1
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
2
|
zur Nedden S, Doney AS, Frenguelli BG. Modulation of intracellular ATP determines adenosine release and functional outcome in response to metabolic stress in rat hippocampal slices and cerebellar granule cells. J Neurochem 2013; 128:111-24. [PMID: 23937448 DOI: 10.1111/jnc.12397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Cerebral ischaemia rapidly depletes cellular ATP. Whilst this deprives brain tissue of a valuable energy source, the concomitant production of adenosine mitigates the damaging effects of energy failure by suppressing neuronal activity. However, the production of adenosine and other metabolites, and their loss across the blood-brain barrier, deprives the brain of substrates for the purine salvage pathway, the primary means by which the brain makes ATP. Because of this, cerebral ATP levels remain depressed after brain injury. To test whether manipulating cellular ATP levels in brain tissue could affect functional neuronal outcomes in response to oxygen/glucose deprivation (OGD), we examined the effects of creatine and d-ribose and adenine (RibAde). In hippocampal slices creatine delayed ATP breakdown, reduced adenosine release, retarded both the depression of synaptic transmission and the anoxic depolarization caused by OGD, and improved the recovery of transmission. In contrast, RibAde increased cellular ATP, caused increased OGD-induced adenosine release and accelerated the depression of synaptic transmission, but did not improve functional recovery. However, RibAde improved the viability of cerebellar granule cells when administered after OGD. Our data indicate that RibAde may be effective in promoting recovery of brain tissue after injury, potentially via enhancement of salvage-mediated ATP production.
Collapse
|
3
|
Chang WJ, Chehab M, Kink S, Toledo-Pereyra LH. Intracellular calcium signaling pathways during liver ischemia and reperfusion. J INVEST SURG 2010; 23:228-38. [PMID: 20690849 DOI: 10.3109/08941939.2010.496036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcium plays a major role in intracellular signaling mechanisms during ischemia reperfusion (I/R) injury of a liver cell. Under ischemic conditions, the absence of oxygen arrests oxidative phosphorylation, thereby eliminating the energy source by which hepatocellular mechanisms maintain homeostasis of calcium. This, in turn, leaves nonselective plasma membrane influx pores unopposed and results in a net increase in intracellular calcium concentrations. Subsequent reperfusion marks the onset and progression of apoptosis and necrosis, as it involves inflammatory responses as well as free-radical formation due to re-oxygenation of cells. These processes destroy the structural integrity of organelles, leading to disruptive redistribution of calcium between cellular and subcellular compartments. This initial elevation and later imbalance of intracellular calcium concentrations associated with I/R induce various molecular responses within each organelle. In the cytoplasm, a series of pro-apoptotic pathways involving various calcium sensitive enzymes are activated. The injury is further exacerbated in the endoplasmic reticulum (ER) due to the malfunction of mechanisms responsible for intracellular calcium sequestration. Both the mitochondria and the nucleus are also adversely affected, as their structural integrity and physiologic functions are disrupted. To date, however, the precise pathophysiology of these calcium-mediated signaling pathways is not fully understood due to its complex nature. This review aims to systematically examine the current literature about individual molecular signaling pathways in the cytoplasm, ER, mitochondria, and the nucleus prior to causing time-sensitive progression of permanent tissue injury.
Collapse
Affiliation(s)
- Wilson J Chang
- Kalamazoo Center for Medical Studies, Michigan State University, Kalamazoo, Michigan, USA
| | | | | | | |
Collapse
|
4
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
5
|
Metabolomic study of myocardial ischemia and intervention effects of Compound Danshen Tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2010; 52:129-35. [DOI: 10.1016/j.jpba.2009.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 11/26/2009] [Accepted: 12/21/2009] [Indexed: 01/03/2023]
|
6
|
Mink R, Johnston J. The effect of infusing hypoxanthine or xanthine on hypoxic–ischemic brain injury in rabbits. Brain Res 2007; 1147:256-64. [PMID: 17335786 DOI: 10.1016/j.brainres.2007.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Xanthine oxidase (XO), an enzyme that converts hypoxanthine to xanthine and xanthine to uric acid, is thought to contribute to hypoxic-ischemic brain injury by generating oxygen-free radicals during reperfusion. This is based largely on the observation that inhibition of XO reduces brain damage, but the precise mechanism by which the enzyme contributes to cerebral ischemic injury has not been specifically evaluated. We examined the role of XO in generating oxygen-free radicals that cause brain injury, hypothesizing that if XO generated a significant amount of free radicals during hypoxia-ischemia and reperfusion, providing additional substrate at the time of injury should increase brain damage. Anesthetized rabbits were first subjected to 8 min of cerebral hypoxia by breathing 3% oxygen and then to 8 min of ischemia by raising intracranial pressure equal to mean arterial pressure with an artificial CSF. In order to promote oxygen-free radical generation, hypoxanthine (n=9) or xanthine (n=9), XO substrates, or the vehicle (n=8) was infused intravenously beginning 30 min before and continuing until 30 min after the insult. Animals were sacrificed after 4 h of reperfusion. Neither hypoxanthine nor xanthine infusion increased brain damage. However, administration of hypoxanthine significantly improved somatosensory evoked potential recovery and preserved neurofilament 68 kDa protein, a neuronal structural protein. This study does not support free radical generation by XO as a major cause of damage in cerebral hypoxia-ischemia. Infusion of hypoxanthine reduced cerebral injury suggesting that another mechanism may explain why inhibition of XO reduces brain damage.
Collapse
Affiliation(s)
- Richard Mink
- Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
7
|
Kovács Z, Kékesi KA, Bobest M, Török T, Szilágyi N, Szikra T, Szepesi Z, Nyilas R, Dobolyi A, Palkovits M, Juhász G. Post mortem degradation of nucleosides in the brain: Comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J Neurosci Methods 2005; 148:88-93. [PMID: 16054224 DOI: 10.1016/j.jneumeth.2005.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/06/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
There is an increasing attention paid for nucleoside metabolism and changes of nucleoside concentrations in human brain because of its pathological and physiological relevance. In order to determine the post mortem degradation of nucleosides and nucleoside metabolites, the concentrations of four nucleosides and three nucleobases were measured in rat and neurosurgical human cerebral cortical samples with 30s to 24h post mortem delay. Adenosine degradation coefficient (a multiplying factor for calculating concentrations of investigated substances for the living state) was 0.886 for human brain at 2 h post mortem time, while it was 1.976 for rats. Hypoxanthine, an adenosine degradation product had coefficients 0.564 for human brain and 0.812 for the rat brain. We provide data and degradation coefficients for the concentrations of adenosine, guanosine, inosine, uridine, uracil, hypoxanthine and xanthine with 2, 4, 6 and 24 h post mortem delay. We also report a method how to validate human neurosurgical brain samples in terms of sample preparation and statistical analysis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Zoology, Berzsenyi Dániel College, Szombathely, Károlyi Gáspár tér 4., 9700, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Martín ED, Buño W. Stabilizing effects of extracellular ATP on synaptic efficacy and plasticity in hippocampal pyramidal neurons. Eur J Neurosci 2005; 21:936-44. [PMID: 15787700 DOI: 10.1111/j.1460-9568.2005.03925.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of adenosine triphosphate (ATP) as a neurotransmitter and extracellular diffusible messenger has recently received considerable attention because of its possible participation in the regulation of synaptic plasticity. However, the possible contribution of extracellular ATP in maintaining and regulating synaptic efficacy during intracellular ATP depletion is understudied. We tested the effects of extracellular ATP on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by Schaffer collateral stimulation. In the absence of intracellular ATP, EPSC rundown was neutralized when a low concentration of ATP (1 microm) was added to the extracellular solution. Adenosine and ATP analogues did not prevent the EPSC rundown. The P(2) antagonists piridoxal-5'-phosphate-azophenyl 2',4'-disulphonate (PPADS) and reactive blue-2, and the P(1) adenosine receptor antagonist 8-cyclopentyltheophylline (CPT) had no detectable effects in cells depleted of ATP. However, the protective action of extracellular ATP on synaptic efficacy was blocked by extracellular application of the protein kinase inhibitors K252b and staurosporine. In contrast, K252b and staurosporine per se did not interfere with synaptic transmission in ATP loaded cells. Without intracellular ATP, bath-applied caffeine induced a transient (< 35 min) EPSC potentiation that was transformed into a persistent long-term potentiation (> 80 min) when 1 microm ATP was added extracellularly. An increased probability of transmitter release paralleled the long-term potentiation induced by caffeine, suggesting that it originated presynaptically. Therefore, we conclude that extracellular ATP may operate to maintain and regulate synaptic efficacy and plasticity in conditions of abnormal intracellular ATP depletion by phosphorylation of a surface protein substrate via activation of ecto-protein kinases.
