric acid used as internal standard, are silylated and resolved on a capillary column and their concentrations automatically determined by monitoring the m/z values corresponding to their respective protonated molecular ions, using ammonia as reactant gas. The detection limit is below 50 ng ml-1 of each 2-ketoacid. The recoveries of 2-ketoacids from urine and plasma were between 97 and 104%. Problems encountered with interfering substances were tested for and discussed. This method has been applied successfully to various metabolic disorders characterized by an accumulation of aliphatic 2-ketoacids. The metabolic interrelationship of branched chain 2-ketoacids and other compounds, especially pyruvate, is discussed.
Collapse
|
12
|
Effects of branched chain alpha-ketoacids on the metabolism of isolated rat liver cells. III. Interactions with pyruvate dehydrogenase. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)86189-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Patel MS, Owen OE. The metabolism of leucine by developing rat brain: effect of leucine and 2-oxo-4-methylvalerate on lipid synthesis from glucose and ketone bodies. J Neurochem 1978; 30:775-82. [PMID: 650218 DOI: 10.1111/j.1471-4159.1978.tb10784.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Gibson GE, Blass JP. Inhibition of acetylcholine synthesis and of carbohydrate utilization by maple-syrup-urine disease metabolites. J Neurochem 1976; 26:1073-8. [PMID: 945329 DOI: 10.1111/j.1471-4159.1976.tb06988.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Land JM, Mowbray J, Clark JB. Control of pyruvate and beta-hydroxybutyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J Neurochem 1976; 26:823-30. [PMID: 987160 DOI: 10.1111/j.1471-4159.1976.tb04458.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Halestrap AP, Brand MD, Denton RM. Inhibition of mitochondrial pyruvate transport by phenylpyruvate and alpha-ketoisocaproate. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 367:102-8. [PMID: 4418160 DOI: 10.1016/0005-2736(74)90140-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Patel MS. Inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in developing rat and human brain. Biochem J 1974; 144:91-7. [PMID: 4462577 PMCID: PMC1168468 DOI: 10.1042/bj1440091] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.
Collapse
|
18
|
Clark JB, Land JM. Differential effects of 2-oxo acids on pyruvate utilization and fatty acid synthesis in rat brain. Biochem J 1974; 140:25-9. [PMID: 4155948 PMCID: PMC1167967 DOI: 10.1042/bj1400025] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. The effects of 2-oxo-4-methylpentanoate, 2-oxo-3-methylbutanoate and 2-oxo-3-methylpentanoate on the activity of pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), acetyl-CoA carboxylase, (EC 6.4.1.2) and fatty acid synthetase derived from the brains of 14-day-old rats were investigated. 2. The pyruvate dehydrogenase enzyme activity was competitively inhibited by 2-oxo-3-methylbutanoate with respect to pyruvate with a K(i) of 2.04mm but was unaffected by 2-oxo-4-methylpentanoate or 2-oxo-3-methylpentanoate. 3. The citrate synthase activity was inhibited competitively (with respect to acetyl-CoA) by 2-oxo-4-methylpentanoate (K(i)~7.2mm) and 2-oxo-3-methylbutanoate (K(i)~14.9mm) but not by 2-oxo-3-methylpentanoate. 4. The acetyl-CoA carboxylase activity was not inhibited significantly by any of the 2-oxo acids investigated. 5. The fatty acid synthetase activity was competitively inhibited (with respect to acetyl-CoA) by 2-oxo-4-methylpentanoate (K(i)~930mum) and 2-oxo-3-methylpentanoate (K(i)~3.45mm) but not by 2-oxo-3-methylbutanoate. 6. Preliminary experiments indicate that 2-oxo-4-methylpentanoate and 2-oxo-3-phenylpropionate (phenylpyruvate) significantly inhibit the ability of intact brain mitochondria from 14-day-old rats to oxidize pyruvate. 7. The results are discussed with reference to phenylketonuria and maple-syrup-urine disease. A biochemical mechanism is proposed to explain the characteristics of these diseases.
Collapse
|
19
|
|
20
|
Scrutton MC, White MD. Prufication and properties of human liver pyruvate carboxylase. BIOCHEMICAL MEDICINE 1974; 9:217-92. [PMID: 4826475 DOI: 10.1016/0006-2944(74)90062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|