Collapse
Affiliation(s)
- Eduardo D Martín
- Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002-Madrid, Spain.
| | | |
Collapse
|
9
|
Pearson T, Frenguelli BG. Adrenoceptor subtype-specific acceleration of the hypoxic depression of excitatory synaptic transmission in area CA1 of the rat hippocampus. Eur J Neurosci 2004; 20:1555-65. [PMID: 15355322 DOI: 10.1111/j.1460-9568.2004.03602.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The depression of excitatory synaptic transmission by hypoxia in area CA1 of the hippocampus is largely dependent upon the activation of adenosine A(1) receptors on presynaptic glutamatergic terminals. As well as adenosine, norepinephrine levels increase in the hypoxic/ischemic hippocampus. We sought to determine the influence of alpha- and beta-adrenoceptor (AR) activation on the hypoxic depression of synaptic transmission utilizing electrophysiological, pharmacological and adenosine sensor techniques. Norepinephrine depressed synaptic transmission and significantly accelerated the hypoxic depression of synaptic transmission. The alpha-AR agonist 6-fluoronorepinephrine mimicked both of these effects whilst the alpha(2)-AR antagonist yohimbine, but not the alpha(1)-AR antagonist urapidil, prevented the actions of 6-fluoronorepinephrine. In contrast, the beta-AR agonist isoproterenol enhanced synaptic transmission and only accelerated the hypoxic depression of transmission in hypoxia-conditioned slices in which the hypoxic release of adenosine is reduced. The effects of isoproterenol were blocked by the non-selective beta-AR antagonist propranolol and the selective beta(1)-AR antagonist betaxolol. Using an enzyme-based adenosine sensor we observed that the application of the beta-AR agonist resulted in increased extracellular adenosine during repeated hypoxia. Our results suggest that alpha(2)-AR activation facilitates the hypoxic depression of synaptic transmission probably via the known alpha(2)-AR-mediated inhibition of presynaptic calcium channels whereas beta(1)-AR activation does so via increased extracellular adenosine and greater activation of inhibitory adenosine A(1) receptors.
Collapse
Affiliation(s)
- Tim Pearson
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | |
Collapse
|
10
|
Pearson T, Currie AJ, Etherington LAV, Gadalla AE, Damian K, Llaudet E, Dale N, Frenguelli BG. Plasticity of purine release during cerebral ischemia: clinical implications? J Cell Mol Med 2004; 7:362-75. [PMID: 14754505 PMCID: PMC6740112 DOI: 10.1111/j.1582-4934.2003.tb00239.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenosine is a powerful modulator of neuronal function in the mammalian central nervous system. During a variety of insults to the brain, adenosine is released in large quantities and exerts a neuroprotective influence largely via the A(1) receptor, which inhibits glutamate release and neuronal activity. Using novel enzyme-based adenosine sensors, which allow high spatial and temporal resolution recordings of adenosine release in real time, we have investigated the release of adenosine during hypoxia/ischemia in the in vitro hippocampus. Our data reveal that during the early stages of hypoxia adenosine is likely released per se and not as a precursor such as cAMP or an adenine nucleotide. In addition, repeated hypoxia results in reduced production of extracellular adenosine and this may underlie the increased vulnerability of the mammalian brain to repetitive or secondary hypoxia/ischemia.
Collapse
Affiliation(s)
- T Pearson
- Department of Pharmacology & Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Microdialysis conceivably enables longitudinal and simultaneous investigation of several metabolites by repeated measurements in skeletal muscle. We used and evaluated microdialysis as an in vivo method to characterize the time-course and relative kinetics of pyruvate, glucose, lactate, glycerol, hypoxanthine, uric acid, and urea, in skeletal muscles, exposed to ischemia and reperfusion, in eight patients having arthroscopic-assisted anterior cruciate ligament reconstruction. A dialysis probe was implanted before surgery in the rectus femoris muscle. Dialysate samples were collected at 10-minute intervals at a flow rate of 1 microL/minute until 2 hours after tourniquet deflation. Ninety minutes of ischemia resulted in accumulation of lactate (234% +/- 38%), hypoxanthine (582% +/- 166%), and glycerol (146% +/- 46%), consumption of glucose (54% +/- 9%) and pyruvate (16% +/- 44%), and a slight decrease of urea (78% +/- 11%) compared with baseline (100%). Uric acid was unchanged (95% +/- 12%). Within 90 minutes after tourniquet deflation the concentrations were virtually normalized for all measured metabolites, suggesting that the duration of ischemia was well tolerated by the patients. The results indicate that the use of microdialysis for monitoring energy metabolic events during orthopaedic surgery that requires ischemia and reperfusion is feasible and safe.
Collapse
Affiliation(s)
- Bengt Ostman
- Department of Orthopaedics, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
12
|
Simoyi MF, Falkenstein E, Van Dyke K, Blemings KP, Klandorf H. Allantoin, the oxidation product of uric acid is present in chicken and turkey plasma. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:325-35. [PMID: 12798942 DOI: 10.1016/s1096-4959(03)00086-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Urate oxidase is not present in birds yet allantoin, a product of this enzyme, has been measured in birds. Studies were designed to compare the concentrations of plasma purine derivatives in chickens and turkeys fed inosine-supplemented diets. The first study consisted of 12 male chicks that were fed diets supplemented with 0.6 mol inosine or hypoxanthine per kilogram diet from 3- to 6-week-old. Study 2 consisted of 12 turkey poults (toms) fed inosine-supplemented diets (0.7 mol/kg) from 6- to 8-week-old. Plasma allantoin and oxypurines concentrations were measured weekly using high performance liquid chromatography. Plasma uric acid (PUA) in chickens fed inosine-supplemented diets increased from 0.31 to 1.34 mM (P<0.05) at the end of week 2. In turkeys, those fed control diet had 0.17 mM PUA concentration compared to 0.3 mM in those fed the inosine diet at week 2 (P<0.05). Allantoin concentration increased in chickens from week 1 to 2 while a decrease was observed in turkeys (P<0.005) for both treatments. These data show that allantoin is present in turkey and chicken plasma. The presence of allantoin in avian plasma is consistent with uric acid acting as an antioxidant in these species.
Collapse
Affiliation(s)
- Melvin F Simoyi
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | | | |
Collapse
|
13
|
Nagayama M, Katsuramaki T, Kimura H, Isobe M, Meguro M, Matsuno T, Nui A, Hirata K. Prediction of graft viability from non-heart-beating donor pigs using hepatic microdialysate hypoxanthine levels. J Surg Res 2002; 107:210-8. [PMID: 12429177 DOI: 10.1006/jsre.2002.6514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-heart-beating donors (NHBDs) are not yet acceptable in orthotopic liver transplantation (OLTX) because of the high frequency of primary graft nonfunction. In this study, we aimed to develop a new predictive method of graft viability in OLTX from NHBDs. MATERIALS AND METHODS (1) Pigs were subjected to 15 min of hepatic ischemia and reperfusion (I/R). (2) Porcine OLTX was performed using grafts obtained from NHBDs subjected to in situ warm ischemia (0, 30, and 60 min). During both operations, hepatic hypoxanthine levels were measured by a microdialysis method. RESULTS In the I/R model, hypoxanthine accumulated during ischemia and decreased after reperfusion, whereas marked xanthine and uric acid production were observed after reperfusion. In the NHBDs model, all of the 0-min group, 6 of 13 pigs in the 30-min group, and 1 of 6 pigs in the 60-min group survived more than 7 days. Significant increases of hypoxanthine levels were seen dependent on warm ischemic time. In the 30-min group, hypoxanthine levels were significantly higher in the pigs that died than in those that survived, and correlated with aspartate aminotransferase, lactate dehydrogenase, and adenosine triphosphate levels of recipients. Histological examination revealed that graft injury was severe in the pigs with higher hypoxanthine levels. CONCLUSIONS It is suggested that hepatic microdialysate hypoxanthine levels during warm ischemia in NHBDs were correlated with graft viability in the recipient. By using of this technique, prediction of the graft viability may be possible during donor operation.
Collapse
Affiliation(s)
- Minoru Nagayama
- First Department of Surgery, Sapporo Medical University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Barsotti C, Tozzi MG, Ipata PL. Purine and pyrimidine salvage in whole rat brain. Utilization of ATP-derived ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate generated in experiments with dialyzed cell-free extracts. J Biol Chem 2002; 277:9865-9. [PMID: 11782482 DOI: 10.1074/jbc.m111418200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The object of this work stems from our previous studies on the mechanisms responsible of ribose-1-phosphate- and 5-phosphoribosyl-1-pyrophosphate-mediated nucleobase salvage and 5-fluorouracil activation in rat brain (Mascia, L., Cappiello M., Cherri, S., and Ipata, P. L. (2000) Biochim. Biophys. Acta 1474, 70-74; Mascia, L., Cotrufo, T., Cappiello, M., and Ipata, P. L. (1999) Biochim. Biophys. Acta 1472, 93-98). Here we show that when ATP at "physiological concentration" is added to dialyzed extracts of rat brain in the presence of natural nucleobases or 5-fluorouracil, adenine-, hypoxanthine-, guanine-, uracil-, and 5-fluorouracil-ribonucleotides are synthesized. The molecular mechanism of this peculiar nucleotide synthesis relies on the capacity of rat brain to salvage purine and pyrimidine bases by deriving ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate from ATP even in the absence of added pentose or pentose phosphates. The levels of the two sugar phosphates formed are compatible with those of synthesized nucleotides. We propose that the ATP-mediated 5-phosphoribosyl-1-pyrophosphate synthesis occurs through the action of purine nucleoside phosphorylase, phosphopentomutase, and 5-phosphoribosyl-1-pyrophosphate synthetase. Furthering our previous observations on the effect of ATP in the 5-phosphoribosyl-1-pyrophosphate-mediated 5-fluorouracil activation in rat liver (Mascia, L., and Ipata, P. L. (2001) Biochem. Pharmacol. 62, 213-218), we now show that the ratio [5-phosphoribosyl-1-pyrophosphate]/[ATP] plays a major role in modulating adenine salvage in rat brain. On the basis of our in vitro results, we suggest that massive ATP degradation, as it occurs in brain during ischemia, might lead to an increase of the intracellular 5-phosphoribosyl-1-pyrophosphate and ribose-1-phosphate pools, to be utilized for nucleotide resynthesis during reperfusion.
Collapse
Affiliation(s)
- Catia Barsotti
- Department of Physiology and Biochemistry, University of Pisa, Via Santa Maria 55, 56126 Pisa, Italy
| | | | | |
Collapse
|
15
|
Dohmen C, Kumura E, Rosner G, Heiss WD, Graf R. Adenosine in relation to calcium homeostasis: comparison between gray and white matter ischemia. J Cereb Blood Flow Metab 2001; 21:503-10. [PMID: 11333360 DOI: 10.1097/00004647-200105000-00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vitro studies suggest that adenosine may attenuate anoxic white matter damage as an intrinsic protective substance. The authors investigated ischemic alterations of purines in relation to tissue depolarization and extracellular calcium and amino acid concentrations in vivo using microdialysis and ion-selective electrodes in cortical gray and subcortical white matter of 10 cats during 120 minutes of global brain ischemia. Immediately on induction of ischemia, regional cerebral blood flow ceased in all cats in both gray and white matter. The direct current potential rapidly decreased, the decline being slower and shallower in white matter. Extracellular calcium levels decreased in gray matter. In contrast, they first increased in white matter and started to decrease below control levels only after approximately 30 minutes. Adenosine levels transiently increased in both tissue compartments; the peak was delayed by 30 minutes in white matter. Thereafter, levels declined faster in gray than in white matter and remained elevated in the latter tissue compartment. Inosine and hypoxanthine elevations were progressive in both regions but smaller in white matter. Levels of gamma-aminobutyric acid, another putatively protective agent, steadily increased, starting immediately in gray matter and delayed by almost 1 hour in white matter. The delayed and prolonged accumulation of adenosine correlates with a slower adenosine triphosphate breakdown in white matter ischemia and may result in protection of white matter by suspending cellular calcium influx.
Collapse
Affiliation(s)
- C Dohmen
- Max-Planck-Institut für Neurologische Forschung, Köln, Germany
| | | | | | | | | |
Collapse
|
16
|
Elliott KJ, Todd Weber E, Rea MA. Adenosine A1 receptors regulate the response of the hamster circadian clock to light. Eur J Pharmacol 2001; 414:45-53. [PMID: 11230994 DOI: 10.1016/s0014-2999(01)00786-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythms are synchronized to the environmental light-dark cycle by daily, light-induced adjustments in the phase of a biological clock located in the suprachiasmatic nucleus. Ambient light alters the phase of the clock via a direct, glutamatergic projection from retinal ganglion cells. We investigated the hypothesis that adenosine A1 receptors modulate the phase adjusting effect of light on the circadian clock. Systemic administration of the selective adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), significantly (p<0.05) attenuated light-induced phase delays and advances of the circadian activity rhythm. Selective agonists for the adenosine A2A and adenosine A3 receptors were without effect. The inhibitory effect of CHA on light-induced phase advances was dose-dependent (0.025-1.0 mg/kg, ED(50)=0.3 mg/kg), and this effect was blocked in a dose-dependent (0.005-1.0 mg/kg) manner by the adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Injection of CHA (10 microM) into the region of the suprachiasmatic nucleus significantly attenuated light-induced phase advances, and this effect was also blocked by DPCPX (100 microM). The results suggest that adenosine A1 receptors located in the region of the suprachiasmatic nucleus regulate the response of the circadian clock to the phase-adjusting effects of light.
Collapse
Affiliation(s)
- K J Elliott
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
17
|
Paschen W, Oláh L, Mies G. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J Neurochem 2000; 75:1675-80. [PMID: 10987849 DOI: 10.1046/j.1471-4159.2000.0751675.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed that NAD depletion resulting from excessive activation of poly(ADP-ribose) polymerase is responsible for secondary energy failure after transient cerebral ischemia. However, this hypothesis has never been verified by measurement of ATP and NAD levels in the same tissue sample. In this study, we therefore investigated the effect of transient focal cerebral ischemia on the temporal profiles of changes in the levels of energy metabolites and NAD. Ischemia was induced in mice by occluding the left middle cerebral artery using the intraluminal filament technique. Animals were subjected to 1-h ischemia, followed by 0, 1, 3, 6, or 24 h of reperfusion. During ischemia, ATP levels, total adenylate pool, and adenylate energy charge dropped to approximately 20, 50, and 40% of control, respectively, whereas NAD levels remained close to control. Energy state recovered transiently, peaking at 3 h of recovery (ATP levels and total adenylate pool recovered to 78 and 81% of control). In animals subjected to reperfusion of varying duration, the extent of ATP depletion was clearly more pronounced than that of NAD. The results imply that depletion of NAD pools did not play a major role in secondary disturbances of energy-producing metabolism after transient focal cerebral ischemia. Changes in ATP levels were closely related to changes in total adenylate pool (p<0.001). The high energy charge after 6 h of reperfusion (0.90 versus a control value of 0.93) and the close relationship between the decline of ATP and total adenylate pool suggest that degradation or a washout of adenylates (owing to leaky membranes) rather than a mismatch between energy production and consumption is the main causative factor contributing to the secondary energy failure observed after prolonged recovery.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max Planck Institute for Neurological Research, Cologne, Germany.
| | | | | |
Collapse
|
18
|
Nakai A, Asakura H, Taniuchi Y, Koshino T, Araki T, Siesjö BK. Effect of alpha-phenyl-N-tert-butyl nitrone (PBN) on fetal cerebral energy metabolism during intrauterine ischemia and reperfusion in rats. Pediatr Res 2000; 47:451-6. [PMID: 10759150 DOI: 10.1203/00006450-200004000-00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of the present study was to explore whether a free radical spin trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN), influences bioenergetic failure induced in the 20-day-old fetal brain by 30 min of intrauterine ischemia in Wistar rats. Fetal brains were frozen in situ at the end of ischemia and after 1, 2, and 4 h of recirculation for analysis of ATP, ADP, AMP, and lactate. PBN or vehicle was given 1 h after recirculation. Tissue oxygen tension was evaluated in placental and fetal cerebral tissues throughout the whole periods of 30 min of ischemia and 4 h of recirculation. Ischemia was associated with a decrease in ATP concentration and an increase in lactate concentration (p < 0.001). Recirculation (1 and 2 h) led to a recovery of ATP concentration, but continued reflow (4 h) was associated with a secondary deterioration of high-energy phosphates (p < 0.01). Lactate concentration increased during this recovery period. This deterioration was prevented by PBN (p < 0.05). After 30 min of ischemia, tissue oxygen tension in placenta and fetal brain decreased to about 30% and 50% of control, respectively. However, recirculation brought about a recovery of oxygen delivery. The results indicate that although during the early time period after ischemia fetal cerebral energy metabolism is maintained by an acceleration of the anaerobic glycolytic rate, secondary deterioration of cellular bioenergetic state develops in the immature fetal brain. This deterioration may be due to mitochondrial dysfunction, which may be induced by oxygen-derived free radicals, and not by compromised microcirculation.
Collapse
Affiliation(s)
- A Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Wada K, Alonso OF, Busto R, Panetta J, Clemens JA, Ginsberg MD, Dietrich WD. Early treatment with a novel inhibitor of lipid peroxidation (LY341122) improves histopathological outcome after moderate fluid percussion brain injury in rats. Neurosurgery 1999; 45:601-8. [PMID: 10493379 DOI: 10.1097/00006123-199909000-00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Reactive oxygen species are thought to participate in the pathobiology of traumatic brain injury (TBI). This study determined whether treatment with LY341122, a potent inhibitor of lipid peroxidation and an antioxidant, would provide neuroprotection in a rat model of TBI. METHODS To investigate the efficacy of LY341122 in this parasagittal fluid percussion model (1.8-2.1 atm), the rats received oral administration of LY341122 (100 mg/kg) or vehicle 2 hours before and 4 hours after TBI (each group, n = 7). To investigate the therapeutic window for treatment, rats were treated with LY341122 or vehicle for 20 hours by femoral vein infusion starting at 5 minutes, 30 minutes, or 3 hours after TBI (each group, n = 5). Three days after injury, analysis of contusion volumes and the frequency of damaged cortical neurons was conducted. RESULTS Oral administration of LY341122 before and after TBI led to a significant reduction in overall contusion volume (3.28 mm3+/-0.75 mm3 [mean +/- standard error of the mean] versus 1.32 mm3 +/- 0.33 mm3; P < 0.05) and also reduced the frequency of damaged cortical neurons (1191.7 +/- 267.1 versus 474.6 +/- 80.2; P < 0.05). In the second experiment, rats treated with LY341122 at 5 minutes or 30 minutes after TBI also demonstrated a significant reduction (P < 0.05) in contusion volume (1.92 mm3 +/- 0.64 mm3 or 1.59 mm3 +/- 0.50 mm3, respectively) compared with vehicle-treated rats (4.32 mm3 +/- 1.15 mm3). A significant reduction in total cortical necrotic neuron counts was also demonstrated in the 5-minute group (2243.8 +/- 265.3 versus 1457.8 +/- 265.3; P < 0.05). In contrast, histopathological outcome was not significantly improved when treatment was delayed until 3 hours after TBI. CONCLUSION These data reinforce the hypothesis that lipid peroxidation and reactive oxygen species participate in the acute pathogenesis of TBI. Treatment delayed until 3 hours after TBI did not provide significant histopathological protection.
Collapse
Affiliation(s)
- K Wada
- Department of Neurology, Neurotrauma Research Center, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Inan C, Kilinç K, Kotiloğlu E, Akman HO, Kiliç I, Michl J. Antioxidant therapy of cobalt and vitamin E in hemosiderosis. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 132:157-65. [PMID: 9708577 DOI: 10.1016/s0022-2143(98)90011-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protective effects of cobalt and vitamin E in iron overloaded rats were investigated. Rats were divided into four groups: group 1 as control, group 2 received only iron; group 3 iron and cobalt, group 4 iron and vitamin E. All injections were given 3 times per week for 3 weeks. Biochemical and histopathologic studies were done on samples of blood and liver, spleen, and intestine. The results showed that the administration of iron with cobalt or vitamin E decreased lipid peroxidation and the levels of hypoxanthine in all tissues (P < .001). Tissue associated myeloperoxidase (MPO) activity was increased in all iron-overloaded animals. However, vitamin E and cobalt decreased MPO activity (P < .001) in all tissues with the exception of the intestines, where cobalt was ineffective. Cobalt therapy increased hemoglobin, hematocrit, and MCV (P < .05). In contrast to SGPT activity, SGOT activity was significantly increased in all groups but more so in group 3 animals. The increased activity of serum SGOT levels might be related to the mechanical injury by cardiac puncture. The most striking histopathologic finding was the presence of granulomas in the livers of 71% of the animals of group 2 and in 66.6% of group 3. Interestingly, granulomas developed in only 33.3% of group 4 animals, whereas no granulomas were found in the livers of control animals (group 1). In this article we report that cobalt is as effective as vitamin E in significantly reducing iron-induced biochemical changes in an iron-overload in vivo model. We further describe for the first time the presence of extensive granuloma formation in iron-overloaded liver tissue and the greater efficiency of vitamin E over cobalt in protecting against granuloma formation in iron overload.
Collapse
Affiliation(s)
- C Inan
- Department of Pediatrics, Hacettepe Children's Hospital, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
21
|
Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PC. Proton NMR spectroscopy of solvent-saturable resonances: a new approach to study pH effects in situ. Magn Reson Med 1998; 40:36-42. [PMID: 9660550 DOI: 10.1002/mrm.1910400105] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is shown that the effect of pH changes can be measured in proton NMR spectra through the pH sensitivity of the signal intensities of metabolite protons exchanging with water. To observe this phenomenon, pulse sequences must be used that can sensitively observe these exchangeable protons under physiological conditions, which is achieved by avoiding magnetization transfer signal losses due to water saturation for solvent suppression purposes. These methods provide an order-of-magnitude enhancement of many signals between 5 and 10 ppm, containing both N-bound protons as well as aromatic C-H protons coupled to them, the intensity of which is influenced by exchange-relayed saturation. As a first application, the effects of pH change on these resonances are studied ex vivo (perfused cells) and in vivo (cat brain).
Collapse
Affiliation(s)
- S Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
This review summarises current knowledge on adenosine receptors, an important G protein-coupled receptor. The four known adenosine receptor subtypes A1, A2A, A2B, and A3 are discussed with special reference to the opportunities for drug development.
Collapse
Affiliation(s)
- S A Poulsen
- Queensland Pharmaceutical Research Institute, Griffith University, Brisbane, Australia
| | | |
Collapse
|
23
|
Prediction of the resistance to hypoxia on the basis of modifications of the adenine nucleotide system. Bull Exp Biol Med 1998. [DOI: 10.1007/bf02499152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Huguet F, Guerraoui A, Barrier L, Guilloteau D, Tallineau C, Chalon S. Changes in excitatory amino acid levels and tissue energy metabolites of neonate rat brain after hypoxia and hypoxia-ischemia. Neurosci Lett 1998; 240:102-6. [PMID: 9486482 DOI: 10.1016/s0304-3940(97)00907-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactate accumulation, amino acid aspartate and glutamate levels, and hypoxanthine, xanthine and malondialdehyde (MDA) concentrations were compared in neonate rat brain after transient global hypoxia induced alone or in association with unilateral ligation of a carotid artery. Lactate production in both hemispheres was higher in cerebral hypoxia-ischemia (CHI) than in cerebral hypoxia (CH), and was lower in CHI after 2 h than at 15 min of recovery. Aspartate and glutamate levels were reduced 15 min after CHI in both hemispheres, but aspartate alone was decreased 2 h after CHI in the ipsilateral (left) hemisphere and 15 min after CH in both hemispheres. Hypoxanthine was increased 15 min after CHI in the ipsilateral hemisphere but decreased at 2 h, whereas xanthine was increased. MDA production was not modified after CH or CHI. These data, compared to those obtained in adult animals suggest that glutamate release and the capacity to generate oxygen-derived radicals are lower in neonates after ischemia. These differences might explain why the brain of the mammalian neonate is much more resistant to CH and CHI than that of the adult.
Collapse
Affiliation(s)
- F Huguet
- Institute of Xenobiotic Studies, UPRES EA 1223, Faculty of Pharmacy, Poitiers, France
| | | | | | | | | | | |
Collapse
|
25
|
Pourcyrous M, Parfenova H, Bada HS, Korones SB, Leffler CW. Changes in cerebral cyclic nucleotides and cerebral blood flow during prolonged asphyxia and recovery in newborn pigs. Pediatr Res 1997; 41:617-23. [PMID: 9128281 DOI: 10.1203/00006450-199705000-00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cerebrovascular reactivity is preserved after acute severe asphyxia/reventilation in piglets. We hypothesize that prolonged, partial asphyxia with hypotension causes loss of cerebrovascular reactivity and altered cerebral hemodynamics during recovery. We investigated the changes in cerebrospinal fluid cAMP and cGMP, pial arteriolar diameters and flow, and cerebral blood flow during 1 h of asphyxia and 1 h of recovery. During asphyxia, blood pressure decreased from 10 +/- 0.7 to 4.7 +/- 0.3 kPa and increased during recovery to 6 +/- 0.7 kPa. cAMP increased 3-fold by 20 min of asphyxia, returning to baseline at 40 min of asphyxia. During recovery, cAMP increased 2-fold initially, followed by a decrease to 50% below baseline. cGMP increased after 20 min of asphyxia, with maximum levels observed at 40 min; reventilation resulted in a transient increase in cGMP. Pial arteriolar diameters increased at the onset of asphyxia, then decreased toward baseline; during recovery, a similar pattern occurred. Blood flow to the cerebrum (microspheres) decreased during asphyxia and remained very low during recovery. Pial arteriolar flow but not pial arteriolar diameters followed the changes in cortical cerebral blood flow (i.e. virtually no flow during recovery). During recovery, pial arteriolar reactivity to isoproterenol and histamine decreased significantly. We conclude that 60 min of asphyxic-hypotensive insult results in alterations of cerebral cAMP metabolism which may compromise cellular communications during recovery. Prolonged asphyxia induces "no-reflow" during recovery, even when partial pressures of arterial CO2 and O2 have returned to baseline values, and blood pressure is within the autoregulatory range.
Collapse
Affiliation(s)
- M Pourcyrous
- Department of Pediatrics, The University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
26
|
Gidday JM, Kim YB, Shah AR, Gonzales ER, Park T. Adenosine transport inhibition ameliorates postischemic hypoperfusion in pigs. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00647-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
|
28
|
Berger R, Djuricic B, Jensen A, Hossmann KA, Paschen W. Ontogenetic differences in energy metabolism and inhibition of protein synthesis in hippocampal slices during in vitro ischemia and 24 h of recovery. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:281-91. [PMID: 8852380 DOI: 10.1016/0165-3806(95)00196-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to clarify whether ontogenetic differences in the vulnerability of the brain towards hypoxic-ischemic insults are only caused by the low cerebral energy demand of immature animals or whether there are additional mechanisms, such as protein synthesis (PSR), that may be involved in this phenomenon. We therefore measured tissue levels of adenylates and PSR in hippocampal slices from immature (E40) and mature (E60) guinea pigs fetuses and from adult guinea pigs during in vitro ischemia and 24 h of recovery using a recently modified method. Hippocampal slices were incubated in a temperature controlled flow-through chamber, gassed with 95% O2/5% CO2. In vitro ischemia was induced by transferring slices to a glucose-free artificial cerebrospinal fluid (aCSF) equilibrated with 95% N2/5% CO2. The duration of ischemia ranged from 10 to 40 min. Adenylates were measured by HPLC after extraction with perchloric acid. PSR was evaluated as the incorporation rate of [14C]leucine into proteins. Under control conditions, tissue levels in adenylates did not change, whereas PSR increased slightly in hippocampal slices from mature fetuses and adult animals during a 24-h control incubation period. In slices from immature fetuses ATP levels were only maintained for 2 h. During in vitro ischemia the decline in ATP, total adenylate pool, and adenylate energy charge was much slower in slices from immature fetuses than in slices from mature fetuses or adults. After in vitro ischemia, ATP and the total adenylate pool did not completely recover in mature fetuses and adults, whereas adenylate energy charge almost returned to control values independently of the developmental stage. Two hours after in vitro ischemia PSR was undisturbed in slices from immature fetuses, but severely inhibited in slices from mature fetuses and adults. With ongoing recovery, PSR in mature fetuses returned to control values, while in adults it was still inhibited even 24 h after in vitro ischemia. From these results we conclude that hippocampal slices prepared from mature guinea pig fetuses as well as from adult guinea pigs can be held metabolically stable during long-term incubation using a recently modified technique. However, in slices from immature fetuses a stable energy state could not be maintained for more than 2 h. We further conclude that postischemic disturbances in PSR closely reflect the ontogenetic changes in the vulnerability of the brain to ischemia and that low energy metabolism is certainly not the only cause of the increased vulnerability of the fetal brain to ischemia.
Collapse
Affiliation(s)
- R Berger
- Department of Experimental Neurology, Max-Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
29
|
Decanniere C, Eleff S, Davis D, van Zijl PC. Correlation of rapid changes in the average water diffusion constant and the concentrations of lactate and ATP breakdown products during global ischemia in cat brain. Magn Reson Med 1995; 34:343-52. [PMID: 7500873 DOI: 10.1002/mrm.1910340311] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rapid changes in the average water diffusion constant, Dav = 1/3[Dxx+Dyy+Dzz], and in the concentrations of lactate and purine nucleotides and nucleosides were measured upon global ischemia (cardiac arrest) in cat brain, at a combined time resolution of 36 s (n = 7). At this time resolution, the normalized time curves of 1 - Dav and the increase in ATP breakdown product did not coincide, with the changes in Dav being most rapid. The normalized curves of 1 - Dav and the lactate increase coincided for the first 2-2.5 min after which the change in Dav was more rapid. After this time point, an excellent correlation was found between the drop in Dav and the decrease in energy utilization rate, which was calculated from the measured time curves of lactate formation and ATP breakdown, and from the time curve for phosphocreatine use reported in the literature. These results are in agreement with the expected biphasic changes in ion and water homeostasis during ischemia and with the model of diffusional changes being a consequence of a water shift from interstitial to intracellular space.
Collapse
Affiliation(s)
- C Decanniere
- Department of Radiology, Johns Hopkins University Medical School, Baltimore, MD 21287-2195, USA
| | | | | | | |
Collapse
|
30
|
Folbergrová J, Zhao Q, Katsura K, Siesjö BK. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci U S A 1995; 92:5057-61. [PMID: 7761448 PMCID: PMC41847 DOI: 10.1073/pnas.92.11.5057] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.
Collapse
Affiliation(s)
- J Folbergrová
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
31
|
Abstract
Because adenine nucleotide catabolites may be important during postischemic lung reperfusion, we examined the pathway of adenosine monophosphate (AMP) degradation in ischemic lung tissue. Once the pattern of degradation is known, pharmacological interventions can be considered, offering new methods of reducing lung reperfusion injury. For this purpose we used the isolated rabbit lung. Rabbit lungs were flushed in situ with a modified Krebs Henseleit solution (60 ml/kg). The lungs were removed and stored deflated, immersed in saline solution at 37 degrees C. At regular times, biopsies were taken, and adenine nucleotides, nucleosides, and bases were measured in these biopsies using high performance liquid chromatography (HPLC). During lung ischemia, a very significant increase of inosine monophosphate (IMP) was found. Adenosine levels on the other hand did not increase. Hypoxanthine was the major end catabolite of ischemic lung tissue (constituting 92% of the nucleoside and purine base fraction at 4 hours ischemia). To further determine the pathway of AMP degradation, 400 mM of the adenosine deaminase inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA) was added to the lung flush solution. During ischemia, adenosine triphosphate (ATP) breakdown was unaltered but adenosine became the major catabolite (2.8 times the concentration of hypoxanthine at 4 hours ischemia). These data suggest that: 1) in rabbit lung tissue, dephosphorylation of AMP to adenosine is more important than deamination to IMP; 2) hypoxanthine is the major end catabolite of ischemic lung tissue. By inhibiting the enzyme deaminase, reduced hypoxanthine levels and increased adenosine levels were obtained. Pharmacological interventions are now available to interfere with the formation of adenine nucleosides and bases in ischemic lung tissue. The importance of adenine nucleotide catabolites to postischemic lung reperfusion injury is discussed.
Collapse
Affiliation(s)
- P De Leyn
- Centre of Experimental Surgery and Anaesthesiology, Catholic University of Leuven, Belgium
| | | | | |
Collapse
|
32
|
Ceballos G, Tuttle JB, Rubio R. Differential distribution of purine metabolizing enzymes between glia and neurons. J Neurochem 1994; 62:1144-53. [PMID: 8113801 DOI: 10.1046/j.1471-4159.1994.62031144.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 +/- 61 pmol/min/10(7) cells), nucleoside phosphorylase (187 +/- 8 pmol/min/10(7) cells), and adenosine deaminase (233 +/- 32 pmol/min/10(7) cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.
Collapse
Affiliation(s)
- G Ceballos
- Department of Physiology, University of Virginia, Charlottesville 22908
| | | | | |
Collapse
|
33
|
Latini S, Pedata F, Pepeu G. Effect of idebenone on adenosine outflow and adenine nucleotide level in hippocampal slices under ischemia-like conditions. Eur J Pharmacol 1993; 249:65-70. [PMID: 8282020 DOI: 10.1016/0014-2999(93)90662-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of idebenone on the changes in adenosine and nucleotide metabolism occurring in hippocampal slices after ischemia-like conditions (superfusion with glucose-free Krebs solution gassed with 95% N2-5% CO2) and during reperfusion with normal Krebs solution was investigated by measuring adenosine and inosine outflow, and adenosine and adenine nucleotide levels by HPLC. Five minutes of ischemia-like conditions brought about an 8- and 4-fold increase in adenosine and inosine outflow 10 min after reperfusion and a 75% increase in the tissue level of adenosine, a 40% decrease in ATP, and a 50% increase in AMP at the end of the ischemic period. Ten minutes after reperfusion, ATP and AMP returned to control values. Idebenone (25-100 microM) brought about a concentration-dependent increase in adenosine and inosine outflow evoked by ischemia-like conditions. Idebenone (50 microM) also increased the adenosine content in hippocampal slices after both ischemia (+150%) and reperfusion (+320%). An 82% increase in ADP, 174% in AMP, and 56% in the total sum of nucleotides, 10 min after reperfusion were found in idebenone treated slices. These results suggest that idebenone enhances adenosine formation after ischemia-like conditions from sources other than AMP, and improves phosphorylating activity during reperfusion. Idebenone, by increasing adenosine and total nucleotide levels, may protect brain tissue from ischemic damage.
Collapse
Affiliation(s)
- S Latini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | |
Collapse
|
34
|
Domańska-Janik K, Zabłocka B. Protein kinase C as an early and sensitive marker of ischemia-induced progressive neuronal damage in gerbil hippocampus. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 20:111-23. [PMID: 8297417 DOI: 10.1007/bf02815366] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the model of transient brain ischemia of 6-min duration in gerbils we have estimated: 1. The concentration of brain gangliosides: A significant decrease to about 70% of control was observed selectively in the hippocampus at 3 and 7 d after ischemia. 2. The activity of Na+,K(+)-ATPase: The enzyme activity was not affected in either hippocampus nor in cerebral cortex. 3. The malonaldehyde (MDA) concentration: The levels of MDA had increased at 30 min after ischemia up to 123 and 129% of control in hippocampus and cerebral cortex, respectively. 4. Immunoreactivity of protein kinase C detected by Western blotting: In hippocampus the early translocation toward membranes was followed by a decrease in total enzyme content at 6, 24, 72, and 96 h of postischemic recovery. Also, a sharp increase of 50 kDa isoform (PKM) was noticed immediately and at the early recovery times. The behavior of these biochemical markers of ischemic brain injury in the hippocampus after the short (6 min) insult was contrasted with their reaction in the cerebral cortex as well as after prolongation of the ischemia to 15 min. These results taken together indicate that an early increase in PKC translocation followed by a decrease is the most symptomatic for selective, delayed, postischemic hippocampal injury, resulting from short duration (6 min) ischemia of the gerbil brain.
Collapse
Affiliation(s)
- K Domańska-Janik
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
35
|
van Zijl PC, Moonen CT. In situ changes in purine nucleotide and N-acetyl concentrations upon inducing global ischemia in cat brain. Magn Reson Med 1993; 29:381-5. [PMID: 8095689 DOI: 10.1002/mrm.1910290315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spectral changes upon death (global ischemia) were recorded in situ in cat cerebral cortex. A rapid signal loss of 10 +/- 4% in the N-acetyl resonance was observed (five cases), after which it remained constant for 1 h. For the first time signal changes are reported for low-field resonances, which are assigned to adenosine/inosine and hypoxanthine.
Collapse
Affiliation(s)
- P C van Zijl
- Georgetown University Medical School, Department of Pharmacology, Rockville, Maryland
| | | |
Collapse
|
36
|
Kloiber O, Miyazawa T, Hoehn-Berlage M, Hossmann KA. Simultaneous 31P NMR spectroscopy and laser Doppler flowmetry of rat brain during global ischemia and reperfusion. NMR IN BIOMEDICINE 1993; 6:144-152. [PMID: 8499245 DOI: 10.1002/nbm.1940060207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The relationship between blood flow and metabolism was studied in halothane-anaesthetized, normothermic rats submitted to 30 min global ischemia by four-vessel occlusion. Phosphocreatine (PCr), ATP, intracellular pH and intracellular magnesium (pMg) were measured by 31P NMR spectroscopy, and blood flow by laser Doppler flowmetry. Prior to ischemia the PCr/ATP ratio of fully relaxed spectra was 2.4 +/- 0.3, intracellular pH was 7.26 +/- 0.15 and pMg was 3.26 +/- 0.13. Vascular occlusion led to complete cessation of blood flow in four out of eight rats, and to incomplete ischaemia (< 10% of control) in the other four animals. During vascular occlusion EEG flattened and energy metabolism broke down in all but one animal with a residual blood flow of 8% of control. pH declined to 6.70 +/- 0.08. The speed of electrophysiological and metabolic recovery after 30 min ischemia varied considerably from animal to animal. Variability depended mainly on the recirculation delay (i.e., the interval from vascular release to normalization of blood flow) but was independent of residual blood flow during ischemia, pre-ischemic glucose, ischemic or post-ischemic acidosis, or the degree of post-ischemic hypoperfusion. After 3 h recirculation PCr and intracellular pH returned to normal but pMg was slightly increased, and ATP was reduced by up to 50% in all animals except the rat with incomplete breakdown of energy metabolism during ischemia. The dissociation between PCr and ATP is attributed to a loss of total adenylate, the severity of which depends on the quality of post-ischemic recirculation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O Kloiber
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
37
|
Pedata F, Latini S, Pazzagli M, Pepeu G. Adenosine outflow from hippocampal slices evoked by ischemic-like conditions: Effect of the excitatory amino acid antagonists. Drug Dev Res 1993. [DOI: 10.1002/ddr.430280338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Siesjö BK, Katsura KI, Mellergård P, Ekholm A, Lundgren J, Smith ML. Chapter 3 Acidosis-related brain damage. PROGRESS IN BRAIN RESEARCH 1993. [DOI: 10.1016/s0079-6123(08)63257-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Matsumoto K, Graf R, Rosner G, Shimada N, Heiss WD. Flow thresholds for extracellular purine catabolite elevation in cat focal ischemia. Brain Res 1992; 579:309-14. [PMID: 1352728 DOI: 10.1016/0006-8993(92)90066-i] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ischemic glutamate excitotoxicity may be counteracted by adenosine which appears extracellularly during ischemia as an intermediate purine catabolite and has the potential to modulate glutamate release and its receptor action. The present study was conducted to evaluate the flow threshold for purine catabolite accumulation in relation to that for glutamate elevation in focal ischemia which was induced by middle cerebral artery (MCA) occlusion in halothane anesthetized cats. Assemblies of platinum electrodes and microdialysis probes were inserted into the somatosensory (SF, n = 13) and the auditory (A, n = 9) cortices to assess local cerebral blood flow (CBF) using hydrogen clearance and purine catabolite (adenosine, inosine and hypoxanthine) as well as glutamate concentrations in the dialysate using high-performance liquid chromatography (HPLC). In both investigated areas, purine catabolites were elevated if CBF fell below 25 ml/100 g/min, while glutamate increased at a flow threshold below 20 ml/100 g/min. Maximum elevations of adenosine, inosine and hypoxanthine were 76-, 29- and 11-fold, respectively, that of glutamate was 24-fold. In the range between 20 and 25 ml/100 g/min, significant increases of adenosine (5-15-fold) were measured, while glutamate did not markedly increase. The elevation of adenosine was transient whereas that of inosine, hypoxanthine and glutamate persisted over an ischemic period of 3 h. The higher flow threshold for adenosine may reflect an inherent but time limited protective mechanism against glutamate excitotoxicity.
Collapse
Affiliation(s)
- K Matsumoto
- Max-Planck-Institut für neurologische Forschung, Köln, FRG
| | | | | | | | | |
Collapse
|
40
|
de la Torre JC, Fortin T, Saunders JK, Butler K, Richard MT. The no-reflow phenomenon is a post-mortem artifact. Acta Neurochir (Wien) 1992; 115:37-42. [PMID: 1595393 DOI: 10.1007/bf01400588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-ischemic reperfusion impairment, ("no-reflow phenomenon"), was studied in rats subjected to 8-30 minutes of global brain ischemia. During ischemia, rapid and complete loss of cerebral blood flow, EEG and 31P-high energy phosphates (ATP/PCr) was observed. Brain intravascular perfusion defects were examined by injecting carbon black intravenously in a group of rats with stable cardiopulmonary function and in another group subjected to rapid thoracotomy and intraarterial infusion of the carbon marker. Results indicate that global brain ischemic or non-ischemic control rats given intraarterial carbon black after thoracotomy had varying degrees of vessel filling defects in brain resulting in "pale tissue areas" suggestive of impaired perfusion (no-reflow). All rats given carbon black intravenously whether global brain ischemic or not, showed normal cerebrovascular filling of the carbon black and absence of "pale tissue areas". In addition, post-ischemic cerebral reperfusion following 8-30 minutes global brain ischemia can reverse neuroelectric, energy metabolite and cerebral blood flow loss in rats whose cardiopulmonary function is not compromised. These findings indicate that the "no-reflow phenomenon" is an agonal or post-mortem artifact observed in the presence of cardiopulmonary failure.
Collapse
Affiliation(s)
- J C de la Torre
- Division of Neurosurgery, University of Ottawa, Faculty of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 1991; 11:753-61. [PMID: 1874807 DOI: 10.1038/jcbfm.1991.132] [Citation(s) in RCA: 279] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ischemic threshold of protein synthesis and energy state was determined 1, 6, and 12 h after middle cerebral artery (MCA) occlusion in rats. Local blood flow and amino acid incorporation were measured by double tracer autoradiography, and local ATP content by substrate-induced bioluminescence. The various images were evaluated at the striatal level in cerebral cortex by scanning with a microdensitometer with 75 microns resolution. Each 75 x 75 microns digitized image pixel was then converted into the appropriate units of either protein synthesis, ATP content, or blood flow. The ischemic threshold was defined as the flow rate at which 50% of pixels exhibited complete metabolic suppression. One hour after MCA occlusion, the threshold of protein synthesis was 55.3 +/- 12.0 ml 100 g-1 min-1 and that of energy failure was 18.5 +/- 9.8 ml 100 g-1 min-1. After 6 and 12 h of MCA occlusion, the threshold of protein synthesis did not change (52.0 +/- 9.6 and 56.0 +/- 6.5 ml 100 g-1 min-1, respectively) but the threshold of energy failure increased significantly at 12 h following MCA occlusion to 31.9 +/- 9.7 ml 100 g-1 min-1 (p less than 0.05 compared to 1 h ATP threshold value; all values are mean +/- SD). In focal cerebral ischemia, therefore, the threshold of energy failure gradually approached that of protein synthesis. Our results suggest that with increasing duration of ischemia, survival of brain tissue is determined by the high threshold of persisting inhibition of protein synthesis and not by the much lower one of acute energy failure.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Mies
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, F.R.G
| | | | | | | | | |
Collapse
|
42
|
Roucher P, Méric P, Corrèze JL, Mispelter J, Tiffon B, Lhoste JM, Seylaz J. Metabolic effects of R-phenylisopropyladenosine during reversible forebrain ischemia studied by in vivo 31P nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 1991; 11:453-8. [PMID: 2016353 DOI: 10.1038/jcbfm.1991.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The metabolic effects of R-phenylisopropyladenosine (R-PIA), an agonist of adenosine A1 receptors, were studied by in vivo 31P NMR spectroscopy before, during, and after 30 min of reversible forebrain ischemia in the rat. R-PIA had no effect on cerebral metabolism before ischemia. During a 30-min ischemia, R-PIA reduced the decrease in phosphocreatine (43 +/- 11% of the control level at the end of ischemia vs. 27 +/- 9% in the reference group) and ATP (58 +/- 12% vs. 40 +/- 23%) and the increase in inorganic phosphate (672 +/- 210% vs. 905 +/- 229%). The intracellular acidosis elicited by ischemia was also less in the treated group (pH of 6.40 +/- 0.10 vs. 6.30 +/- 0.10). Recirculation was associated with a faster recovery of PCr, ATP, Pi, and pHi to control levels in the treated group than in the reference group. It is concluded that adenosine protects against ischemic injury by mechanisms that include metabolic protection.
Collapse
Affiliation(s)
- P Roucher
- Laboratoire de Physiologie et Physiopathologie Cérébrovasculaire, INSERM U182-CNRS UA641, Paris, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A model for inducing partial (PBI) or global brain ischemia (GBI) in awake or anesthetized rats was obtained by ligating one subclavian and both carotid arteries (for PBI) or both subclavian-carotid arteries (for GBI). Rats were intubated and ventilated mechanically then subjected to a midline ventral incision from larynx to xiphoid process. The thorax was entered to expose the aortic arch and either one or both subclavians were ligated to eliminate each vertebral artery supply to brain. After chest closure the common carotid arteries were exposed and immediately ligated or else catheter snares were installed to induce ischemia at a later date. PBI was induced in 3 groups of rats for 7, 30 and 60 days while GBI was given for 5, 10, 30 and 75 minutes in 4 other groups. EEG became flat within 15 seconds after GBI and cortical cerebral blood flow (CBF) was reduced to "zero." EEG was unaffected after PBI but cortical CBF was reduced from a mean 118 ml/100 g tissue/min to 77 ml after 7 days. Morphological damage of CA1 hippocampal neurons after GBI or PBI was found reproducible and time dependent on ischemic duration. Acute cell damage rose from 5-95% in CA1 as GBI duration increased from 5-75 minutes. Similarly, chronic cell damage of CA1 increased as ischemic duration continued from 7-60 days in rats subjected to PBI. The advantages of the present model provide the option of inducing partial or global brain ischemia and of introducing postischemic reperfusion in awake or anesthetized preparations without the use of drugs, blood pressure manipulation or direct contact with brain tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J C de la Torre
- Division of Neurosurgery, University of Ottawa Health Sciences, Ontario
| | | |
Collapse
|
44
|
de la Torre JC, Saunders J, Fortin T, Butler K, Richard M. Return of ATP/PCr and EEG after 75 min of global brain ischemia. Brain Res 1991; 542:71-6. [PMID: 2054660 DOI: 10.1016/0006-8993(91)90999-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute, progressive global brain ischemia was induced in awake or anesthetized rats for 5-75 min. Ischemia was achieved with a subclavian-carotid artery occlusion technique (SCOT). After thoracotomy, both subclavian arteries (proximal to their vertebral branches) were tied-off and carotid artery catheter-snares installed. Results show progressive morphological, physiological and neurochemical damage when CBF was reduced from preischemic levels of 115 ml to 0 blood flow. 31P magnetic resonance spectroscopy of high energy phosphate metabolites in vivo showed loss of PCr and beta-ATP signals after 6 min brain ischemia. Energy metabolite levels, EEG and CBF normalized within hours after reperfusion. Degree of neuropathologic damage to hippocampal region appeared linearly related to the ischemic duration of ischemia. Thus, acute global brain ischemia resulted in loss of high energy phosphate metabolites, EEG and neuronal integrity in the hippocampal subfields. Reperfusion following short (5 min) or long (75 min) periods of global brain ischemia induced return of 31P-spectra, EEG and CBF to normal but was unable to reverse all of the neuronal damage at the end of the 72-h observation period.
Collapse
Affiliation(s)
- J C de la Torre
- Division of Neurosurgery, University of Ottawa, Faculty of Medicine, Ont., Canada
| | | | | | | | | |
Collapse
|
45
|
Phillis JW, Walter GA, Simpson RE. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effects of the adenosine deaminase inhibitor deoxycoformycin. J Neurochem 1991; 56:644-50. [PMID: 1671090 DOI: 10.1111/j.1471-4159.1991.tb08198.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of a potent adenosine deaminase inhibitor, deoxycoformycin, on purine and amino acid neuro-transmitter release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (20 min) was elicited by four-vessel occlusion. Purine and amino acid releases were compared from control ischemic animals and deoxycoformycin-pretreated ischemic rats. Ischemia enhanced the release of glutamate, aspartate, and gamma-aminobutyric acid into cortical perfusates. The levels of adenosine, inosine, hypoxanthine, and xanthine in the same perfusates were also elevated during and following ischemia. Deoxycoformycin (500 micrograms/kg) enhanced ischemia-evoked release of adenosine, indicating a marked rise in the adenosine content of the interstitial fluid of the cerebral cortex. Inosine, hypoxanthine, and xanthine levels were depressed by deoxycoformycin. Deoxycoformycin pretreatment failed to alter the pattern of amino acid neurotransmitter release from the cerebral cortex in comparison with that observed in control ischemic animals. The failure of deoxycoformycin to attenuate amino acid neurotransmitter release, even though it markedly enhanced adenosine levels in the extracellular space, implies that the amino acid release during ischemia occurs via an adenosine-insensitive mechanism. Inhibition of excitotoxic amino acid release is unlikely to be responsible for the cerebroprotective actions of deoxycoformycin in the ischemic brain.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
46
|
Kinouchi H, Imaizumi S, Yoshimoto T, Motomiya M. Phenytoin affects metabolism of free fatty acids and nucleotides in rat cerebral ischemia. Stroke 1990; 21:1326-32. [PMID: 2396270 DOI: 10.1161/01.str.21.9.1326] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the effects of phenytoin on the rate of enzymatic release of free fatty acids and on the levels of energy metabolites and nucleoside phosphates in ischemic brain. Phenytoin (10 mg/kg i.v.) was administered 30 minutes before the onset of ischemia induced in 30 male Wistar rats by occluding the basilar and both common carotid arteries. The rats' brains were frozen in situ after 0, 5, or 30 minutes of ischemia or 10, 30, or 60 minutes of recirculation following 30 minutes of ischemia (n = 5 at each time). Nucleoside triphosphate levels were higher in the phenytoin-treated rats than in corresponding untreated rats at each time during and after ischemia. Phenytoin significantly attenuated the accumulation of lactate and free fatty acids (arachidonic acid and stearic acid) during ischemia and accelerated their recovery during recirculation. These results suggest that phenytoin has favorable protective effects on ischemic brain and that phenytoin may inhibit calcium-mediated phenomena, especially the inositol cycle, in cerebral ischemia.
Collapse
Affiliation(s)
- H Kinouchi
- Division of Neurosurgery, Tohoku University, School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
47
|
Paschen W. Imaging of energy metabolites (ATP, glucose and lactate) in tissue sections: a bioluminescent technique. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1990; 20:1-122. [PMID: 2315510 DOI: 10.1016/s0079-6336(11)80071-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- W Paschen
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Köln, FRG
| |
Collapse
|
48
|
Harkness RA, McCreanor GM, Allsop J, Snow DH, Harris RC, Rossdale PO, Ousey JC. Hypoxanthine phosphoribosyltransferase activity in tissues and hypoxanthine concentrations in plasma and CSF of the horse in comparison with other species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 97:591-6. [PMID: 2286069 DOI: 10.1016/0305-0491(90)90164-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. Plasma hypoxanthine and xanthine concentrations are very low in the horse and low in rat, mouse and greyhound compared to concentrations in beagles, man, sheep and rabbit. 2. Activities in erythrocytes of the main enzyme metabolizing hypoxanthine, hypoxanthine phosphori-bosyltransferase, show a similar pattern (Tax et al., 1976, Comp. Biochem. Physiol. 54B, 209-212); thus low activities have been found where plasma concentrations were low. 3. Hypoxanthine phosphoribosyltransferase activities in horse tissue other than erythrocytes are similar to those in man and rabbit with high activities in brain; this enzyme may therefore be functionally important in equine brain.
Collapse
Affiliation(s)
- R A Harkness
- Division of Inherited Metabolic Diseases, MRC Clinical Research Centre, Harrow, Middlesex, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Hillered L, Hallström A, Segersvärd S, Persson L, Ungerstedt U. Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 1989; 9:607-16. [PMID: 2777932 DOI: 10.1038/jcbfm.1989.87] [Citation(s) in RCA: 303] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this study was to measure changes in the extracellular fluid (ECF) concentration of lactate, pyruvate, purines, amino acids, dopamine, and dopamine metabolites in the striatum of rats subjected to focal cerebral ischemia, using intracerebral microdialysis as the sampling technique. Microdialysis probes were inserted into the lateral part of the caudate-putamen bilaterally 2 h before the experiment. Ischemia was induced by permanent middle cerebral artery occlusion (MCAO) on the left side. Microdialysis samples were analyzed by high performance liquid chromatography. Following MCAO, the concentration of lactate, adenosine, inosine, and hypoxanthine rose markedly in the ECF on the occluded side, while there was no significant change in pyruvate. These changes were accompanied by dramatically elevated levels of aspartate, glutamate, taurine, gamma-aminobutyric acid, and dopamine. There was also a marked increase in alanine/tyrosine, while minor or no changes occurred with other amino acids. Concomitantly, the ECF level of the dopamine metabolites 3,4-dihydroxyphenylacetate and homovanillic acid decreased. There was no significant increase in any of the metabolites measured on the right, nonoccluded side. In relation to the concept of excitotoxicity in brain ischemia, it is concluded that during the acute stage of focal cerebral ischemia, the ECF is flooded with both potentially harmful (e.g., aspartate, glutamate, and DA) and protective (e.g., taurine, GABA, and adenosine) agents. The relative importance of these events for the development of cell death in the ischemic penumbra needs to be elucidated. In addition, lactate, inosine, and hypoxanthine, measured in the ECF by intracerebral microdialysis, may prove to have diagnostic and/or prognostic value in neurometabolic monitoring of the ischemic brain.
Collapse
Affiliation(s)
- L Hillered
- Department of Clinical Chemistry, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Kozuka M, Smith ML, Siesjö BK. Preischemic hyperglycemia enhances postischemic depression of cerebral metabolic rate. J Cereb Blood Flow Metab 1989; 9:478-90. [PMID: 2738114 DOI: 10.1038/jcbfm.1989.71] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The objective of the present study was to explore metabolic correlates to the appearance of postischemic seizures and the enhancement of brain damage observed in subjects that are made hyperglycemic prior to the induction of ischemia. To that end, transient forebrain ischemia of 10-min duration was induced in normo- and hyperglycemic rats, with subsequent measurements of local CMRglc (LCMRglc) after 3, 6, 12, and 18 h of recirculation. We posed the questions of whether postischemic depression of LCMRglc is exaggerated by preischemic hyperglycemia and whether there are signs of localized increases in LCMRglc in hyperglycemic rats, reflecting subclinical seizure activity. The results confirmed the presence of a long-lasting postischemic depression of LCMRglc in normoglycemic rats. This depression was partially but not tightly related to the degree of reduction of local CBF during ischemia. The depression was most pronounced in neocortical areas and in the hippocampus, but notably it was less pronounced in the densely ischemic caudoputamen. Little or no reduction of LCMRglc was observed in moderately or mildly ischemic structures such as the hypothalamus, red nucleus, and cerebellum. Preischemic hyperglycemia markedly accentuated the postischemic depression of LCMRglc. For example, although the subjects quickly regained wakefulness and motility, they had LCMRglc values in neocortical areas that remained below 50% of control. Corresponding but quantitatively less pronounced reductions in LCMRglc were observed in other areas. Notably, preischemic hyperglycemia reduced postischemic LCMRglc also in areas that showed only moderate to mild reductions in CBF during the ischemia. The results thus demonstrate that preischemic hyperglycemia has pronounced metabolic effects in the postischemic recovery period. The data provide no indication that postischemic seizures, which develop after a recovery period of approximately 24 h, are preceded by the appearance of hypermetabolic "seizure" foci.
Collapse
Affiliation(s)
- M Kozuka
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| | | | | |
Collapse
|